Execution Investigation of FinFET found 4:1 Data Selectors for small Optimization of Power

Author Name

K Md Saifuddin, Electronics & Communication Engineering, Srinivasa Ramanujan Institute of TechnologyAnantapuramu, India <u>saifu426@gmail.com</u> T. Keerthi Priya , Electronics & Communication Engineering, Srinivasa Ramanujan Institute of Technology,Anantapuramu, India <u>keerthireddy104@gmail.com</u> Y.RajaKullayi Reddy Electronics & Communication Engineering, Srinivasa Ramanujan Institute of Technology,Anantapuramu, India <u>yrkreddy36@gmail.com</u>

Abstract.

Gate Diffusion Input (GDI), which uses FinFETs, is correlated with Pass Transistor (PT), which uses Pass Transistor (PT) based 4:1 Data Selector. A 0.6V supply voltage powers both of the Data Selectors, which are built on 22-nm technology nodes. GDI Data Selector utilizes less power than that of the PT Data Selector, which consumes more power. GDI-based Data Selector is a good choice if the client wants a rapid execution. Faster than a PT-based Data Selector, typically takes a few picoseconds before pass the signal. The GDI-based Data Selector, on the other hand, has greater performance when optimized for low power consumption. Due to its widespread usage in combinational circuits, this Data Selector may significantly enhance the overall performance of the network if its execution is optimized.

Keywords. FINFET, Gate Diffusion Input (GDI), Pass Transistor, Data Selector

1. INTRODUCTION

Because of the rapid advancements in CMOS technology, the electronics industry is now able to integrate more complex systems at ever-increasing speeds. The IC is becoming increasingly sophisticated and dense as transistor sizes continue to shrink. One of the most essential design considerations for integrated circuits (ICs) is power consumption. To reduce IC power consumption, voltage down-scaling has proved quite effective. Some applications, like medical equipment, portable wireless devices, including sensor network nodes are decreased in power if indeed the power supply is lowered slightly over the threshold voltage [1]-[3]. To meet consumer demand for low-power devices, the industry has made tremendous standardization progress and power dissipation have taken on new importance

in terms of performance and footprint [2]. Low power consumption has become a hot subject in today's hardware market. In a multiplexer, each input is combined into a single output, as well as a select line determines whether input should be sent to the outgoing

Fig.1.Schematic structure of 4:1Data Selector

"Switch logic" is being used to create the circuits of a 2:1 multiplexer rather than gates. As seen in Fig. 1, a 4:1 Data Selector features a single output having two inputs as well as a single choose line that is used to pick towards the input Many issues arose in MOSFETs owing to the small channel as the technology node decreased, such as DIBL, impact ionization, the Hot electron effect, and voltage saturation. Short-channel effects may be addressed via FinFET technology, which delivers the superior results and voltage with the lowest possible power consumption. Due to the smaller surface area of FinFETs compared to MOSFETs, they use less power, function more quickly, and need lower power supply voltages [4]. When it comes to FinFET vs. MOSFET, these regions are split.

FinFET multiplexer designs also have been described by a few researchers at various technology nodes was presented as part of a new TIGFET architecture. Additional research has shown that the size may be reduced by adopting FinFET at 45nm technology. A total of 2.68nW and 16.89pW more leakage power was found in this design, however the propagation latency was measured at 1.76ns.

In 45nm technology, DGFINFET achieved delays of with PT (Pass Transistor) is discussed in this work. FinFET at the 18nm technology node was used for Muxis. Cadence Virtuoso software is being used to examine the steno multiplexer's results in latency.

GDI BASED DATA SELECTOR

Cells with the GDI (Gate Diffusion Input) feature are a new form of circuit that may be used to combine power. With the help of this GDI cell, a more sophisticated circuit may be built with fewer transistors. When it comes to transistor count, latency, and power consumption, the GDI cell outperforms the CMOS. As that of the transistor count doubles in CMOS, overall circuit size grows and signals take longer to travel from either the source to the destination due to the obvious increased area. The GDI cell, which reduces area, latency, and power, may alleviate all of these issues. [7]-[9] is indeed an inverter circuit that uses two transistors of NMOS and PMOS, and that it's similar to the GDI cell. Sources of PMS

and NMOS for inverter CMOS cells were linked towards the supply voltage whereas in GDI cells they are attached towards the signal input. Gate Diffusion Input (GDI) has many benefits and downsides. There are some advantages and disadvantages to each and every system, such as quick operation, low power dissipation, as well as an output that isn't close enough from the Vdc supply voltage. Because NMOS produces weak1 just at output node when Sel=B=1, the input signal B would be routed towards the output O when Sel=B=1. This means that even though the output O would be 0 whenever the input signal B was 0, overall output would be 1.

