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Abstract—Complex techniques with substantial processing 

expenses are required to produce photorealistic computer-

based photographs. Implementing these methods requires the 

use of techniques like Ray tracing and Path tracing, which are 

still expensive in terms of computation even with the most 

recent hardware-optimized GPUs. As a result, faster and more 

precise techniques for rendering 3D environments are required 

to give visual programme users a near-perfect photo-realistic 

interactive experience. 

For real-time interactive rendering, our proposed hybrid 

ray-marching/rasterization strategy uses fast non-local mean 

denoising methods and computes Screen Space Directional 

Occlusion(SSDO), Screen Space Ambient Occlusion(SSAO) 

based on the type of surface. Recursive non-local mean Spatio-

temporal filter and SSDO with realistic graphics can be 

achieved by using a rendering model based on 

raymarching/raytracing, which uses sphere trace or bounding 

volume hierarchy to calculate intersections with scene objects. 

For global illumination, we take two indirect bounces of lights 

in the scene and direct light at rasterized implicit shape 

surfaces, and we estimate this with one ray traced sample per 

pixel. We separate the surfaces into matte and glossy to apply 

SSAO and SSDO and with confidence measurement 

accumulated over frames by fast approximated non-local mean 

denoising filter. A rapid approximated recursive non-local 

filter is used to avoid noise and smooth edge areas in areas 

where reprojection fails. We demonstrate generating photo-

realistic images with fewer artifacts against the offline 

denoising algorithms 

Keywords— global illumination, Denoising, BRDF, SSAO, 

SSDO, ray tracing, lighting, non-local mean  

I. INTRODUCTION 

Engines such as Embree and Optix, which are parallel ray 
casting by efficiently use of CPU and GPU, may conduct 
path trace global illumination in real-time with considerable 
noisy results. There is a compromise between ray 
bounce/sample per pixel and computation cost, ray budgets 
are anticipated to expand ten-thousand-fold in the future. 
Offline rendering procedures that require hundreds of 
samples per pixel represent most of the earlier high-quality 
denoising approaches for path tracing. 

Ray bounce count(cost budgets) required for 

processing increase with the advancement of CPU and GPU 

hardware capabilities. Path tracing will eventually increase 

to a thousand-fold bounce and the convergence threshold 

will be limited however, we need to do post-processing on a 

frame and apply denoising filters. Most of the photo-

realistic algorithms are based on denoising filter techniques 

are offline rendering. In this paper, We use Screen Space 

Ambient Occlusion(SSAO) and Screen Space Directional 
Occlusion(SSDO) based on the factored Bidirectional 

reflectance distribution function(BRDF) for the surfaces like 

glossy and matte. In addition, we add non-local mean 

temporal filtering across the sequence of the frames to get 

refined and attractive results. This produces slightly faster 

and smoother rendering results without blurred surfaces than 

offline rendering. 

The Contribution to the paper is about designing 

the Spatio-temporal framework and using SSAO and SSDO 

based on the classified surfaces by ray bounce. The key idea 

is about approximating the monte-carlo integrator by 
applying SSAO and SSDO for the matte and glossy surfaces 

and is also based on the confidence interval of the non-local 

mean filter over the frames. This produces accountable 

results in terms of lights reflective and refractive on the 

surfaces in the scene. 

Based on several observations for photo-realistic 

algorithms, the details covered by reflected light are because 

of material property and direct light illumination than the 

light in the scene. We consider SSAO for matte surfaces 

because we need to consider light bounce in the entire semi-

hemisphere and therefore its computationally expensive and 
exceedingly noisy-but the same dispersion means that the 

light can be intrusively denoised. In specular surfaces, the 

specular highlight region is where a lot of light gets 

clustered. So, we use SSDO where specular lobes direction 

is considered and can be denoised with filters. In temporal 

non-local mean, reflection is based on object reflection and 

not on surface points but the failure is negotiable and can be 

improved by filters. 

Our Method has a different path for the type of 

lights in the scene (i.e indirect and direct) and material 

properties. As the frame gets rendered the results are 

observed to suppress the artifacts and blurring with flicker-
free frames. 

The following is how the paper is structured. 

Section II is about related works and the limitation of 

previous techniques. Section III presents the proposed 

rendering model algorithm and Section  IV presents the 

system requirement used for Experimental purposes. The 

results were discussed in Section V . Finally, in Section VI, 

we provide conclusions. 



II. RELATED WORK 

Using the instant radiosity method developed by 

Keller[1], the indirect light component of global 

illumination can be approximated using a set of Virtual 

Point Lights (VPLs) in a scene. By shooting photons into 

the scene and having them intersect with the surface there, 

this technique formed VPLs, which were then used to light 

up the scene to render it. For a large number of point lights, 

there is a computational cost in the calculation of shadows. 

