

Vectorization of Text in Natural Language Processing

1Parth Sethi, 2Deval Verma
1Department of Mathematics, Chandigarh University, Punjab- 140413

parthsethi85@gmail.com
2School of Computer Science Engineering and Technology

Bennett University, Times Group

Greater Noida-201310

 deval09msc@gmail.com

Abstract

(NLP) Natural language processing is the field where computers can comprehend and use

natural language text or voice for beneficial purposes. Some pre-processing and feature

encoding techniques are applied over unstructured text data. The text will then be

transformed into numerical feature vectors so that it may be fed to computers for machine

learning applications. In this work, a statistical or frequency-based word embedding

techniques are used. That are Continuous Bag of Words (CBOW), (TF-IDF) Term

Frequency-Inverse Document Frequency and Skip-Gram Models. This work shows a

comparison of all these techniques.

Keywords: NLP, Textual data, lemmatization, stemming, TF-IDF, CBOW and Skip gram

models

1. INTRODUCTION

Natural language processing helps us to deal with this important aspect of humanity. NLP

is a branch of machine learning that provides computers the ability to comprehend human

text and speech. For example, humans feel more connected through stories; moreover,

stories are an efficient way to transmit important information from one person to another.

Stories are fundamental to humans for example: “Humans like to think in tales versus

facts, statistics, or calculations, and the more straightforward the story, the better.”– Yuval

Noah Harari

The above quote from the book [1] clearly highlights the importance of stories for

humanity. Human race is a social animal and research has shown that stories are more

engaging and influencing for the brain, that is the reason why some literature is banned by

the governments of various countries. Humans feel more connected through stories;

moreover, stories are an efficient way to transmit important information from one person

to another. Stories are fundamental to humans [1, 2, 3,4].

Some of the use cases of NLP include speech recognitions, sentiment analysis, and

language translators. NLP is playing a huge role in improving the healthcare sector and it

is helping in providing better results for the patients [5,6,7,8,14]. Word embedding are

numerical representations of words in the shape of a low dimensional vector, we need

mailto:parthsethi85@gmail.com
mailto:deval09msc@gmail.com

 2

word embedding because machine algorithms can understand only numbers and not text or

words [9,10,11,12,14]. It can take a word out of its textual context. Words that are similar

will have close vectors, for instance words happy and jovial will have vectors that are akin

to each other. Word embedding is also capable of capturing semantic and syntactic

similarities of texts. Semantic refers to similarity of the meaning of the given texts or

words and syntactic similarities refer to the similarity of words of the given texts [13,14].

There are many techniques to attain word embedding; some of the most popular techniques

are listed below:

 Binary Encoding

 TF-IDF Encoding

 Word2Vec Embedding

1.1. Binary Encoding

In one binary encoding, every word which is a part of the text is represented in vector

form. A word will be labelled as 0 or 1, that is how this technique gained its name. It is

also known as one hot encoding. For instance, consider the following sentences “I love to

read” and “I like to read”. Both sentences have semantic and syntactic similarities. Before

we can encode these sentences, we must tokenize them. These two sentences will have the

following vectors if we use binary encoding as our encoding technique [4].

On the left-hand side of the figures are the indices of the words. For example, look at the

vector for “I like to read”, at index 0 there is the alphabet “I” so it’s one hot encoding

representation is [1,0,0,0] followed by the word “like” at index 1 which will have vector

[0,1,0,0]. One hot encoding technique has dimensionality problems. In the above used

sentences the vocab size is extremely small, Vocab size = Number of distinctive words.

So, the vocab size for the sentence “I like to read” is 4 and the same is for the sentence “I

love to read.” From the above figures, we can see that most of the vectors are taken up by

zeroes and single ones. Now, assume that we have a text with a vocabulary size of 10,000.

Each word in that vocab will be represented by 9999 0’s and a single 1. This is not

computation friendly.

It is difficult to attain syntactic and semantic information of the text if we use binary

encoding. Syntactic refers to the grammatical structure of the sentence and semantic refers

to the meaning of the sentence [5,6].

Figure 1.1. Binary encoding vectors

The above statement examples (Figure:1.1) are like each other but looking at the derived

vectors we cannot obtain any information about the similarity. Binary encoding techniques

cannot extract the essence of the text. We also lose the order of the words in which they

appear in the text. We used sentences “I like to read” and “I love to read” but when we

binary encoded those sentences words “read” and “to” lose their order, this might lead to

the loss of the meaning of the entire text.

