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Abstract: In this article, we have discussed the behavior of electrically conducted Blasius flow of 

non-Newtonian nanofluid under the influence of Forchheimer equation. For non-Newtonian 

nature of the nanofluid, the Casson model is employed. Heat and mass transfer rates are analyzed 

under the influence of heat source and sink devices. The Governing boundary layer PDEs are 

converted to ODEs under proper similarity transformations. RK45 numerical scheme along with 

the Newton-Raphson shooting technique is utilized to solve the set of ODEs. The effects of 

dimensionless parameters on velocity, temperature, concentration, heat transfer rate, and mass 

transfer rate are presented via figures.  
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1.  Introduction 

Free stream analysis of a 3D Casson nanofluid flowing through forchheimer extended Darcy 

model for the porous medium is made in this investigation. The magnetic field is considered to be 

influencing along with the heat source/sink.  

The concept of Constantly moving fluid over a motionless surface is observed in many 

real-life fluids flows [1]. It is important to control the thickness and separation of the boundary 

layer which is mainly dominated by friction [2]. Ridha [3] computed the solution of a 3Dl Blasius 

transport numerically. Kachanov and Michalke [4] compared the experimental results with 

theoretical solutions for the instability of a 3-D Blasius transport. Tsigklifis and Lucey [5] 

conferred an approach for the inspection of the comprehensive stability of 3D disorders in Blasius 

transport. 

We interact with non-Newtonian fluids in our day-to-day life like honey, blood, toothpaste, 

paints, juices, and shampoos. These kinds of fluids are flexible and observe the transformation 

from fluid to solid depending upon relaxation and observation time [12]. Researchers have found 

new models over time to predict the properties of a non-Newtonian fluid out of which the Casson 

model is influencing and have unique properties(shear thinning/thickening). 

The applications of electrically conducting fluids are found in geophysics, engineering, 

astrophysics, MHD accelerator, and many more. The magnetic field can restrain the velocity, 

concentration, and temperature of a fluid. Many researchers have examined this concept in a 

different types of physical problems. Magnetic field influences on a non-radiative 3Dl flow due to 

a pressure-supported torus is inspected by Hawley et al. [8]. The magnetic-force-free concept is 

introduced by Chandrasekhar and Kendall [6]. MHD model for three-dimensional flow in Titans 

plasma environment is inspected by [7]. Hayat et al. [9] investigated an unsteady MHD 

three-dimensional flow over a stretching surface. Rakesh et al. [11] analyzed MHD flow in the 

stagnation region and in presence of velocity/thermal slip. 



Fluid Transport through pores and their connectedness is an undetachable part of fluid 

dynamics [13]. Flow through these geometries has vast applications in plastic-films, the extrusion 

of polymer, human bones, extraction of petroleum, turbine blades and many more [14]-[15]. Some 

other important research works in this field are [17]-[19]. 

 

2.  Mathematical formulation 

 In this study, we have considered a 3D flow of Casson nanofluid under Blasius conditions, 

in the presence of Darcy-Forchheimer model of porous surface. Inertia coefficient of porous 

medium in 𝑥 and 𝑦 directions are taken as 𝐹1 =
𝑐𝑏

𝑥√𝐾1
 and 𝐹2 =

𝑐𝑏

𝑦√𝐾1
 respectively. The system 

of nanofluid governing equations along with boundaries restrictions formulated as [12]:  

 𝑣1𝑥
+ 𝑣2𝑦

+ 𝑣3𝑧
= 0, (1) 

  

 𝑣1𝑣1𝑥
+ 𝑣2𝑣1𝑦

+ 𝑣3𝑣1𝑧
= 𝜈𝑓 (1 +

1

𝛽
) 𝑣1𝑧𝑧

+ 𝑉1𝑉1𝑥
+ 𝑉2𝑉1𝑦

−
𝜈𝑓

𝐾1
(𝑣1 − 𝑉1) −

𝐹1(𝑣1
2 − 𝑉1

2) −
𝜎𝑓𝐵2

𝜌𝑓
(𝑣1 − 𝑉1), (2) 

  