o = 🖬 🗉 🗟 🙆 🔞 O 🗙 🛅 🕅 🚟 🧮

^ 0 .4 4 ms 224 1 (b)

E P Type

Bername B	sore: 0					
sfe Remunac pers Shulden completed drodes 14 Adhe devices 12 Independen (devices 19 Paule devices 1) Contailet as thereads = 1 Devices and onle constats 10 207219 = 12	tsurtex 0 urze: 0					
pms Smiddin completed direden: 10 Adher devices: 12 Independent director: 13 Panie devices: 10 Control et a threads = 1 Derice and mode counts: 	tsources: 0 Aurores: 0					
index: 14 Addre devices: 12 Independent devices: 13 Passie devices: 0 Dontoled s threads = 1 Derice and mode counts: HOSFETs - 12	sources: 0 aurces: 0					
threads = 1 Device and node counts: MOSTETs - 12	2000. V					_
Device and mode counts: HOSFETs - 12						
MOSFETs - 12						
HUSEET geometries - 2						
Voltage sources - 7						
Subcircuits - 0						
Nodel Definitions - 6 Commuted Models - 2						
Independent nodes - 6						
Boundary nodes - 8						
Total nodes - 14						
Power Results						
W1 from time 0 to 1e-008						
Average power consumed -> 1.266036e-009 watts						
dax power 1.266036e-009 at time 0						
fin power 1.266036e-009 at time le-008						
Parsing 0.08 seconds						
Setup 0.02 seconds						
AC operating point 0.40 seconds						
Iransient Analysis 0.11 seconds						
Werhead 0.95 seconds						
Total 1.57 seconds						
Simulation completed						
)
us Input file Start Time D Baps						
ted Etisicori,)Aqdimus.spc 120312 Ap., 000 had Etisicori Vetrav.org 1204/00.kg 000						
ned Elisiiconi,Aptmun.spc 120425.4p., 000.						
tion done						NJM
0 Truck mark	∧ ∺ = 4	6 A A	0 v 🖽 🖬	12 13	A 6 44 BK	1204

Fig. 2. (a) Schematic design, (b) Output plot with Total Power Dissipation and(c) Output plot with Static Power Dissipation for GDI based Mux

Input signals A and B were coupled to the PMOS and NMOS source terminals, respectively. This Select signal is coupled towards both MOS, which results in output voltages of 0.7V and 140.8mvolts, respectively. The output was coupled directly towards the input signal B when Sel=1. It is shown in Figure 2 the output of the Mux using GDI (Gate Diffusion Input) (b).

That figure also shows the overall power dissipation, which is 46.69uW at its highest and 123.2pW at its minimum. The leakage inside the circuit was caused by dynamic power dissipation.

PT BASED DATA SELECTOR

One inverter is being used to invert select signal with PT-based Mux architecture. A circuit schematic of PT (Pass Transistor) built on MUX is shown in Figure 6. Using fewer transistors, it is possible to create more complicated circuits [10–12]. The input signal is linked to the NMOS source, while the select signal as well as its inversion are connected towards the gates. Because NMOS generates weak1 at the output This is really a disadvantage of utilizing this device.

Some of the advantages of PT-based Data Selectors include lower power consumption, a less impact on interconnection, as well as a faster rate of processing and transmission. Sluggish functioning as well as a reduced voltage swing are some of the drawbacks.

Fig. 3. (a) Simplified Outline, (b) Total Power Expenditure and (c) Static Power Expenditure for PT based Data Selector

