

REVUP

1Nazneen Kiresur, 2Prathik N, 3Peeyush Yadav, 4Nithya Shakti R B, 5Nikhil S Tengli

Authors affiliation, 1nazneenkiresur@gmail.com,2prathik252416@gmail.com,
3piyuankit@gmail.com, 4jeevika75@gmail.com, 5nikhil.tengli@reva.edu.in

Abstract

An event management system assists event organizers with event planning, execution, and

reporting. Planning, organizing, and executing an event is a time-consuming task for any

institution; therefore, with such systems in place, campus event planners will be able to

book large-scale events, engage with service providers, and maintain a single source of

record for repeatable, quantifiable events with the assistance of a comprehensive event

solution. With an event of substantial magnitude, it is understandable that the

infrastructure and development expenses for the same management systems would be

prohibitively expensive. As a result, we seek to suggest an ideal solution for the challenge

using a parallel-microservice-led architecture that aids in effective load balancing schemes

and resource utilization. In addition, a large-scale notification system based on parallel

computing is proposed in this study in order to provide quicker responses than traditional

approaches. This would also effectively use the platform as a means for information

exchange about such events and occasions.

Keywords. Event Management System (EMS), Microservices, Large-scale Notification

Systems (LSNS)

1. INTRODUCTION

An event is entirely about individuals collaborating to design, operate, and engage in an

experience. It is an activity that brings the target group together in space and time, a

gathering where a message is transmitted, and actions take place. Numerous events are

held in the modern world, including workshops, conferences, and fests[1]. An event

involves organizers, participants, and a variety of other roles. Without a doubt, most

organizations are devoting time and resources to developing effective strategies. The

organizing procedure is time-consuming and involves a great deal of documentation. Apart

from that, organizers are required to publicize their event using a banner and a social

media platform. The most prevalent medium for sharing knowledge is social media,

however, because organizers only communicate or publish information once or twice, it

may not reach another student[1][2]. Organizers are passively posting events, which has a

significant impact on program engagement. When the number of participants is large,

managing the events without a proper system becomes quite difficult.

However, some systems focus on managing events, as well as issues in ensuring that

organizers and attendees engage effectively. Certain systems are quite costly. In the

current situation, existing systems have numerous flaws that render them ineffective in

mailto:nazneenkiresur@gmail.com
mailto:prathik252416@gmail.com
mailto:piyuankit@gmail.com
mailto:jeevika75@gmail.com
mailto:nikhil.tengli@reva.edu.in

 2

carrying out events. Currently, all working systems are manual. As a result, there are

numerous concerns about the process's security, validity, and feasibility. It's challenging to

keep track of all events, clients, and services. Unmanaged planning might cause event

execution to be delayed. Hence effective EMS is required to resolve this issue.

Our project is an online EMS, or more accurately, a gateway in the form of a website that

will assist an event organizer as well as participants and stakeholders in the event's

functionality. The following are some of the system's features: The system allows event

organizers to log in and publish information about their events. This system has three

major goals: assess and design a system for managing events, construct the EMS using a

relational approach, and notify users about the event happenings through different

mediums like mail, WhatsApp, etc.

The system's benefits include lower advertising costs, reduced paperwork, more efficiency

and effectiveness, and fewer human errors. The system also provided an interface for

maintaining all the reports of the events which help the organization during audits. It will

undoubtedly assist organizers in digitally promoting events and exponentially increasing

registrations and participation.

2. RELATED WORKS

Many architectures and designs have been proposed for EMS. This section enlists the

efforts made in the prior:

1. The authors of [1] propose a generic academic event management platform

capable of dynamically creating web pages for any academic event. A person

could quickly create a website for his or her event by selecting certain options for

the website, such as venue, registration, and call for papers, and populating the

appropriate data.
2. The authors of [3] proposed a .NET framework-based architecture for the

application's entire design. However, the application was limited in terms of

advertising and showing pertinent information about upcoming events. The team's

primary objective was to create a login-based EMS that would provide additional

information on the participants.