 𝑣1𝑣2𝑥
+ 𝑣2𝑣2𝑦

+ 𝑣3𝑣2𝑧
= 𝜈𝑓 (1 +

1

𝛽
) 𝑣2𝑧𝑧

+ 𝑉1𝑉2𝑥
+ 𝑉2𝑉2𝑦

−
𝜈𝑓

𝐾1
(𝑣2 − 𝑉2) −

𝐹1(𝑣2
2 − 𝑉2

2) −
𝜎𝑓𝐵2

𝜌𝑓
(𝑣2 − 𝑉2), (3) 

  

 𝑣1𝛼𝑥 + 𝑣2𝛼𝑦 + 𝑣3𝛼𝑧 = 𝑇𝑎𝛼𝑧𝑧 + 𝜅(𝐵𝑑𝛼𝑧𝛽𝑧 + 𝐴𝑑𝛼𝑧
2) + 𝑞′′′ (4) 

  

 𝑣1𝛽𝑥 + 𝑣2𝛽𝑦 + 𝑣3𝛽𝑧 = 𝐵𝑑𝛽𝑧𝑧 + 𝐴𝑑𝛼𝑧𝑧 (5) 

  

 
𝑣1 = 𝑣1𝑤

,    𝑣2 = 𝑣2𝑤
,    𝑣3 = 0,    𝛼 = 𝛼𝑤,    𝛽 = 𝛽𝑤    𝑎𝑡    𝑧 = 0

𝑣1 = 𝑉1,    𝑣2 = 𝑉2,    𝛼 → 𝛼∞,    𝛽 → 𝛽∞    𝑎𝑡    𝑧 → ∞
}. (6) 

 In the above equations, 𝑞′′′ =
𝑄

𝜌𝑐𝑝
(𝛼 − 𝛼∞) 

PDEs are transformed to ODEs utilizing the following similarity transformations.  

 𝑣1 = 𝑎𝑥𝜑1′,    𝑣2 = 𝑎𝑦𝜑2′,    𝑣3 = −√𝑎𝜈(𝜑1 + 𝜑2),    𝜑3 =
𝛼−𝛼∞

𝛼𝑤−𝛼∞
,    𝜑4 =

𝛽−𝛽∞

𝛽𝑤−𝛽∞
    where    𝜂 = √

𝑎

𝜈
𝑧 

 The obtained coupled ordinary differential equations are  

 (1 +
1

𝛽
) 𝜑1𝜂𝜂𝜂

+ (𝜑1 + 𝜑2)𝜑1𝜂𝜂
− (

1

𝐷𝑎
+ 𝑀) (𝜑1𝜂

− 𝜆3) − 𝐹𝑟(𝜑1𝜂
2 − 𝜆3

2) +

𝜆3
2 − 𝜑1𝜂

2 = 0 (7) 

  

 (1 +
1

𝛽
) 𝜑2𝜂𝜂𝜂

+ (𝜑1 + 𝜑2)𝜑2𝜂𝜂
− (

1

𝐷𝑎
+ 𝑀) (𝜑2𝜂

− 𝜆4) − 𝐹𝑟(𝜑2𝜂
2 − 𝜆4

2) +

𝜆4
2 − 𝜑2𝜂

2 = 0 (8) 

  

 𝜑3′′ + 𝑃𝑟[𝑁𝑏𝜑4′ + 𝑁𝑡𝜑3′]𝜑3′ + 𝑃𝑟(𝜑1 + 𝜑2)𝜑3′ + 𝑄∗𝜑3 = 0 (9) 

  



 𝜑4′′ + 𝑆𝑐(𝜑1 + 𝜑2)𝜑4′ + 𝑁𝑟𝜑3′′ = 0 (10) 

 The deduced restrictions are  

 
(𝜑1 + 𝜑2)(𝜂) = 0,    𝜑1′(𝜂) = 𝜆1,    𝜑2′(𝜂) = 𝜆2,    𝜑3(𝜂) = 1,    𝜑4(𝜂) = 1,    as    𝜂 → 0
𝜑1′(𝜂) = 𝜆3,    𝜑2′(𝜂) = 𝜆4,    𝜑3(𝜂) = 0,    𝜑4(𝜂) = 0,    as    𝜂 → ∞

}.

