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Abstract 

In this research, an Augmented Mixture of Experts (A-MoE), a modified form of a committee machine i.e., (MoE), 

is used to provide a one-step solution for predicting dynamic non-linear behavior of wideband RF power amplifier 

(PA) along with other impairments of the direct-conversion transmitter (DCT) such as I/Q imbalance and DC offset. 

For data acquisition for modeling, we have utilized a class AB-PA-driven transmitter with a wideband three-carriers 

Long-Term Evolution (LTE) signal. The modeling performance for behavioral modeling of DCT obtained for the A-

MoE model show better performance than multilayer perceptron (MLP) neural networks (NNs) and other machine 

learning methods for actual device data in term of normalized mean squared error (NMSE). Hence, the purposed 

method provides a noval solution for efficient behavioral modeling of PA or DCT's, reporting the performance level 

much better than comparative methods. 

Keywords. PA nonlinearity, Mixture of Expert, Direct-Conversion Transmitter, transmitter impairments, Long-

Term Evolution (LTE) signal.  

1. INTRODUCTION 

In modern communication systems, for enhancing spectrum efficiency with restricted spectrum resources, 

researchers have utilized higher-order modulation techniques like quadrature amplitude modulation (QAM), 

wideband code division multiplexing (WCDM), and orthogonal frequency division (OFDM). Due to wideband 

envelope varying signals with high peak-to-average power ratio (PAPR), these higher-order modulation techniques 

are more sensitive to the non-linear behavior of PA and produce more non-linear distortion than other similar 

average power leveled low PAPR modulation-based communication systems. Hence to compensate for nonlinearity 

in PA, different linearization techniques have been used in the digital domain of the transmitter section, in which 

digital predistortion is the most popular and widely used linearization technique [1].  

In a wideband communication system, the high PA starts to show the memory effect because of the input signal's 

larger bandwidth. In such cases, memoryless models [2-4] attain limited linearization performance, and hence 

memory capable models comprising structures capable of modeling them are used. The Volterra series is taken as a 

reference model for the accurate modeling of dynamic (memory-based) non-linear systems [5]. A large number of 

coefficients (Volterra kernels) is one major drawback of the Volterra model and the number of coefficients increases 

exponentially in the Volterra model with an increase in the nonlinearity degree and memory depth of the series, which 

in turn surges the computational complexity of the model with slow convergence. A comparative study between 

various Volterra-based methods, such as Memory polynomial (MP), generalized memory polynomial (GMP), and 

Dynamic Deviation Reduction (DDR), etc. was done based on the complexity and performance of the models by 

Ghannouchi et al. [6] and concluded that these polynomial models present higher modeling accuracy of the narrow 

band signal or less complex PA or moderately non-linear PA. But these methods still have large hardware 

complexity and numerical instability due to dispersion coefficient and data matrix ill-conditioning. 

A DCT chain/system of communication system has several imperfections, i.e., DC offset and I/Q imbalance, etc., 

and these imperfections are generated by the gain and phase mismatch behavior of the non-ideal local oscillator 

(LO) carrier leakage and the modulator [7], respectively. In various instances, PA nonlinearity-based distortions also 

additionally distort the performance of the communication system degrading the output signal. Most of the 

aforementioned techniques only emphasize PA nonlinearity-based distortions, which essentially generate the need 

for developing a convenient solution for compensating all the mentioned impairments associated with the DCT 

chain in parallel. 



Recently, due to the capability of universal approximation and excellent adaptive nature, NNs are proficiently used 

for the behavioral modeling of static and dynamic PAs having time-delay tap [8]. Unlike existing linearization 

methods, such as Volterra and its variants, NN-based linearization methods [9,10] provide a one-step process 

solution for estimating and linearizing the DCT without any extra branch. NN models have also been integrated with 

the augmentation concept [10] etc. to provide enhanced performance.    

This article uses the MoE method with an augmented concept for digital-domain behavioral modeling of PA or 

DCT's imperfections. In this line, the remaining paper is organized as follows. Section 2 gives the details of 

transmitter distortion parameters values and PA device/signal details utilized for implementing the behavioral 

modeling of the amplifier. Section 3 demonstrates the modeling methodology of MoE with the aforementioned 

concept. Section 4 presents the results and discussion related to the A-MoE method and compares its results with 

different neural networks and machine learning methods like Multilayer perceptron (MLP), Adaboost, K-Neighbors, 

Linear Regression, Linear Support Vector Regression (SVR), and Decision tree and lastly, a brief conclusion is 

presented in Section 5.  