3. The design presented in [4], in which the authors briefly discuss the many

characteristics of the microservice architecture, and the architecture that has

recently gained attention, in which big modules and components of system

applications are broken down into simpler and more elaborate modules.

4. In [5], Amir Saleem and his colleagues proposed a system for event booking in

which hotels and clubs can utilize a web-based application system. Additionally,

the system can be used as a piece of software to promote all possible booking
places. Rather than searching for materials throughout the site, the user may find

them all in one location. This strategy was efficient and assisted the user in saving

time and money.

5. The author and his colleagues present a study in [6] that examines a variety of

companies and their techniques for managing large-scale events that occur on

their premises. As a result, they developed and offered a mobile application

allowing users to register for a range of events.

 3

6. "Event optimizer" was proposed by Mr. Nagesh and his colleagues in [7]. There

were numerous tightly coupled modules in use across the application, all of which

serve a specific purpose in this proposal.

7. Rowstron and his teammates proposed a large-scale notification system-based

infrastructure in [8], which was built on top of a generic peer-to-peer object

location and routing substrate called Pastry. Scribe is capable of scaling to a high

number of subscribers, publishers, and subjects while providing efficient

application-level message multicasts.

8. In [9] they proposed a system with clearly defined roles and modules, each with

distinct tasks and accessibilities across the proposed event management system.

The module layout was well-supported in terms of institutional organization.

3. ARCHITECTURE DESIGN

As demonstrated by the history of software and system development over the last fifty
years, software architecture is critical to software systems, providing plausible insights,
eliciting the appropriate questions, and providing general tools for thought. Table 1.
summarizes the existing software architectures.

Module Name Description

Service

Oriented

SOA is a business-IT-aligned approach in

which applications rely on available

services to facilitate business processes. A

service is a self-contained reusable

software component provided by a service

provider and consumed by service

requestors.

Distributed

Computing

A distributed system is a collection of

autonomous computing elements that

appears to its users as a single coherent

system.

Parallel

Computation

Parallel computing is a type of computing

architecture in which several processors

simultaneously execute multiple, smaller

calculations broken down from an overall

larger, complex problem.

Microservices Inspired By Service-Oriented,

Microservices - also known as

 4

microservice architecture - is an

architectural style that breaks systems and

applications down to a more granular,

modular level.

Table 1: Existing Architectures

A unique architecture based on existing approaches was developed to improve the

performance of conventional load balancing schemes. The proposed design is intended to

host computationally intensive operations as separate entities, hence boosting the response

time of the server. Figure 1. illustrates a high-level explanation of the proposed software

architecture.

Figure 1: Proposed Architecture

The following are some of the most popular frameworks now available on the market,
which are employed in this architecture:

1. Spring Boot: Spring Boot is used to create small, self-contained, ready-to-run
applications, which may give your code greater flexibility and robustness. Spring
Boot's numerous purpose-built capabilities simplify the process of designing and
running microservices in production at scale[10].

2. Flask: Flask is a Python-based micro-web framework. It is characterized as a
microframework due to the fact that it is not dependent on any specific tools or
libraries [11].

 5

3. MySQL: MySQL Database Service enables developers to quickly create and
deploy safe applications using the open-source database[12].

4. React JS: React JS is a free and open-source JavaScript library for developing
user interfaces for single-page applications. Since it’s an open-source framework,
it is wide open to various experimentations and resources that are available
throughout the community[13]. React is also known to make the designs more
dynamic and alive, and hence it was imbibed as the sole front-end framework for
the proposed system

5. Apache Tomcat Server: This is an open-source Java servlet container that
supports various Java Enterprise Specifications, such as Websites API, Java-
Server Pages, etc.[14]. It is one of the most extensively used Java servers owing
to various features such as high extensibility, a well-tested core engine, and a
long-lasting design.

4. CONCEPTUAL DESIGN AND IMPLEMENTATION

Events of various types, from seminars to sports to conferences to cultural festivals can be

handled and maintained by a generic EMS. Our research has led us to include the

following requirements for our website:

1. User Access Privileges.

2. Event Report Management.

3. Large Scale Notification system

A. Conceptual Design

The proposed EMS's features are briefly summarized below:

1. User Access Privileges.

Our application supports six distinct user roles which are anonymous user, user,

Institutional user, organizer, admin, and super admin. Table 2. shows the

breakdown of the different types of roles each user plays in our application.

