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Abstract.  
 

A comparison will be made between Singular Value Decomposition (SVD) and Block 

Truncation Coding (BTC) in this paper, as well as analyse how Algebra contributes to image 

compression and Block Truncation Coding (BTC). We will also examine how Algebra 

influences image compression. The input picture will be compressed first using the SVD 

method to reduce the image matrix rank, BTC will then be used to compress the matrix 

produced. The suggested approach improves the JPEG compression process by adding 

lossless compression, resulting in a compression rate of over 99 percent. 
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1. INTRODUCTION 

1.1. Image Processing 

Basically, it's a way of processing images by extracting their characteristics or altering their 

inputs. Image processing is one of the most quickly evolving technology in today’s world. 

It is also an important research field in computer science and engineering. 

The following phases that makeup the image processing is: 

● Input of the image data via software. 

● Analysing and changing the input. 

● And generating an output that could be a changed image or a report based on analysis. 

When using digital techniques, all sorts of data must go through three general processing 

steps: pre-processing, enhancement, and display. Information extraction is the last of these 

steps. 



  

 

1.2 Digital image processing (DIP) 

The process of converting digital photos into digital images is called DIP. Analogue image 

processing can be compared to DIP as a subset of digital signal processing. It offers many 

procedures to choose from and apply to the input image, as well as discarding some issues 

such as noise and or unwanted distortion during the process. Image processing can be viewed 

as a multidimensional system because images can be displayed in 2D or more. 

 
1.2. Image Compression 

Digital image processing is a tool to process digital photos using the digital computer A 

procedure is used to process digital photos electronically with the help of a digital computer. 

processing. It offers many algorithms to choose from Image compression can be 

accomplished in a variety of ways. Internet users primarily use GIF and JPEG compression 

for graphic images. GIF is most often used for line art and graphics with simple geometric 

patterns, while JPEG is more often used for photos. 

 

1.3. Linear Algebra 

We all underestimated Linear Algebra's potential. It is composed of algorithms and 

approaches that are extremely useful in the real world, particularly in image analysis and 

manipulation. Images are one of the most widely used forms of communication in today's 

digital and social environments. 

The two fundamental elements of linear algebra are the vector and matrix. A matrix is a 

linear mapping that converts vectors from one space to another, whereas a vector is a 

Euclidean space point (both the spaces could be of the same or different dimensions). 

1.3.1. Eigenvalue and Eigenvectorለλ 

An equation as simple as Av = λv could be so significant. A matrix's eigenvalues and 

eigenvectors can be used to solve many problems, from machine learning to quantum 

computing. In other words, λ is the eigenvalue of A, and v is the eigenvector, 

   if 

 

                                                               𝑩𝑩 =  𝑩𝑩 

From a visual point of view, Av and the eigenvector v appear to be on the same plane.   

 



  

 

It doesn't always follow that x equals Ax. Only a few exceptional vectors meet the criteria. 

Here is an instance of eigenvectors.   

  

   1     − 3       3          1/2                                 1/2 

   3     − 5       3          1/2             =      4            1/2 

   6     − 6       4          1                                       1 

 

The related Avi will grow if the eigenvalue is bigger than one. It will shrink if it is less than 

one. 

 
2. SINGLE VALUE DECOMPOSITION 

Single Value Decomposition (SVD). SVD can decompose any matrix into three matrices, 

unlike other decompositions that need a square matrix to be decomposed, SVD allows you 

to decompose a rectangle matrix (a matrix that has different numbers of rows and olumns).  

QT, , and T are Z's decomposed matrices. As a result, any linear map may be deconstructed 

into these three fundamental transformations, this process known as Singular Value 

decomposition (SVD). 

 

B = TQZt                  … (1) 

 

Figure 1: Example of Factorisation of  B to TQZt 

Where T is an a × a orthogonal matrix 

T = [t1, t2, ... tr, tr+1, ..., tm]          ……..(2) 



  

column vectors ti, for i = 1, 2, …, m, form an orthonormal set: 

           

And Z is an b × b rectangular matrix 

Z = [ z1, z2, ... zr, zr+1, ..., zn]         … (3) 

column vectors vi for i = 1, 2, …, n, form an orthonormal set:  

Here, Q is an a × b diagonal matrix with 

singular values (SV) on the diagonal. The matrix Q can be  as shown : 

Q =  σ1 0 --- 0 0 ---- 0 

       0 σ2 --- 0 0 --- 0 

- - - - - - - - 

- - - - - - - - 

0 0 --- σr 0 ----- 0 

0 0 --- 0 σ(r+1) ----- 0 

- - --- - ------ ----- - 

0 0 --- 0 0 ----- σr 

0 0 --- 0 0 ----- 0 

       

 

 

 For i = 1, 2, …, n, σi  are called Singular Values (SV) of matrix B. It can be proved 

that 

σ1  ≥  σ2   ≥  …  ≥  σr   ≥  0, and 

σr+1 = σr+2 = … = σn = 0          … (5) 

For i = 1, 2, …, n, is called Singular Values (SVs) of B. The vi’s and ti ’s are called right 

and left singular vectors of B [1].   