2. TRANSMITTER DISTORTION PARAMETERS AND PA DEVICE/SIGNAL 

INFORMATION 

The complete equation of the impaired signal at the output of the modulator (Vt−impair(t)) of the DCT can be given 

as (1) [9].  

Vt−impair(t) = 𝐼𝑛(t) cos(ωct) −𝑄𝑑(t) sin(ωct) + ζ(t)                        (1) 

where  𝐼𝑛(t) and  𝑄𝑑(t) are the I/Q components of the baseband input signal respectively, ωc is the carrier’s angular 

frequency, and ζ(t) is the overall impairment error demonstrated by the DC offset and I/Q imbalance [9]. 

Table 1 Different DCT distortion considerations  

 Distortion Parameters  Level of Distortion 

Condition 1 PA nonlinearity PA nonlinearity: 4 dB compression  

 

Condition 2 PA nonlinearity and I/Q 

imbalance 

PA nonlinearity: Same as condition 1 

I/Q imbalance: 1 dB gain compression and 3-

degree phase compression 

Condition 3 PA nonlinearity and DC offsets PA nonlinearity: Same as condition 1 

DC offsets: 3 and 5 % for I and Q respectively 

Condition 4 PA nonlinearity, I/Q imbalance, 

and DC offsets 

PA nonlinearity: Same as condition 1 

I/Q imbalance: same as condition 2 

DC offsets: same as condition 3 

Table1 shows the several conditions of distortion utilized for behavioral modeling of DCT in the present work. The 

effect of these distortion parameters can be observed as AM/AM and AM/PM characteristics of the DCT in the form 

of distortion [11]. Since DPD linearization techniques are based on the capability of performing behavioral 

modeling using the considered model, and if the considered model is inept in precisely recording the effect of these 

modifications, the system performance might severely degrade [7]. 

The present work utilizes class AB-PA for developing behavioral modeling of a DCT system. The whole chain of 

the transmitter considered a device under test (DUT), is operated through a three-carriers wideband LTE input 

signal. This input signal carries two carriers in the ON state with the middle carrier in the OFF state (LTE101) at 

two bandwidths, 11 MHz (10.68 dB PAPR) and 16 MHz (11.39 dB PAPR). The other system conditions are 2 GHz 

center frequency with 92.16 MHz sampling frequency.  



3. MODELING METHODOLOGIES OF A-MOE 

Many methods have been introduced to enhance the performance of the solo DPD method. Out of them, the 

augmentation concept is one that has been successfully implemented [12] to show better behavioral modeling and 

mitigating abilities with respect to individual behavioral/DPD methods. The improved performance results inspire us 

to inculcate an augmentation scheme in the MoE method for enhancing the performance of MoE behavioral 

modeling. The architecture associated with A-MoE is presented in Figure1 (a). MoE [13] is an example of 

supervised learning and has a modular structure [14]. MoE has two core parts in its structure i.e., a set of experts 

network and a single gate network having a single-layer NN, comprising of K neurons where every neuron is 

allocated a specific expert. Both the experts and gate networks act synchronously to solve a non-linear supervised 

problem statement through Divide-and-Conquer operating principle [14]. Figure1(b) and (c) are representing the 

expert’s signal flow graph and the gating network’s signal flow graph respectively. If, the input vector to the kth 

expert is given by (𝐱), and (𝑤𝑘) is the synaptic weight vector of this expert network along with the bias term (b), 

then the output (𝑦𝑘) generated by expert k is given by equation (2) 

𝑦𝑘 = 𝑤𝑘
𝑇𝒙 + 𝑏                  (2) 

where the input vector (𝒙(𝑛)) form utilized in the proposed work is given as, 

𝒙(𝑛) =

⌊
 
 
 
 
 

𝐼𝑖𝑛(𝑛), 𝐼𝑖𝑛(𝑛 − 1), 𝐼𝑖𝑛(𝑛 − 2), 𝐼𝑖𝑛(𝑛 − 3), . . . , 𝐼𝑖𝑛(𝑛 − 𝑀)

𝑄𝑖𝑛(𝑛), 𝑄𝑖𝑛(𝑛 − 1), 𝑄𝑖𝑛(𝑛 − 2), 𝑄𝑖𝑛(𝑛 − 3), . . , 𝑄𝑖𝑛(𝑛 − 𝑀) 

