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Abstract 

For total hip replacement implant bearings, pin-on-disc (PoD) studies are commonly 

performed to quantify wear of different bearing material. However, it is difficult to compare 

polyethylene wear results from multiple PoD trials, which may lead to knowledge being lost. 

In the present work, a machine learning based linear regression model is trained by 

quantifying the error encountered during model training.  The linear regression model is able 

to predict the wear rate of polyethylene bearing material with the accuracy of 95% when 

compared with the actual wear rate of polyethylene bearing material taken from literature.  

Keywords. Total hip replacement, artificial intelligence, linear regression, polyethylene 

wear rate, Pin-on-disk test. 

1. INTRODUCTION 

The bones present in human body are made up of strongest material, but bone fractures come 

into existence as external forces are applied or the individuals suffer from osteoporosis and 

femur necrosis. Despite the ability of the associated tissues to mend themselves, some bone 

injuries are permanent and irreversible [1-3]. Hip injury is a significant and regular 

occurrence that can be extremely debilitating, resulting in permanent disability. Hip fracture 

related injuries are anticipated to grow to about 6.26 million worldwide by 2050 [4]. As 

many person with hip joint related illness struggle to even do daily chores, hip replacement 

surgery has gained its popularities. In ‘total hip replacement surgeries’, the hip joint is 

replaced by an artificial metallic and polymer based joint, which transfer bodyweight to the 

femur [5]. The primary goal of hip replacement is to alleviate discomfort and increase 

mobility. The total hip replacement implants are composed of metallic femoral and polymer 

bearing cup component which are intended to restore the function and relieve pain of hip 

joint [6]. The most prevalent bearing material in total hip replacement implants [7] is metal-

on-polyethylene (MoP), which typically pairs a metallic femoral head with a polymer based 

acetabular cup. Polyethylene wear debris has the potential to promote osteolysis (bone 

weakening) [8], which may make the implant loosemechanically unstable [9]. Several 
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attempts were made by researchers all across the world to enhance the mechanical and 

tribological properties of polyethylene liners viz. crosslinking and vitamin E blending to the 

polyethylene. In vitro and in vivo show that high crosslinking of polyethylene and blending 

of vitamin E produce less wear as compared to conventional ultrahigh molecular weight 

polyethylene (UHMWPE) [10, 11].  

Pin-on-disc (PoD) wear studies are prevalent approaches for quantifying, comparing, and 

ranking wear of various polymer based bearing materials [12]. On the other hand, 

computational wear modelling could be a remedy to the POD tests shortcomings. Many 

mathematical wear models have been formulate d and available in the literature, and are 

used to assess the wear of polyethylene based bearing materials. Machine learning-based 

algorithm is another major modelling approach that scientists, engineers, and researchers in 

the field of wear modelling are considering these days. It may also be used to estimate the 

mechanical and tribological properties of composites and medical-graded polymers [13-16]. 

Materials scientists, on the other hand, have made strides in recent years by having used 

machine learning approaches in conjunction with experimental dataset to make it easier to 

model complex material connections,   components structure, and the mechanical attributes 

that go with them [17]. These data-driven models allow the comparison of exisitng datasets 

with the newly developed ones.  Prediction of new outcomes based on previously learned 

information, which would be difficult or time-consuming to gather otherwise using 

conventional research procedures(@vipin please revise this sentence) [18]. One of the 

advantages of machine learning is that some models can be trained on massive amounts of 

data, also known as "big data." The more data the underlying model is trained on, the more 

accurate its predictions get [19], which improves the usage of these models in decision 

making. Decision trees, support vector machines, regression analysis, and Bayesian 

networks are among the ML models employed [20, 21]. In addition, a subset of machine 

learning known as "deep learning" has been developed, which comprises models based on 

artificial neural networks (ANNs) for evaluation of wear performance of total knee 

replacement implants. These models have the advantage of not requiring humans to 

preprocess the data; instead, they can evaluate raw inputs and determine which attributes are 

most significant for a study. Thus, the aim of the current study is to use machine learning 

based linear regression method to create a model which should be able to make predictions 

of wear rate of polyethylene based bearing materials. A model similar to this may be used 

to enhance PoD wear tests and discover previously unknown correlations between 

polyethylene wear rate and PoD operation parameters. 