Digital images can be compressed to reduce the quantity of information they require. 

Compression is attained by reducing three essential data severances: 

1) coding redundancy, caused by poor coding quality; 2) interpixel redundancy, caused by 

pixel correlations; and 3) psychovisual redundancy, caused by data disregard by the System 

of visual perception in humans. 

Its singular values decrease rapidly. Based on the rank of an asymmetric matrix increases. 

This property can be useful for reducing noise and compressing matrix data by removing 

single values or higher ranks. 



  

We present detailed steps to demonstrate the SVD image compression process:  

           B = TQZt 

     

 i.e.  B can be epitomized by the external as BBT 

product expansion: 

                         BBT= TQZTZDTT 

        

By truncating the sums after the first k terms, the closest matrix of rank k is obtained: 

Bk = 𝜎1𝑡1𝑧1 +𝜎 2𝑡 2𝑧 2t+---------+𝜎𝐾1𝑡𝐾1𝑧𝐾1  

                                                             The total storage for Bk will be 

k(a + b+1) 

 

A digital picture that corresponds to Bk will remain substantially similar to the original 

image even if the integer k is less than n. On the other hand, the remaining k will have a 

diverse storage and picture. With typical k selections, Ak will require less than 20% of 

storage. 

 
Compressed Images at different values of K. 

 

 
Original Image 

 

- Result of Experimentations for Image Compression 

 

 

 

 

 



  

 

3. BLOCK TRUNCATION CODING 

 

As a result, moments for each picture block are preserved. It is known as moment-preserving 

block truncation. In order to implement the BTC algorithm, following steps must be taken: 

 

The first step is to divide the image into rectangular parts that don't overlap with each other. 

In order to simplify the process, we decided to make the blocks squares measuring m x m. 

 

In the second step, each pixel in the block is quantized into two brightness values using a 

two-level quantizer (1 bit). The mean x and the standard deviation σ are these values.  

𝑥  = 1/𝑥 ∑𝑥
𝑥=1 𝑥𝑥 

 

𝜎 =  √1/𝑥 ∑𝑥
𝑥=1 (𝑥𝑥 −  𝑥i)2 

 

Step 3: The two values x and σ are referred to as BTC quantizers. Two-level bit planes are 

generated by comparing each pixel value xi to the threshold value x. 

𝑥 =    1𝑥𝑥 ≥ 𝑥 

            0  𝑥𝑥 <  𝑥 

 

 

Each block is converted to a bit plane using this method. A block of 4 × 4 pixels, for example, 

will yield 32-bit compressed data, or 2 bits per pixel (bpp). 

The fourth step involves rebuilding an image block in the decoder by replacing "1"s in the 

bit plane with "H", and "0"s with "L", as shown in the following equations: 

 H = 𝑥 +𝜎√𝑥/𝑥 

 L = 𝑥  + 𝑥√𝑥/𝑥 

 

The number of 0’s and 1’s in the compressed bit plane is denoted by p and q, accordingly. 



  

 

Original        Compressed Image 

 

- Result of Experimentations for Image Compression 

 

4. PSNR 

 

Two images are compared to calculate their peak signal-to-noise ratios (in decibels). In this 

ratio, original and compressed images are compared for quality. With increasing PSNR, the 

quality of the compressed or rebuilt image improves. 

In this ratio, the original and compressed image quality are compared. In PSNR, the peak 

error is represented by the PSNR, whereas in MSE, By MSE, we can measure the squared 

error between the original and compressed images. TUsing MSE as a measure of error is in 

inverse relationship with the error. PSNR is calculated in two stages: calculating mean 

square error and calculating PSNR. 

𝑀𝑆𝐸 =
1

𝑀 ∗ 𝑁
{[𝑓(𝑎, 𝑏) − 𝑓′(𝑎, 𝑏)2] } 

M and N in the above equation stand for the input pictures' respective rows and columns. 

The block then uses the following calculation to get the PSNR: 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 
𝑅2

𝑀𝑆𝐸
 

 

A picture's input data type has the greatest variation when viewed in the previous equation. 

The R value is 1, for instance, if the key picture uses floating (double-precision) points. A 

data type that is 8 bits unsigned has R = 255, for example. 

 

5. CONCLUSION 

When the singular value of an SVD increases, the quality of compressed image is enhanced 

significantly but the size also increases. The image's visual quality degrades as the block 

size increases, and the compression size does not shrink as much. 

The block truncation coding (BTC) scheme is effective in terms of higher compression ratios 



  

as inferred from our findings. When data loss is unacceptable, Singular Value 

Decomposition (SVD) may be used for passwords, financial information, and confidential 

papers; however, BTC can be used when the focus is more on transmission than what 

information is included in the picture. 
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