Lightcuts Walter et al.,[5] is a technique that reduces the 

number of shadow queries by clustering the VPLs in sets, 

however, it does not increase performance significantly. 

This is done by interpolating indirect illumination from an 
onboard camera’s cache Ward et al.,[14]. It’s possible to get 

accurate estimates of the irradiance of some surfaces using 

ray tracing, and for the rest, interpolation is utilized. 
By using spherical harmonics instead of irradiance to 

store and interpolate indirect illumination, Radiance caching 
Krivanek et al., [4] adds to the irradiance cache. Specular 
surfaces can be handled by this method, which requires 
fewer cache samples. Although some methods for global 
lighting via denoising have been viewed as an offline 
rendering problem, the path-tracing method was a prevalent 
offline process until recently. 

The survey by Zwicker et al.[10] Methods based on non-
local means (NLM) by Rousselle et al.[15] uses a component 
of a discontinuously segmented image’s zeroth- or first-order 
gradient. Buffers are utilized to establish the weighting of 
each sample for each term based on material geometry and 
other metadata such as light visibility. The motion vector 
buffer is known as the G-buffer. The G-buffer is used to 
determine the weights of several machine learning 
algorithms Kalantari et al.[16] and other edge-avoiding 
filters e.g., Dammertz et al.[17]). Eisemann and Durand,[18]; 
Petschnigg et al. and colleagues used Cross bilateral filters in 
real-time stochastic transparency and computational 
photography can also be used in offline denoising. Gaussian 
kernels with each tap weighted by a G-buffer function are 
used in these. Antialiasing and real-time stochastic 
transparency Salvi.[19] both make heavy use of projection 
and temporal filtering. The first time they were used for 
interactive denoising in Monte Carlo rendering was by 
Bauszat et al.[21]. Previous Ambient Occlusion(AO) 
approximation approaches (Lehtinen and Kautz. 2003) 
required a great deal of pre-computation for Directional 
Occlusion(DO) and interreflections parameters to save data 
in a compressed format with restricting spatial or direction 
design. For example, check related works for matte Durand 
et al.[18]; Kontkanen et al.[20]; Soler et al.[22] and glossy 
reconstruction filters aimed to minimize/attenuate bias 
instead of the visual artifacts that we eliminated by 
combining SSDO and temporal non-local mean filter kernels. 

       Real-time denoising was developed by Schied and 

colleagues.[23] using route-traced images with one path per 

pixel. Their study was independent and conducted at the 

same time as ours, so we plan to compare our findings with 
theirs in the future. 

III. PROPOSED WORK 

The proposed work comprises five stages (shown 

in Figure.2): Pre-Pass, PathTrace, Accumulation(Spatio-

temporal), Approximation, and Reconstruction. Before 

proceeding with stages, Our stages are based on the 

rendering equation and the factorization of the Bidirectional 

Reflectance Distribution Function(BRDF) function. 

To achieve global illumination, we have to know 

the characteristics of light behavior, characteristics of 
objects in the scene, interacting with objects in the scene, 

and finally reaching the eye/camera. The illumination in the 

scene is dependent on direct and indirect lighting given by 

the rendering equation: 

              (1) 

where,  is outgoing light direction,  incoming 

light direction,  is dot product of normal and incoming 

light,  is Bidirectional Reflectance Distribution 

Function.  

Bidirectional reflectance distribution 
function(BRDF): It is a function that describes the 

distribution of how much light is reflected from a material 

or surface when light arrives or falls on it. In general, its 

ratio of radiance(direction of the camera) by 

irradiance(direction of light). Refer to Figure 1. 

 
            Figure  1: Representation of BRDF. 

 

Our pipline rendering system is processed in stages 

and in each stage we calculate depth, normals and non-local 
mean search window data and store in GPU buffers. Figure 

2 describes various stages used in our method. 

 
 Figure  2: Rendering system (Blue arrow represent G-

Buffer and gray arrow represents radiance buffer) 
 

Figure 2. consists of stages and is numbered. In the 

following sections, we will explain the stages used. 

A. PrePass 

     Prepass - Write albedo, normals, and other common G-

Buffer attachments to the scene’s G-Buffer file. A ray-trace 
pre-pass (stage 1) is required instead of a raster prepass for 

the first bounce versions of those buffers. 



B. PathTrace 

     Split denoising with Specular Reflections and Global 
Illumination in different attachments would be great because 
reflection denoising performs better on first bounce data, 
whereas Global Illumination/Ambient Occlusion/Shadows 
are calculated with spherical harmonic coefficients (stage 2). 
However, we have found the optimal bounce count by 
comparing vs rendering. 