𝐼𝑖𝑛(𝑛)3, 𝐼𝑖𝑛(𝑛)5, … . , 𝐼𝑖𝑛(𝑛)𝑁

𝑄𝑖𝑛(𝑛)3, 𝑄𝑖𝑛(𝑛)5, … , 𝑄𝑖𝑛(𝑛)𝑁

|𝒙𝑖𝑛(𝑛)|, |𝒙𝑖𝑛(𝑛)|3, … , |𝒙𝑖𝑛(𝑛)|𝐿 ⌋
 
 
 
 
 

         (4) 

where  𝐼𝑖𝑛(𝑛) and  𝑄𝑖𝑛(𝑛) are in and quadrature-phase elements of the current samples, 𝐼𝑖𝑛(𝑛 − 𝑀) and 𝑄𝑖𝑛(𝑛 − 𝑀) 

are in and quadrature-phase elements of the past samples, M, N, and L represent the input signal’s memory depth, 

phase component’s odd orders, and input signal’s absolute value respectively.  

 

Figure 1. (a) Architecture of A-MoE, (b) Expert network’s signal flow graph, 

(c) Gating network’s signal flow graph 

The probability of determining the target vector corresponding to a specific input through the MoE model is 

calculated through the following equation (5) [13], 

𝑃 (𝑦|𝒙, ∅𝑔, ∅𝑒) = ∑ 𝑔𝑙  (𝒙, ∅𝒈) 𝑃 (𝑦|𝒙, 𝑙, ∅𝑒) 
𝐿
𝑙=1                (5) 

where 𝑔𝑙  (𝒙, ∅𝒈) represents gating function providing selection probability for lth expert, 𝑃 (𝑦|𝒙, 𝑙, ∅𝑒) is the 

occurrence probability of output y for a given input x using lth expert, ∅𝑔 and ∅𝑒 are gate and expert’s set of 



parameters. The modified gating form for the modeling has been adapted from Xu et al. [15].  Further, detailed 

information on the MoE method has been given in [11, 13].   

Here, we are using two A-MoE networks for behavioral modeling of the DCT, where one network has been utilized 

for the input signal’s in-phase components while the other is for the input signal’s quadrature-phase component. The 

final output signal is obtained by combining these two outputs from individual A-MoE networks, i.e., in-phase and 

quadrature-phase components of the output signal, and the final form of the output signal is given by the following 

equation (8) 

𝑦𝑜𝑢𝑡 = 𝐼𝑜𝑢𝑡 + 𝑗 ∗ 𝑄𝑜𝑢𝑡                   (8)   

4. SIMULATION RESULTS AND DISCUSSION RELATED TO DYNAMIC 

BEHAVIORAL (CLASS AB-PA) MODELING CAPABILITY OF A-MOE FOR 

VARIOUS SIGNALS 

For modeling purpose, 13 number of experts have been optimized in the A-MoE model by analyzing NMSE 

performance, the most vital system performance element. The values of M, N, and L are 2, 5, and 3 respectively. The 

number of samples which are used for the training and validation purpose is 38 K and 35 K, respectively. NMSE is 

determined as, 

𝑵𝑴𝑺𝑬 = 𝟏𝟎 𝒍𝒐𝒈𝟏𝟎 (
∑ (𝑰−𝑰𝒅𝒆𝒔𝒊𝒓𝒆𝒅)𝟐+(𝑸−𝑸𝒅𝒆𝒔𝒊𝒓𝒆𝒅)𝟐𝒁

𝒊=𝟏

∑ (𝑰𝒅𝒆𝒔𝒊𝒓𝒆𝒅)𝟐+(𝑸𝒅𝒆𝒔𝒊𝒓𝒆𝒅)𝟐𝑵
𝒊=𝟏

)                               (9)   

where Z is the sample length.  

The performance related to behavioral modeling of the A-MoE model in terms of NMSE has been mentioned in 

Table2 for three carriers' LTE signals. The values of NMSE in Table2 reflect that the A-MoE model is efficiently 

capable of performing behavioral modeling corresponding to every signal with different impairment conditions of 

DCT which have already been mentioned in section 2.1. 