 (11) 

 Notations and dimensionless parameters  

 𝜅 =
(𝜌𝑐𝑝)𝑠

(𝜌𝑐𝑝)𝑓
,    𝐴𝑑 =

𝑇𝑑

𝛼∞
,    𝐷𝑎 =

𝑎𝐾1

𝜈𝑓
,    𝑄∗ =

𝑄

𝑎𝜌𝑐𝑝
,    𝑁𝑡 =

𝜅𝐴𝑑(𝛼𝑤−𝛼∞)

𝜈𝑓
, 𝑀 =

𝜎𝑓𝐵2

𝜌𝑓𝑎
 

 𝑆𝑐 =
𝜈𝑓

𝐵𝑑
,    𝐹𝑟 =

𝑐𝑏

√𝐾
,    𝑁𝑟 =

𝑁𝑡

𝑁𝑏
,    𝑃𝑟 =

𝜈𝑓

𝛼𝑓
,    𝑁𝑏 =

𝜅𝐵𝑑(𝛽𝑤−𝛽∞)

𝜈𝑓
, 

 
Fig.1:  Variability of 𝜑1′ and 𝜑2′ with 𝛽.   Fig.2:  Variability of 𝜑1′ and 𝜑2′ with 𝐷𝑎. 

              

3.  Numerical Method 

 Newton-Raphson shooting scheme with RK45 method is utilized to unravel the equations 

from (7)-(10), under the restriction (11). We convert our BVP to IVP to make it compatible with 

RK45.  The equations (7-11) are converted to first order ordinary differential equations using the 

following transformations.  

 𝜑1 = 𝑋1,    𝜑1𝜂
= 𝑋2,    𝜑1𝜂𝜂

= 𝑋3,    𝜑1𝜂𝜂𝜂
= 𝑋′3,    𝜑2 =

𝑋4,    𝜑2𝜂
= 𝑋5,    𝜑2𝜂𝜂

= 𝑋6, 

 𝜑2𝜂𝜂𝜂
= 𝑋′6,    𝜑3 = 𝑋7,    𝜑3𝜂

= 𝑋8,    𝜑3𝜂𝜂
= 𝑋′8,    𝜑4 =

𝑋9,    𝜑4𝜂
= 𝑋10,    𝜑4𝜂𝜂

= 𝑋′10. 

 The obtained system of first order ordinary differential is  

 𝑋′1 = 𝑋2 (12) 

 𝑋′2 = 𝑋3 (13) 

 𝑋′3 =
𝛽[(

1

𝐷𝑎
+𝑀)(𝑋2−𝜆3)+𝐹𝑟(𝑋2

2−𝜆3
2)+(𝑋2

2−𝜆3
2)−(𝑋1+𝑋4)𝑋3]

(1+𝛽)
 (14) 

 𝑋′4 = 𝑋5 (15) 

 𝑋′5 = 𝑋6 (16) 

 𝑋′6 =
𝛽[(

1

𝐷𝑎
+𝑀)(𝑋5−𝜆4)+𝐹𝑟(𝑋5

2−𝜆4
2)+(𝑋5

2−𝜆4
2)−(𝑋1+𝑋4)𝑋6]

(1+𝛽)
 (17) 

 𝑋′7 = 𝑋8 (18) 

 𝑋′8 = −𝑃𝑟[(𝑁𝑏𝑋10 + 𝑁𝑡𝑋8)𝑋8 + (𝑋1 + 𝑋4)𝑋8 + 𝑄∗𝜑3] (19) 

 𝑋′9 = 𝑋10 (20) 



 𝑋′10 = −[𝑆𝑐(𝑋1 + 𝑋4)𝑋10 + 𝑁𝑟𝑋′8] (21) 

 with boundary conditions  

 𝑋1(0) = 𝑋4(0) = 0,    𝑋2(0) = 𝜆1,    𝑋5(0) = 𝜆2,    𝑋7(0) =
1,    𝑋9(0) = 1 

 𝑋2(∞) = 𝜆3,    𝑋5(∞) = 𝜆4,    𝑋7(∞) = 0,    𝑋9(∞) = 0. (22) 

 To solve above system of equations, Firstly we pick the limit for 𝜂. Secondly, we chose the initial 

guesses for 𝑋3(0), 𝑋6(0), 𝑋8(0), and 𝑋10(0) = 0. Thirdly Runge-Kutta method applied to solve 

the system. Fourthly it is inspected that if the boundary residual is less than accepted error if not 

Newton-Raphson method is employed to recalculate the values of 𝑋3(0), 𝑋6(0), 𝑋8(0), and 

𝑋10(0) = 0. The edge of the Runge-Kutta 4th order method over other numerical method is that 

the implementation of the method is easy. Further, the results are always reliable as the local 

truncation error for 𝑅𝐾4 is 𝑂(ℎ5).  