USER

ROLE

DESCRIPTION PRIVILEGES

Anonymo

us User

All visitors to our

website are

regarded as

anonymous users

who must first

register in our

application to

become a

user/Institutional

User.

View all events

Register for the

application.

 6

User Users of the

application include

all registered users

who are not

affiliated with the

institutions.

Sign In.

View all events.

Register for events.

Raise queries.

Institution

al User

Institutional Users

of the application

include all

registered users

who are affiliated

with the

institutions.

Sign In.

View all events.

Register for events.

Raise queries.

Apply for Organizer.

Organizer

s

The organizers of

the application may

be students, faculty,

or staff members

responsible for

organizing the

events at the

institution.

Sign In.

View and register for

events.

Create and manage events.

Create and manage event

reports.

Raise queries.

Apply for Admin.

Admin Every department

in institutions will

have an admin who

will be in charge of

monitoring all the

activities regarding

the events in the

department.

Sign In.

View and register for

events.

Create and manage events.

Create and manage event

reports of the entire

department.

Create and manage event

types.

Create and manage

Organizers.

Create and manage

queries.

 7

Super

Admin

There will be only

one super admin in

the institution who

is responsible for

monitoring the

entire application.

Sign In.

Manage all event reports.

Create and manage event

types.

Create and manage

departments.

Create and manage

Admins.

Table 2: Types of User Role in the Application

2. Event Report Management:

Event reports are the documents that support the insights gathered from the events which

are to be curated from time to time during or after the completion of the events. Our web

application support uploading the downloading the event reports. This is limited to the

respective authorities which are essentially the Organizer, or the admin associated with the

event. The reports then can be downloaded by the same user. Admins, however, have

special privileges that allow them to see the events where reports have been uploaded

directly, a case not provided to the organizers.

3. LSNS:

Notifications are alerts that are used to notify users about the updates that are of concern to

them. A publish-subscribe model has become the fore parameter for distributed systems

over time[8]. In our architecture, we proposed a parallel computed, large-scale notification

system, which not only adheres to making use of the resources efficiently but also makes

the entire notification aspect of the EMS faster as compared to the traditional practices of

circulating notices through the same medium.

B. Implementation

RevUp is a web-based event management application that allows institutions to plan and

manage events. All our application servers are hosted on the Apache Tomcat server. React

Js was used as the sole front-end framework. This was done to ensure we have a user-

friendly, feature-rich, and lightweight user interface. MySQL was used to interact and

handle the entire application’s data, right from user sign-in to handling and changing of

user roles amongst the institution. It is also used for storing the event data and all its

related data as well.

The backend servers consisted of 3 modules which were built using Spring Boot and Flask.

The first model completely dealt with all the event-related information like event details,

department details, event reports, and event classification which was completely built

using spring boot which delivers a high level of security using secure authentication. The

second module was developed using a flask that mainly dealt with user-related information

 8

which required a higher level of security compared to events. So, we incorporated key

encryptions to authenticate the user which prevents threats like SQL Injection protection,

and guards against XSS (Cross-Site Scripting) attacks, etc. As for the LSNS, as this

required proper load balancing and efficient utilization of the resources, this final module

was developed over Flask, owing to the fact that it is a lightweight WSGI framework[15]

and it supports a varied array of Python modules to support multithreading.

One of the benefits of this application is that it requires no prior training to operate and can

be used to create and maintain both technical and non-technical events.

C. System Workflow

The proposed system of the platform is as follows:

1) Handling User Privileges: Like in any organization, the platform allows the

users to have distinct roles and responsibilities. These can be assigned to the

users only if the higher role accepts the requests of the candidates. The system
maintains the hierarchy in such a manner that an institutional user can only

become an organizer and thus this request can only be verified by the said

peer, the admin. Similarly, the organizer and admin can be reviewed by their
respective peers. Figure 2 depicts a scenario, where an organizer has requested

to be promoted to Admin. The same will come into action once Admin

approve his/her request.

