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Abstract 

In rotating machinery, unbalance creates excessive vibration and causes a catastrophic or 

sudden system failure. Unbalance is produced inside the system due to shaft deformation, 

inhomogeneity in material, and manufacturing tolerance. This current study proposed an 

experimental approach to identifying unbalance in the rotor-bearing system. The dominant 

peak is obtained at the first and multiple harmonics of the shaft frequency. It is seen from 

the pilot experiments the vibration amplitude increases as speed increases. Also, defect 

frequency corresponds to the first harmonics of the shaft's rotating speed, which conforms 

to the theoretical results. The Adaptive Neuro-Fuzzy Interface System (ANFIS) is 

implemented to classify multiple fault presents in the rolling element bearing. ANFIS reveals 

good fault classification over multiple fault classes of vibration data with an accuracy of 

91.66 %. 
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1. INTRODUCTION 

Rotating machines are found in a wide variety of applications, including power plants, 

marine propulsion systems, aviation engines, machine tools, vehicles, home products, and 

futuristic micro- and nano machines. In modern engineering, the design trend for such 

systems is toward lighter weight and supersonic speeds. A precise estimate of the rotor 

system's dynamic properties is critical when developing any form of machinery. In real 

machines, rotors may display many defects at the same time, such as unbalance, rotor bow, 

crack, and misalignment, either during continuous operation or at the start of manufacturing 

of the various components due to design issues or during assembly of the rotor system setup.  

Any disobedience on the part of machinery causes huge damage to the entire system as well 

as significant financial loss. As a result, researchers have focused their efforts on detecting 

defects with maximal accuracy. 

At present, different fault finding techniques have been introduced for rolling bearing, such 

Zhang et al. [1] investigated the compound faults of vibration signatures of gearbox using 
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genetic algorithm. Also, vibration characteristics were analyzed by energy operator 

demodulating, and vibration signals of bearing and gears were effectively studied. Jing [2] 

studied vibration signals of several defects using the blind source separation approach. This 

method effectively identified the compound defects. Li et al. [3] studied a vibration response 

of compound faults in the gears and bearing uses nonlinear feature extraction with blind 

source separation. The results obtained are more effective for the multi-fault diagnosis for 

bearings and gears. Tang et al. [4] considered the compound fault of roller bearing using the 

variational mode decomposition. The compound defects are separated effectively for the 

analysis of the individual components. Also, experimental results were carried out to validate 

the results, and this shows that the technique is more reliable to study compound defects. 

Jiang et al. [5] applied empirical wavelet transform to rolling element bearing vibration 

signals to identify compound faults. Experimentation was performed on rolling bearing for 

combine faults to validate the empirical wavelet transform-duffing oscillator results, and 

this shows that the method proposed was more reliable.  

At present, number of methods and techniques are available for fault identification in rolling 

element bearing, such as Wavelet Transform-based [6-8], mode decomposition-based [9, 10] 

methods, and intelligent composite fault diagnosis methods [11, 12]. Many authors use the 

dimensional analysis approach, neural network approach, ANFIS, etc., to study the fault 

characteristics of rotor-bearing systems. [13-26]. Intelligent algorithms, such as neuro-fuzzy 

classifiers and support vector machines, are frequently used as popular methods for 

compound fault diagnosis since they can effectively classify different types of fault data. 

From the literature findings, most of the research is going on in vibration analysis with 

localized defects. But there is a comprehensive scope to study multiple faults in the rotor-

bearing system that needs to be investigated. 

The current paper proposes a duo study of unbalance response of the vibratory system and 

fault classification using the Adaptive Neuro-Fuzzy Interface System (ANFIS) for the 

rotating system.  

2. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 

For improvement in the accuracy of complex system analysis, Jang created an ANFIS 

approach. ANFIS is a data-learning technique that transforms a given input into a desired 

output. It is based on a fuzzy inference model. This method encompasses various 

membership functions, fuzzy logic operators, and conditional rules. 

The statistical features retrieved from a vibration characteristics were used as input ANFIS 

classification models in this investigation. 