2. MATERIALS AND METHOD 

2.1. Linear regression model 

The relationship between the feature and actual dependent values can be given as 

0 1 1+y b b x e= +             (1) 

The estimated regression model takes the following form: 

1 1 =  0 + y b b x      (2) 
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and the following relationship is used to compute the regression error: 

e y y= −    (3) 

where, y and y are the actual dependent value and estimated dependent variable, x1 and b0   

are the explanatory factor and intercept term, b1 and e are the sensitivity of y to factor x and 

regression error terms respectively. Figure 1 depicts the entire flow chart of the methods 

used to train and test the network. The training and testing of this network entails multiple 

processes, including the data collection, data split into training and testing datasets, 

definition of machine learning model, error computations, and ultimately testing the network 

with a new input dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A flowchart showing the process of developing a linear regression algorithm 

2.2. Modelling Performance Criteria 

A) Mean Square Error 

The root mean square error is defined as 
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2.3. Data Collection and Preprocessing 

The experimental raw dataset, based on POD test, of all parameters and polyethylene wear 

rate is collected from available literature. After acquired dataset is scaled and normalized to 

ease the linear regression model training, normalized dataset is split into training and testing 

dataset. The 80% of available dataset is used for training and 20% for testing of linear 

regression model respectively. 

The kernel density estimate plots are used to observe the probability distribution of variables. 

These have been s in Fig. 2. Kernel density estimation (KDE) is a non-parametric method 

of estimating a probability density function of a random variable. Kernel density estimation 

is fundamentally data smoothening problem in which statistical predictions are obtained 

from a discrete dataset. The statistical properties viz: minimum (min), maximum (max) and 

standard deviation (std) of all wear parameters that affects the wear of polyethylene 

acetabular cup in total hip replacement are summarized in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic diagram of kde distribution of variable 
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Table. 1 Statistical parameters of wear variable and Polyethylene wear rate 

 

The linear regression model was trained by considering mean square error and ‘Adam' as 

loss function and optimization function respectively. The value of learning rate was taken 

0.1 during whole model training. 

3. RESULTS AND DISCUSSION 

The training and validation losses obtained during dataset training are shown in Figure 3. 

The regression model can fit the training dataset accurately when there are only a few 

instances, say two or three. However, when more new instances are added to the model, it 

begins to fit incorrectly. The ultimate purpose of a regression model is to reduce the error 

that it produces while comparing predictions with real time data. The learning curve 

descends smoothly and steeply for each epoch before flattening out at the end. As the 

number of instances and epochs progresses, both training and validation curves matches 

closely.  

Figure 3. The schematic diagram of regression vs number of epochs (@vipin please make 

this figure in origin) 

  

count 
mean std min max 

Normal 

load [N] 
103.0 168.915495 132.329401 7.00 777.546 
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103.0 69.954466 74.238209 7.07 706.860 
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103.0 30.899320 11.088335 17.76 94.250 
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The actual and predicted values of polyethylene wear rate using linear regression model 

have been shown in Fig. 4. As explained earlier, for a few starting instances, the model has 

the capability to predict a data accurately but as training of model proceeds, the model starts 

to manifest  over-fitting and  under-fitting of input dataset. Upon further training of 

regression model, it starts to fit the data accurately and manifests good convergence. This 

behaviour of model is just because of training data may have some noise. Therefore, before 

training of regression model, all the noise and the irregularities present in the input dataset 

should be removed by applying scaling and data filtering procedures. 

 

Figure 4. Scattering diagrams between predicted polyethylene wear rate and actual 

polyethylene with linear regression model with normal load as input variable. (Please 

prepare this graph in better way in origin, increase the data point size to visibly big) 

In the current work only one variable i.e. normal load is considered on hip wear. In practical 

applications the effect of other variables viz., contact area, also exists. Therefore, to enhance 

the prediction capabilities of the current model more variables should be incorporated in this 

linear regression model. Further, the experimental dataset used for training of the model is 

also very small, therefor a large dataset should be used for better prediction of polyethylene 

wear rate in total hip replacements implants. 

4. CONCLUSION 

The polyethylene wear rate is estimated using a linear regression model technique with 

normal load as an input variable in this study. The aim of this study is to see how effective 

a linear regression model may be in tribological analysis in the setting of total hip 

replacement. When compared to standard polyethylene wear rate, it is established that the  

proposed model has a prediction accuracy of 95%. Thelinear regression model is suitable 

for obtaining perfect tuning between input variables and target values. 
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