2) Creation of a New Event: The creation of an event is limited to only the
organizers and admins of the department. To do this, the event creator needs to

fill-up the form (shown in Figure 3.) and enter the details that prevail

regarding the event. This also includes uploading an event poster which would

Figure 2: Admin approving requests for organizers

 9

be used throughout the platform. Once created the event created gets enlisted

on the dashboard where the other users can also view the same from the same

point of time.

3) Data Updating and Manipulation: Updating or manipulation of the present
data associated with an event can be edited by its creator or the admin of the

corresponding handling department of the organization. The user gets the

present data in the respective fields which aids them to make the modifications
easily. The view also allows uploading and downloading of the event reports

provided the event has been completed (shown in Figure 4).

Figure 3: Form for creation of a new Event

Figure 4: Update Event Details along with privileges to upload and download report

 10

4) User Views: Based on the user roles, views have been assigned to each role

wherein the User and Institutional user roles have the read-only view for the

events. As for the Organizer and Admin, they have been provided with the
option to edit or upload the events that they oversee. As for the super admin,

the privileges are only to maintain the user privileges and the institutional data

regarding the departments, or the requests made by different users in the
institute. Figure 5 shows the Home Page (Event Page) which is prescribed

only for Anonymous users. The sidebars and other functionalities get changed

based on the different user roles that are defined.

5) Privileges: Privileges have been assigned throughout different user roles that

are allotted during the signup. This can be elaborated as
a) Anonymous User: The user can only view the events that are currently “active” or

whose registration deadline has not been passed yet. This is to only lead the user

to either Signup or Sign-In to the platform.

b) User: The role of the user is for an event that is open to all candidates, regardless

of their association with the hosting organization. The users can register for such
events and thus can participate.

c) Institutional User: These are the types of users that are students or members of the

institution other than the Organizer or the Admins roles. Such users can register

as well as request to be promoted to the user role of Organizer provided, they are

entrusted with the responsibilities, and the application for the same is approved by

their peers.

d) Organizer: Organizers or the members of the platform who have been assigned to

host or handle the events associated with their departments. They can create or

update the events and thus can also upload and view the reports of the same.

Figure 5: Event Page loaded for an Anonymous user

 11

e) Admin: Admins are the users that manage the platform when it comes to their

department. They can handle the creation and updating of events. Admins also

have the privilege to create or update the Event Type or the category to which the

event belongs. This category comes in handy whilst creating or updating the

events. Admins can also view and download the report for the events completed

in their department. Finally, they also have the privilege to approve the requests

of the Institutional Users or the Organizer to be promoted to the requested roles.

f) Super Admin: This user overlooks the creation and management of the User

Privileges. They are not to create events but can have all other privileges that

other admins may not have. They can create or modify the details regarding the

department or the event categories. Departments are only to be viewed by other
event creators (Organizer and admin) wherein during any creation or updating,

the same is taken from the user details itself.

5. EXPERIMENTAL RESULTS

Numerous experiments and plannings were conducted in order to execute the proposed

architecture over the web application. These addressed a variety of topics, including

testing and confirming the accesses permitted to each user role and the way these roles'

requests are handled. The platform was distributed to various users on the premises in

order to obtain feedback and approvals on the platform's functionality. This aided in the

implementation and testing of our project's needs, as well as in broadening the platform's

usefulness. With regards to the Large-scale notification system, we experimented with

traditional means of alerting people through WhatsApp and email, but the audience pool

can be very enormous (as little as 10,000 individuals), and in such circumstances,

distributing alerts in a timely manner was not possible. Thus, after doing further

experiments with the multithreading strategy, we saw a significant improvement in

notification delivery time for the audience size that we had available. The experimental

findings from evaluating the server response time for a test size of 10,000 test user emails

in the large-scale notification system are summarized in Table 3. The y-axis indicates the

Figure 6: List of Available Departments

 12

response time (in seconds), while the x-axis indicates the computing methodology utilized

to distribute the emails during the test runs.