The output of the fuzzy inference system is subjected to the first-order polynomial. Using 

IF-THEN rules in human cognitive systems, the ANFIS technique creates a neural-fuzzy 

system. Membership functions can be better represented and identified using the system’s 

entry point. As a result, ANFIS has been developed to incorporate both the advantages of an 

artificial neural network and a fuzzy reasoning system. 

ANFIS architecture shows two inputs and a single output with five layers of neurons in 

Figure1. 
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The first layer denotes the fuzzyfying layer, in which each neuron is an adaptable node made 

up of premise parameters. The second layer denotes the product layer, or the implication 

layer indicates a product of inputs. The normalizing layer function is to normalize the weight 

functions indicated by layer 3. Layer 4 is defined as a defuzzyfing layer whose nodes or 

neurons are adaptive. All the input is into a single neuron representing an output or results 

represented by layer 5.  

 
Figure 1. ANFIS Architecture 

 

2.1 Feature Extraction 

The obtained data is extracted in five features: peak value, crest factor, RMS, Range, and 

standard deviation. 

The details of these features are given below, 

• Root mean square (RMS) -This function measures the total level of a discrete 

signal.  

RMS =  √
1

M
∑ 𝑓𝑛

2

M

m=1

 

• Peak value (𝝆) 

The peak value is the highest acceleration measured in its amplitude.  

P =  
1

2
[𝑓𝑛𝑚𝑎𝑥 − 𝑓𝑛𝑚𝑖𝑛] 

• Crest factor(𝝇) 

The crest factor is the contrast between peak and RMS acceleration. This 

measurement can identify accelerant bursts even though the signal RMS remains 

unchanged.  

Crest Factor =
P

RMS
 

• Standard deviation (𝛔) 

The standard deviation is a quantity that expresses the distribution’s variability or 

the divergence of signals from the mean.  

σ= (
1

N−1
∑ (𝑓𝑛 − 𝑓)2M

m=1 )
2

 

• Range (𝛄) - The difference is between the high and low extremes.  
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3. EXPERIMENTATION  

For the rotor-bearing setup, the dynamic response of the test setup is investigated by taking 

unbalanced mass and shaft speed into account. Figure 2 shows a schematic view of 

experimental. The setup consists of an unbalance disc supported by a shaft between two ball 

bearings driven at operating speed by a DC motor via a dimmer stat.  

 

 
 

Figure 2. Experimental Setup 

To measure vibration signals, Adash VAPro 4400 Fast Fourier transforms (FFT) with an 

accelerometer of the piezoelectric type was placed on the test bearing housing. The ball 

bearing specifications mentioned in Table 1 are used for experimentation. The deep groove 

ball bearing is mounted on the pedestal carrying a shaft. The mild steel shaft of 600 mm in 

length and 40 mm in diameter is used for experimentation. The unbalance disk is attached 

to the shaft, and variable unbalances are created throughout the experiment. The 1 HP DC 

motor is used to rotate the shaft with the help of a dimmer stat. Stat jaw coupling is used to 

attach the motor shaft and bearing shaft. The proximity sensor is used for the speed 

measurement of the shaft.  

The different combination of bearing speed and unbalanced mass was simulated between 

500 rpm to 1300 rpm. A total of 25 trials were conducted to acquire vibration signals and 

defect frequencies.  

 

 

 

 

 

 

Table 1. Bearing Specifications 

Bearing - SKF 6209-K 

d- Bearing Inner Dia. - 45 mm 

D- Bearing Outer Dia. - 85 mm 

No. of Balls (N)- 9 

Diameter of balls- 9 mm 
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4. RESULTS AND DISCUSSION 

4.1 Influence of Unbalance on Vibration Characteristics 

The figure 3 to 6 shows frequency response spectra of vibratory setup under the influence 

of unbalance present in system. The unbalance of 25 gm to 125 gm is considered for 

experimentation. 