Table 2. A-MoE behavioral modeling performance for DCT/ PA characteristics in terms of NMSE 

A-MoE 

(LTE (4G) Signal) 

NMSE (dB) 

Training Validation 

LTE101 (3-5-3) 

 

Condition 1 -37.15 -37.01 

Condition 2 -37.57 -38.10 

Condition 3 -36.92 -36.78   

Condition 4 -38.53 -38.04 

LTE101 (3-3-10) Condition 1 -38.63 -37.16 

Condition 2 -36.50 -36.01 

Condition 3 -35.92 -35.56 

Condition 4 -36.88 -35.62 

Now, we are comparing the behavioral modeling performance of the proposed method with NNs and machine 

learning-based methods in terms of NMSE for both the LTE101 signals with different bandwidths for various 

impairment conditions. Table3 shows the NMSE of different methods with the A-MoE method, which shows that 

the A-MoE method, overshadows all the considered methods. 

 

A-MoE methods performance capability was further analyzed in the time domain through AM/AM and AM/PM 

characteristics (Figure2); and frequency domain using a power spectral density (PSD) plot (Figure3). From Figure2, 

it can be observed that the proposed model precisely captures PA/DCT’s non-linear characteristics in presence of 

I/Q imbalance and DC offset for the validation dataset and expresses its efficient capability for modeling. 

 



 
Figure 2. (a) AM/AM, (b) AM/PM characteristics of DCT’s non-linear characteristics using proposed A-MoE model 

corresponding to LTE (101) 3-5-3 signal 

Table 3. NMSE Performance comparison of A-MoE with different NNs and Machine learning methods for 

modeling of PA/DCT characteristics 

Methods Signal Bandwidth (LTE (4G) Signal) & Distortion Components 

LTE101 (3-5-3) 

(TWO Memory elements in Input Data Vector) 

 

LTE101 (3-3-10) 

(TWO Memory elements in Input Data Vector) 

Condition 

1 

Condition 

2 

Condition 

3 

Condition 

4 

Condition 

1 

Condition 

2 

Condition 

3 

Condition 

4 

NMSE NMSE NMSE NMSE NMSE NMSE NMSE NMSE 

A-MoE -37.01 -38.10 -36.78   -38.04 -37.16 -36.01 -35.56 -35.62 

MLP  -34.78 -35.85 -35.83 -35.80 -35.97 -35.91 -35.68 -34.61 

Adaboost  -18.96 -18.38 -18.45 -18.33 -17.30 -17.74 -17.49 -17.58 

K Neighbors  -34.22 -35.21 -35.21 -35.22 -35.44 -35.46 -35.48 -34.26 

Linear Regression -23.82 -23.93 -23.8 -23.85 -23.98 -23.99 -23.85 -23..80 

Linear SVR  -22.77 -22.88 -22.77 -22.76 -22.97 -23.02 -22.82 -22.72 

Decision Tree  -33.8 34.1 -34.20 -34.27 -34.37 -34.39 -34.39 -33.26 

 
Figure 3. PSD plot with DCT’s output corresponding to proposed A-MoE for LTE (101) 3-5-3 (Distortion 

consideration: Condition 4) 



Figure3 depicts the frequency domain performance characteristics of the proposed A-MoE model. Both, the PSD 

plot of model output and measured output at DCT output accurately follow each other for in-band frequency as well 

as out-band frequency. This determines that the proposed A-MoE method is very much capable of performing 

behavioral modeling for entire-band data and the results significantly outperform as compared to the conventional 

NN methods. 

 

5. CONCLUSION 

In this paper, behavioral modeling analysis of DCT is achieved through the A-MoE framework. The modeling 

results of A-MoE has an excellent limit of resemblances with AM/AM and AM/PM characteristic of PA/DCT's 

imperfections. The method provides a single-step modeling solution to model any kind of distortion/imperfection as 

tabulated in the DCT chain without modifying the basic architecture of the system, which is an additional advantage 

as compared to other methods, where additional RF circuitry is always required to model I/Q imbalance and DC 

offsets. Based on performance metioned in Table 3, it is clear that the A-MoE method gives higher NMSE 

performance than other used methods,  it is between 1 to 3 dB higher than MLP and K Neighbors, around 4 to 5 dB 

higher than tree- based ML method i.e., Decision tree and more than 5 dB as compared to other used machine 

learning methods for all the condition metioned in Table 1. So on the basis of this, we can clearly see the better 

performance results as compared to various NNs and machine learning methods like MLP, Adaboost, K Neighbors, 

Linear Regression, Linear SVR, and Decision Tree. 
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