 3

1.2. Term Frequency-Inverse Document Frequency Encoding

Term Frequency-Inverse Document Frequency is abbreviated as TF-IDF. Its score is

obtained by using the following formula in (1.21):

𝑡𝑓 − 𝑖𝑑𝑓(𝑤, 𝑑, 𝐶) = 𝑡𝑓(𝑤, 𝑑) ∗ 𝑖𝑑𝑓(𝑤, 𝐶) (1.21)

It is obtained by multiplying the number of times word w appears in document d with the

inverse document frequency of word w in the corpus C. Most popular uses of this

technique include text mining, Keyword extraction etc. Before we can understand how tf-

idf works, we first must understand tf and idf, as these are multiplied to attain tf idf score

[7,8] as shown in Table 1.1.

Term Frequency (TF): TF measures the frequency with which a word appears in the

text. Length of the documents can greatly impact the term frequency, TF is the quantity of

is directly proportional to occurrences of a word i.e., as the number of occurrences of a

word increase, term frequency also increases [6]. Each document has its own term

frequency. For instance, there is a high probability that a word such as “this” can appear

more times in a document with 500 words as compared to the document with 50 words. To

deal with these problems we perform normalization of the frequency of the words

appearing in a document. This can be done by using the following formula in (1.22):

𝑡𝑓(𝑤, 𝑑) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑤𝑜𝑟𝑑 𝑤 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 (1.22)

For instance, our document contains 2 sentences. First sentence is “What a beautiful day”,

and the second sentence is “Sun is shining bright”. Now, our vocabulary will look like

{“What”, ‟a”, ‟beautiful”, ‟day”, ‟Sun”, ‟is”, ‟shining”, ‟bright”}

Table1.1 Values of tf (A) and tf (B)

Term tf(A) tf(B)

What 1/4 0

a 1/4 0

beautiful 1/4 0

day 1/4 0

Sun 0 1/4

is 0 1/4

shining 0 1/4

below 0 1/4

Inverse Document Frequency (IDF): Document frequency refers to the number of

documents in a corpus that contains the term. IDF can be calculated using the following

formula in (1.23).

 4

𝑰𝑫𝑭(𝒘) = ∫
𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 𝒂 𝑪𝒐𝒓𝒑𝒖𝒔

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔 𝒘𝒊𝒕𝒉 𝒘𝒐𝒓𝒅 𝒘 𝒊𝒏 𝒊𝒕
 (1.23)

IDF is the measure of the significance of a word in a corpus. We need IDF because while

calculating term frequency each word is given equal importance. For instance, we need to

calculate the term frequency of an article about renewable sources of energy, however

words such as „this‟, „that, „of „ may have more number of occurrences as compared to

words such as „renewable‟, „natural‟ and in our case these less occurring terms holds

more importance and to deal with this we will compute IDF [6]. IDF score will be less for

more frequent terms and high for the rare terms. To understand IDF better, assume that we

have a corpus of 5 documents and each document contains a single sentence.

Document 1 = “There might be rain today”

Document 2 = “I like to read”

Document 3 = “It may not rain today”

Document 4 = “I love to read George Orwell’s work”

Document 5 = “It is such a beautiful day”

IDF score for word “I” will be calculated using these values 52 and it will be 0.39. Total

number of documents in the corpus is 5 and the documents which contain the word “I” are

2. Similarly, calculate the IDF for the word “George Orwell”, 51 and it will be 0.69.

Now, let’s get back to tf idf. It is obtained after multiplying the term frequency with the

inverse document frequency. For simplicity purposes assume we have weather corpora that

contain 1000 documents and in a document of 500 words “sun” occurs 100 times. So, the

term frequency of the word wills 100500 or 0.2, and “sun” is occurring in 50 documents,

so the inverse document frequency will be 100050 or 1.30. The tf-idf score will be the

product of tf and idf: 0.2 * 1.30 = 0.26.

1.3. Word2Vec

Word2vec converts a word into a vector, and various arithmetic operations can be

performed on these vectors; it's a multilayer neural network model [13]. Similar words will

have similar vectors, for instance word lion and forest will have similar vectors [8,9]. We

can identify both semantic and syntactic similarity using this word embedding. This

method utilizes “Cosine similarity” to find out the closeness of words. Quoting the

famous example here, we can do king - man = queen. Word embedding can be obtained

using two methods [10,11,12,13]:

 CBOW model

 Skip-gram model

 5

1.4. CBOW model and Skip-gram model

A continuous bag of words (CBOW), which determines the word based on context.

Whereas Skip-gram predicts context based on word [5,6,7]. These models capture

syntactic and semantic similarities between words; cosine similarity is utilized to find

similar words and both models use neural networks to produce word embedding.

Figure 1.41. Architecture of the CBOW and skip-gram

In the given, Figure 1.41 we can see the word embedding for the word “trees”, now using

this word embedding the models can predict similar words as shown in Figure 1.42.

Figure 1.42 Word embedding array of word “trees”

 6

2 ARCHITECTURES OF THE MODELS:

 Pre-Processing the unstructured text data is the first stage in NLP.