 

  
 

Figure 3. Vibration response at 700 rpm 

and 25 gm of unbalance mass 

 

Figure 4. Vibration response at 900 rpm 

and 75 gm of unbalance mass 

Figure 3 shows a vibratory response at 25 gm unbalance and 700 rpm speed of shaft. The 

vibration amplitude recorded at the first harmonics of the shaft frequency is 0.898 mm/s, 

which corresponds to the first harmonic of the shaft frequency. The defect frequency is 

closely matches with the experimentally obtained frequency. Figure 4 shows a vibration 

response for trial 75 gm of unbalanced mass and shaft rotational speed of 900 rpm. The peak 

amplitude of vibration is obtained at 1×fs is 1.18 mm/s. The significant peak is obtained at 

15 Hz, matching the theoretical study. 

  
 

Figure 5. Vibration response at 1100 rpm 

and 100 gm of unbalance mass 

Figure 6. Vibration response at 1300 rpm 

and 125 gm of unbalance mass 
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This trial was conducted with a shaft unbalance of 100 gm and a 1100 rotor speed. The 

vibration plot for the above test is given in Figure 5. The dominant peak occurs around 18.3 

Hz, close to the first harmonic of the shaft frequency. Other distinct low amplitude spikes 

are also observed at different frequencies.  

The frequency response plot for unbalance mass of 125 gm and shaft speed of 1300 rpm is 

observed in Figure 6. The significant peak is observed at 21.5 Hz which is of amplitude of 

3.4 mm/s. 

 

Table 2. Vibration Response of all trials 

Speed 25 gm 50 gm 75 gm 100 gm 125 gm 

RPM Vibration Amplitude (mm/s) 

500 0.566 0.598 0.784 0.854 0.902 

700 0.898 0.927 0.997 1.09 1.29 

900 0.945 1.02 1.18 1.49 1.58 

1100 1.415 1.59 1.65 2.07 2.35 

1300 1.894 2.354 2.89 3.17 3.4 

Similarly all other trials are conducted for various speeds and unbalance mass and vibration 

amplitude is reported in Table 2.  

 

 
Figure 7 Influence of unbalance mass on vibration amplitude 

Preliminary experimentation was performed successfully in the range of 25gm-125gm and 

the speed range of 500 rpm to 1300 rpm, as shown in Table 3. It is observed from the pilot 

experiments that amplitude of vibration increases as speed increases. Also, defect frequency 

corresponds to the shaft’s rotating speed fs, which conforms to the theoretical results.  
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4.2 Fault Classification  

A five bearing faults classes are considered for ANFIS, viz. unbalance, outer race fault, 

misalignment, inner race fault, and clearance. Overall, 60 fault cases are trained and tested 

in ANFIS. 80% of data is used for training, and 20% is utilized for testing. The details of 

ANFIS parameters are provided in table 3. 

 

 

Table 3. ANFIS Parameter 

No of Membership functions 5 

Optimization method Linear 

Type of membership functions Trimf 

Table 4 compares the performance of the ANFIS using statistical measures such as root mean 

square error (RMSE) and correlation coefficient (R). These characteristics are typically 

expressed in terms of predicting error, which is defined as the difference between the 

observed and predicted values. 

Table 4. ANFIS Results 

Accuracy 91.67 

R 0.9775 

RMSE 0.4978 

 
Figure 8. Confusion Matrix 

The correlation coefficient (R) of 0.9775 and root mean square error (RMSE) of 0.4978 is 

acquired using data classification. Figure 7 shows a confusion matrix that offers an actual 

class vs. a predicted class. The 60 fault cases are considered, 55 fault cases are predicted 

correctly, and five are wrongly classified. ANFIS gives a 91.66 % of fault classification 

accuracy. 
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5. CONCLUSION 

The current study proposes a duo study of unbalance response of the vibratory system and 

fault classification using the Adaptive Neuro-Fuzzy Interface System (ANFIS) for the 

rotating system.  

The results obtained are summarized as follows,  

1. It is observed that as unbalanced mass with shaft speed increases, the amplitude of 

vibration increases.   

2. Experimental defect frequencies closely match the theoretical defect frequencies 

that validate the experimental investigation.   

3. The linear nature of vibration is observed as an increase in unbalanced mass, which 

changes the system's dynamics.   

4. Adaptive Neuro-Fuzzy Interface System (ANFIS) classified 55 fault cases out of 

60 fault cases with a 91.66 % of classification accuracy over multiple fault cases.  

The current work can be extended with the application of convolutional neural network 

(CNN), support vector machine (SVM), K- nearest neibour network (KNN).  
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