C. PathTrace 

Recursive non-local denoising algorithm: 

     However, a non-local mean of the frame is more 

compatible with the approximate RNLM [2] method’s 

purpose of using spatiotemporal information effectively(Fig 

2). Pixel estimates from the current frame and the preceding 

frame are combined to create the RNLM estimates. RNLM 

additionally uses the difference in convolutions in the search 

window for consecutive frames to execute on the GPU in 

parallel. In other words, the current output is generated by 

fusing the current input frame with the previous output 
frame. Because temporal recursive (stages 3 and 4) 

processing reduces overall computing complexity without 

considerably extending the search window, it helps to gain 

temporal signal correlations. 

       The estimate given for the proposed RNLM is: 

 
 (2) 

where  represents the estimated image at pixel i in 

frame k. and  is an estimate of the previous frame 

 at pixel . Pixel 

 is selected from  based on the standard 

block-matching algorithm (BMA) for blocks of input frame 

k centered around pixel i. The choice of  takes into 

account block and search sizes that may differ from those 

used for in-frame processing. In particular, the block that 

corresponds to the block size is , with a search 

window of . The recursive weight of the 

expression (2) is , and the non-recursive weights is 

. 

 

Screen Space directional occlusion: 

     For specular surfaces, we use SSDO (stage 6). SSDO is 

to improve screen space ambient occlusion (SSAO) and 

better approximate global lighting, the direction in which 

ambient light (both the light that hits the object directly and 

the light that is reflected by the object immediately behind 

it) is sampled is taken into consideration. Contributes to the 

direction of the incident light and, 

 Incorporate one or two bounces of ray for calculating 
indirect illumination 

  Complements standard object-based global 
illumination and 

 The extra calculation time is small. 

Factored BRDF: 

    Start by usually splitting the BRDF function into the type 
of surface like diffuse/matte layers [3]. Glossy/specular term 
in combination with Fresnel coefficient: 

 

            (3) 

The shiny term g() may contain a specular impulse. The 

diffuse term m() needs to change slowly with respect to  

and  Like the Lambert model and the Oren-Nayar model. 
 

Split Monte Carlo Integration: 

     By sampling a Monte Carlo integrator for standard 

materials(for light or more) using indirect light  we 

calculate outward radiance  at point X on the surface with 

key visibility. The Eq is given below: 

              (4) 

Here, each  in the incident direction of 2N is independent. 

sampled from distributions  and  is calculated by path 

tracing. 

     Non-zero distribution can be selected for , where  is 

non-zero. The integrator makes the sample optimally 

important regarding the material, . 

Different sampling distributions can be chossen for the 

various BRDF terms and its optional. In case of diffuse 

estimator (stage 5), we choose  

                                                   (5) 

to cancel the numerator. For optimal important sampling 

when  is almost constant throughtout the hemisphere. 

To estimate specular term (stage 6), Select the incident 

direction  for the specular term from some distribution 

, which is close to  but can be sampled efficiently like 

a power-cosine. (We differentiate between the use of index  

for specular and index  for diffuse that these directions are 

sampled independently.) The complete estimator is: 

(6) 

D. Approximation 

     Both the F and m parameters used in Eq 6. have a slow 

change in incidence and outgoing vector that can factor 

them from the integrator to separate material and light for 
approximation. Therefore, we need to select a single 

representative incident vector  outside the operator 

summation by selecting ,the specular mirror 

reflection of  
As a result, the diffuse/matte part of the estimator (Eqn. 

6) is reduced as follows 

               (7)        

     A similar approximation is made for specular estimators. 

However, because we know that  can be very sensitive to 

the incident direction  (that is, potentially have narrow 

lobes),  cannot be out of the summation and should be 



evaluated for each sample. The glossy part of the estimator 

(Eqn. 6) is as follows. 

                        (8) 

E. Reconstruction 

     The chain of filters, SSAO/SSDO-Filter using the G-

buffer by camera-space plane distance in both normals and 

depth from the center sample with corresponding weights. 

Every G-buffer frame contains illumination obtained from 

neighboring samples that are spatially and temporally 
(recursively and nonlocally) nearby, allowing the 

convolution of the search window, X-position variation, and 

the implicit time parameter to be calculated (stages 3 and 4). 

The temporal (stage 4) using non-local mean filter does 

reverse re-projection from data of the previous frame. It 

computes the confidence interval of how well the 

reprojection positions match. The high-frequency noise is 

removed significantly by stages 3 and 4. Because of the 

aforementioned three factors, over-blurring of the image is 

not apparent when using this method 

 Previous section approximation excludes material 
features (matt reflectance m and specular magnitude 
and albedo F0) from the total of the material 
properties. 

 According to the roughness of the material, the 
diameter of the specular spatial core is determined. 

 Compensate for motion with reverse reprojection. 

 Caustic reflections are blurred and are hard to 
reconstruct from sparse samples. 