6. CONCLUSION

Our goal was to minimize human effort and make event planning easier for users,

administrators, and event organizers. We sought to create an EMS that could be used to

manage any type of event effectively and efficiently for any organization. This approach is

now applicable to a variety of events, including conferences, seminars, cultural functions,

and festivals. Our long-term objective is to incorporate a machine learning model that will

provide event organizers with enhanced insights into how to increase event registrations.

However, there are some drawbacks, such as the fact that user registration has not yet been

implemented. However, registration will be implemented in the future, as well as an

expansion of the spaces available for the creation of various types of events.

7. REFERENCES

[1] S. Islam, R. Majumder, S. Sultana, S. Nasrin, and R. Islam, "Toward a Generic

Event Management System for Academia," 2019 5th International Conference on
Advances in Electrical Engineering (ICAEE), 2019, pp. 706-711, DOI:
10.1109/ICAEE48663.2019.8975626.

Table 3:Performance analysis for Serial vs Parallel Computing in delivering

large scale notifications.

 13

[2] P. A.-A. S. Ulul Azmi and N. Ibrahim, “UTHM Students’ Event Management

System”, aitcs, vol. 2, no. 2, pp. 697–716, Nov. 2021. [3] Gartner Report,

Financial Times, 2007.

[3] Arsheen. Khan, Aarti. Pundalik, Tanvi. Shinde, Sneha. Gupta, S.J. Patil,” Event

Management System” for International Research Journal of Engineering and
Technology (IRJET)

[4] Dragoni, N. et al. (2017). Microservices: Yesterday, Today, and Tomorrow. In:

Mazzara, M., Meyer, B. (eds) Present and Ulterior Software Engineering. Springer,
Cham. https://doi.org/10.1007/978-3-319-67425-4_12

[5] Amir Saleem, Davood Ahmed Bhat, Mr. Omar Farooq Khan, “Review Paper on an

Event Management System” for International Journal of Computer Science and
Mobile Computing ISSN 2320–088X.

[1] Akash Verma, Gunjan Srivastava, Himanshu Verma, Mayank Johri, Archana Bhalla,
“Study on Event Management Applications” International Journal of Innovative
Science and Research Technology ISSN No:2456 – 2165.

[2] Mr. J Nagesh Babu, Ms. Srujana J M, Ms. Srusti U M, Ms. Sushma Kulkarni, “Event
Management System” International Journal of Engineering Research in Computer
Science and Engineering (IJERCSE) Vol 6, Issue 5, May 2019

[3] Rowstron, A., Kermarrec, AM., Castro, M., Druschel, P. (2001). Scribe: The Design
of a Large-Scale Event Notification Infrastructure. In: Crowcroft, J., Hofmann, M.
(eds) Networked Group Communication. NGC 2001. Lecture Notes in Computer
Science, vol 2233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45546-
9_3

[4] Dhanawade Phulabai Pandurang1, Mohite Damini Maruti, Sakhare Dipali Balu, S. T.
Shirkande “A Design on Centrally College Event Management System” International
Journal of Research in Engineering, Science and Management Volume-3, Issue-6,
June-2020

[5] Spring | Microservices https://spring.io/microservices

[6] Flask https://flask.palletsprojects.com/en/2.1.x/

[7] MySQL /https://www.mysql.com/

[8] React https://reactjs.org/

[9] Apache Tomcat https://tomcat.apache.org/

[10] Flask | The Pallets Projects https://palletsprojects.com/p/flask/

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/3-540-45546-9_3
https://doi.org/10.1007/3-540-45546-9_3
https://spring.io/microservices
https://flask.palletsprojects.com/en/2.1.x/
https://www.mysql.com/
https://reactjs.org/
https://tomcat.apache.org/
https://palletsprojects.com/p/flask/

	1. Introduction
	2. Related Works
	3. Architecture Design
	4. Conceptual Design And Implementation
	A. Conceptual Design
	B. Implementation
	C. System Workflow

	5. Experimental Results
	6. Conclusion
	7. References