 
Fig.3: Variability of 𝜑1′ and 𝜑2′with 𝐹𝑟 and 𝐷𝑎.  Fig.4:Variability of 𝜑1′ and 𝜑2′ with 𝑀. 

              

    
Fig.5:Variability of 𝜑3′ with heat source (𝑄 ∗> 0)   Fig.  6:  Variability of 𝜑4′ with 𝑆𝑐. 

    and heat sink (𝑄 ∗< 0)          

 

4.  Results and discussion 

 This part of the paper consists of plots which demostrate the impacts of concentration, 

mass transfer, temperature, heat transfer and velocities under Blasius conditions. Values of 𝜆1 =
𝜆2 = 0, 𝜆3 = 𝜆4 = 0.1(ifnotmentionedseparately) . If not mentioned separately the values of 

other parameters in both cases are fixed to 𝑄∗ = 3, 𝑀 = 3, 𝑆𝑐 = 2, 𝑃𝑟 = 6.07, 𝐵 = 3, 𝐹𝑟 =
0.2, 𝐷𝑎 = 0.63, 𝑁𝑏 = 0.05 and 𝑁𝑡 = 0.02.  

4.1 Variations in velocity 

 Velocity plots are maintained against the Casson parameter, Darcy number, magnetic 



field parameter, and Darcy-Forchheimer number via figures 1-4. It came in to notice that the 

velocity is increasing with the Casson parameter. Non-Newtonian properties of Casson number 

enhance the viscosity and curtail the yield stress. This should reduce the velocity of the nanofluid 

near the surface but contrarily it is increasing because of it has minimal impacts in case of free 

stream. Boundary layer thickness is noticed shrinking Figure 1. The porous medium permeability 

is reducing with increasing increments in 𝐷𝑎 and curtailing with increments in 𝐹𝑟. This forces 

the velocity of the fluid to grow with decreasing 𝐷a and increasing 𝐹𝑟(Please see figure 2-3). 

Another Figure 4 depicts that the larger electromagnetic force has minimal impacts on free stream 

velocity. The normally induce magnetic increase in the circular motion of the fluid.  

4.2 Variations in temperature and concentration 

 Figure 5 shows the temperature variation with Q*. with reducing heat sink, the 

temperature is increasing and with increasing heat source temperature is also increasing. It means 

the heat sources sink can significantly control the temperature. In another figure 6, the Schmidt 

number forcing the concentration to curtail. Concentration is reducing since the increasing 

Schmidt number is related to higher dynamic viscosity and low mass diffusivity.  

4.3 Variation in heat and mass transfer 

 Figure 7-8 are maintained to depict the nature of heat and mass transfer rate. It is 

concluded that the heat transfer rate in Casson nanofluid can be enhanced by controlling the heat 

source and Schmidt number. Also if a heat sink is installed then minimum heat loss will be 

there(See figure 7). The mass transfer rate can be enhanced by controlling the Schmidt number and 

Brownian motion.  

 
Fig.7:  Variability of heat transfer rate        Fig.8:Variability of mass transfer rate with 𝑁𝑏  

with 𝑄 ∗ and 𝑆𝑐.                                                 and 𝑆𝑐. 

              

5.  Conclusion 

 

Forchheimer effects on an electrically conducted, 3D Casson nanofluid under Blasisus 

conditions are studied in this paper. The shooting method(Newton-Raphson) along with RK45 is 

incorporated. The following observations are important to consider. 

• Velocity is depicts the identical behaviour with 𝑀, 𝐹𝑟, and 𝐵 that is velocity increasing 

with increment in these parameters but 𝐷𝑎 has adverse impact. 

• Heat transfer rate of Casson nanofluid for Blasisus type flows can be enhanced by 

controlling heat source and installing a heat sink device. 

• Mass transfer rate of Casson nanofluid for Blasisus type flows can be enhanced by 

controlling the Schmidt number and Brownian parameter. 

• Concentration reduction with 𝑆𝑐 and temperature enhancement with 𝑄 ∗ is noticed. 
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