 A further step may be added to the process to exclude or convert emotions to

ASCII digits. A model is created in NLP, that can solve our problem,

 Input layer of the CBOW model takes the one hot encoded vector of the context

word(s) of size V.

 The second layer of the model or hidden layer to the model uses N Neurons and

finally the output layer returns a SoftMax vector of length V [7].

 In CBOW the order of the word does not matter. We must declare a window size,

it’s a tuneable parameter. Let’s assume we have an environment article

(processed) and we declared the window size as 2, then the context words and

target word will look like in Figure 2.1:

Figure 2.1 Context and target words.

3 EXPERIMENTS AND RESULTS:

In the above figure 2.4, the words in a list represent the context words and the words

outside of it represent the target word. Our first sentence is “trees play critical role for”,

according to our parameter the target word should be between the first 2 words and the last

2 words in a sentence and that results in “critical” being our target word in this case [8].

After the algorithm finds out the target and context words, the one hot vector of size V is

passed in the first layer of the model then the second layer of the model which contains N

neurons. The second layer tries to predict the target words using the one hot encoded

vector of the context words, in our case we’ll pass the vectors of words trees, play, role

and for in the first layer of our model then the second layer will try to predict the word

“critical” then the third layer will produce a SoftMax vector of size V. Finally, the

algorithm will compare the predicted target word with the actual target word and then the

weights of the second layer are updated using the error.

3 CONCLUSIONS:

Skip-gram works in a similar way as that of CBOW except it uses the target word to

predict the context words. To make things simple, we’ll use the same example as we used

in the CBOW model. For “trees play critical role for” the skip-gram model will use the

label word i.e., “critical” for prediction of context words. Whether to use skip-gram or

CBOW depends on the problem and the dataset that you’re looking at. Skip-gram is

slower, but it works well with large datasets whereas CBOW is faster and is preferred for

small corpus.

 7

2. REFERENCES

[1] Y. N. Harari, ‘21 Lessons for the 21st Century’, Signal, 2018.

[2] P. M Nadkarni, L Ohno-Machado, and W. W. Chapman, ‘Natural language

processing: an introduction’, Journal of the American Medical Informatics

Association vol.18, no. pp. 544-551,2011

[3] J. Hirschberg and M. D. Christopher, ‘Advances in natural language processing’,

Science, vol. 349, no. 6245, 261-266 2015.

[4] S., Krishnan, J., Wang, E., Wu, M.J. Franklin, K., Goldberg, ‘Active clean:

interactive data cleaning for statistical modelling’, Proceedings of the VLDB

Endowment, vol. 9, no. 12, pp. 948– 959, 2016.

[4] P., Bojanowski, E., Grave, A., Joulin, T., Mikolov, ‘Enriching word vectors with

subword information’, Transactions of the association for computational

linguistics vol. 5, pp.135-146, 2017.

[5] D., Coppersmith, S.J., Hong, J.R. Hosking, ‘Partitioning nominal attributes in

decision trees’, Data Mining and Knowledge Discovery, vol. 3, no.2, pp. 197–217

1999.

[6] X., Rong, Word2vec Parameter Learning Explained, 2022.

[7] T., Mikolov, K., Chen, G. Corrado, and J., Dean, “Efficient Estimation of Word

Representations in Vector Space”, 2022.

[8] B., Yoshua, D., Raejean, P., Vincent, and J., Christian, “A neural probabilistic

language model”, The Journal of Machine Learning Research, 3: pp. 1137–1155,

2003.

[9] T., Mikolov, S., Kombrink, L., Burget, J., Cernocky, and S., Khudanpur,

“Extensions of recurrent neural network language model”, In Acoustics, Speech

and Signal Processing (ICASSP), 2011 IEEE International Conference on, pp.

5528– 5531. IEEE, 2011

[10] D., Peter, Turney, “Distributional semantics beyond words: Supervised learning of

analogy and paraphrase”, In Transactions of the Association for Computational

Linguistics (TACL), pp. 353–366, 2013.

[11] K., Grabczewski, N., Jankowski, “Transformations of symbolic data for

continuous data-oriented models”, In: Artificial Neural Networks and Neural

Information Processing, pp. 359–366. Springer 2003.

[12] W., Kim, B.J., Choi, E.K., Hong, S.K., Kim, D. Lee, “A taxonomy of dirty data”,

Data mining and knowledge discovery vol.7, no. 1, pp.81–99, 2003.

[13] K., J., Berry, P., W., Mielke, P.W., Jr, H., K., Iyer, ‘Factorial designs and dummy

coding’, Perceptual and motor skills, vol. 87, no. 3, pp. 919–927, 1998.

[14] K. Chowdhary, ‘Natural language processing’, Fundamentals of artificial

intelligence. pp. 603-49, 2020.