     (stage 5) does 3 x 3 SSAO filter for matte surfaces, 

which eliminates the low-frequency noise. SSAO is usually 

faster as it’s operating in image space. (stage 6) does SSDO 

filter where the light direction is considered for glossy 

surfaces. The filters SSAO and SSDO (stages 3 and 4) are 

optimized for matte surfaces but because of reprojection, the 

temporal filter will lead to some blur for glossy surfaces 

when in motion. 

IV. SYSTEM REQUIREMENT 

In Table I, we give a detailed account of the specification 
of the software and hardware of the machine we used for all 
test cases documented in this work, as well as for the render 
images presented. Finally, we want to note that all the results 
for rendering time and graphics fidelity presented in the 
following sections are rendered in 1280x720p resolution 
unless specified otherwise 

Software  Qt Qml and OpenGL 3.3  

Operating System   Windows 10.1 Version 1809 (build 
17763.1098)  

CPU   Intel i3-6600k  

GPU  MSI Radeon R9 390 8GB GDDR5  

GPU driver 
version 

Radeon Software Adrenalin 2020 Edition 
20.1.4  

                     TABLE I  System Specification 

V. RESULTS 

 
Figure  3: Data visualization of how changing the number of 

ray bounces affects the total rendering time of our model for 

the renders 

     The number of bounces that we take into account each 

time we march a new ray is critical to the image fidelity we 

want to provide. This parameter introduces a compromise 
between image fidelity and the time to render the final 

image: the higher the number of bounces, the more realistic 

the image will look but will be more expensive to compute. 

In order to understand the differences each ray bounce count 

imposes in the time to render the final image, we decided to 

plot the different data we measured from the multiple 

renders. The visualization of how each bounce count affects 

the time to render is displayed in Figure.3. 

     From Figure.3., we observe that in order to provide each 

frame in less than 41.6 milliseconds, we must pick a number 

of ray bounces that is smaller than 7. From this case study, 

we conclude that our range of optimal ray bounces is 
between the 4 and 6 range for a simple scene. Since we 

don’t observe major differences between the 4 and 8 bounce 

count renders, we decided to set our default number of 

bounces to 4 for the rest of the case studies of our model. 

     A visualization of this temporal method is presented in 

Figure 4, where we can observe the progressive denoising 

applied over time to render fractal geometry. Our denoising 

method proved successful in delivering the same fidelity of 

graphics provided by renders of over 32 samples but only 

using 1 sample per pixel/ray without any visible noise after 

accumulating frames for a second. Applying the denoising 
process seen in Figure 4, we can provide the user with a 

time to render 76.9ms between frames. While this is only 

13fps and is surely beneath our limit for real-time graphics 

rendering, rendering the same scene using a multi-sample 

approach would require 10 samples for it to converge to the 

last render seen in Figure 4 (10 frames accumulation). The 

suggested 10 sample render would require 10x the rendering 

time of the denoised render, thus providing each frame at 

770ms, rendering the application unusable from a user 

interaction standpoint. 

 



 
 

Figure  4: A comparison between noise accumulation in a 

different count of total frames elapsed 

 

 
 

Figure  5: Global illumination and emmisive objects effects 

with denoised 

 
Our denoising study case is a render of a simple scene 

composed of two spheres inside a room with no roof. Let’s 

use it to analyze and compare the effects of global 

illumination produced by our rendering model against 

Blender’s Cycles path tracer. The output produced by our 

method is shown in Figure 5 and the rendering time in ms of 

each stage(Figure 2) in our rendering pipeline in Table II 

 

Stages   Time  

Spatio-Temporal 

Filter 

(Matte&Glossy)  

 ~45 

SSAO (Matte 

Surface)  

 ~5 

SSDO (Glossy 
Surface)  

 ~15 

 

TABLE II: Per Frame rendering time in milliseconds at 

1280 X 720 for filter GPU pipeline stages.  

     We observe that the render produced by our proposed 

model has some noise in a few cases. Nevertheless, we 

believe that for this scene our model provides a higher 

dynamic range of light when compared to Cycles’s render: 

shadows are darker and the ambient occlusion factor is 

higher. Although this makes the version rendered by our 

proposed model look more realistic, we can’t say that this is 

a clear win since these variables are easily configured in 

both models to match the wanted visuals without using extra 
computational power. 

VI. CONCLUSION 

     Despite our conclusion that the model we proposed in 

this work is capable of delivering high-fidelity graphics in 

real-time, we are aware that it has a few limitations like 

blurring at low or high-frequency noise, in SSAO noise 

occurs for depth discontinuity at object edges, the closer 

glossy surfaces are blurr compare to distant ones. 

     Consequently, we wish to specify a couple of 

improvements in FPS by reducing the frame buffer pixel 

format and datatype precision. To make results stable and 

spatially smoother, we may improve denoise filter 

algorithms or replace them with faster denoising filters. 
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