Adv Set 0 Set		
the Generation of the second s		
me Solder-registed (note: 1) Anten dense: 6 Operation note: 0 Catendia = 1 Derive an abox constant: EXERTAR = 4 Derive an abox constant: Derive and abox constant: Derive and abox constant: Derive and abox constant: EXERTAR = 4		
Ander 11 Adre Seter 6 heartstance 0 defent 0 Grebelanner 0 threads = 1 Willers and non-constr: MUTTS = 6 MUTTS positives = 2 Volage sources = 7 Societarius = 0 Boold Fontiums = 6 Compete Sholds = 2 Labereters tools = 2 Total 1000 = 1 Total 1000 = 1 Total 1000 = 1		
yment 0 meneska v Uneninka v Utrasis = 1 Beries and boko contri: BUTT sontri: BUTT sontri: BUTT sontri: Butting v = 6 Bokal Penink: Damage Butting v = 6 Donalty boko = 8 Donalty boko = 8 Donalty boko = 1 Donal Butting v = 6 Donal Butting v = 6 Donal Butting v = 6 Donal Butting v = 7 Donalty boko = 8 Donalty boko = 8 Donalty boko = 1 Donal Butting v = 7 Donalty boko = 1 Donalty boko =		
<pre>Berice and hole contas: BUTTS = 6 BUTTS posting = 2 Volge sources = 7 Bohringtone = 0 bohr sources = 0 Donaly bohr = 0 Donaly bohr = 0 Trail bohr = 1 Heven Banking DV familie = 0 to 1+00</pre>		
Weak and an Application of Application of Application of Applications of Appli		
MONTT presentates = 2 Voltage sources = 7 Montructus = 0 Monte sources = 4 Monte sources = 3 Boundary codes = 0 Total modes = 1 Vorta modes = 1 Vorta faculta = 1 Vorta faculta = 0 14-001		
Volamp sources - 7 Boshiroutes - 0 Boshi Perintians - 6 Compared Houses - 2 Dadagetant source - 3 Boshingry source - 8 Total House - 8 Invest Banking Total House to 14-000		
Babarrouis - 0 Moni Medizino - 6 Composed Mondia - 2 Independent modes - 3 Boundary modes - 8 Total modes - 11 Vert Results 1 Vul from time 0 to 1e=00 1		
hool Bristinon - 6 Computed Mool - 2 Independent nodes - 3 Boundary nodes - 8 Total nodes - 11 Over Semilts Vu fum time 0 to 10-000		
Computer models - 2 Independent codes - 3 Boundary modes - 8 Total modes - 11 over Results Vi from time 0 to 1e-000		
Independent Lotes - 3 Bondary notes - 8 Total nodes - 11 Hower Results VVI from time 0 to 1e-000		
Total modes - 11 Nover Besults		
ower Results VI from time 0 to 1e-008		
/1 from time 0 to 1e-008		
AT IION CINE O TO TE-OAR		
marana mouar componed -> 2 502112a-017 ustra		
fax nover 6.596416e-012 at time 1e-008		
tin power 6.596416e-012 at time 0		
Parsing 1.68 seconds		
etup 3.09 seconds		
C operating point 2.33 seconds		
Verhead 1.81 seconds		
otal 9.19 seconds		
Similation completed		
Canadian Companyo		
us Inputfile Start Time/D., Baps.,		
hed Elipilicon\\Applimur.spc 12:03:12.Ap 00:0		
fion done		NUM

Pass transistor-based multiplexer schematic can be seen in Figure 3(a). Input signals A and B are linked to the source. A select signal was linked to the gate from one NMOS, and the inverting select signal was coupled to the gate of all the other NMOS. Fig.3(b) shows the waveform of the output. NMOS delivers weak 1 there at output

therefore the output becomes when Sel is 1, and if B is 1, then output is 659.62mV. NMOS outputs a strong 0 when Sel is 0, therefore due of this. Fixed Static power dissipation throughout this example is 17.57nW, which really is higher than the are used to pass that input signal throughout the output multi-input multiplexer (NMOS). When Sel is set to 0, input A leaks to the NMOS, where input B was attached, resulting in a malfunction.

DELAY AND POWER ANALYSIS

Its delay and power consumption of the multiplexer were examined in depth throughout this section. For optimal performance, a circuit would have to be quick and power efficient. Li

Mux	Power	Average	
	Max	Min	Power
GDI Based	1.269uW	124.2pW	1.266nW
Data Selector			
PT Based	6.59uW	6.39nW	6.596nW
Data Selector			

sted in Table 1 are the highest, lowest, and average power values.

Delay and energy dissipation are studied in this part using a 0.8V power source. It takes 2.11ps in GDI-based Mux for input A to approach the output whenever a select signal is 0, but 9.09ps in PT-based Mux for input A to reach this same output when a select signal is 1, and 10.72ps in GDI-based Mux for input B to reach windows output whenever a select signal was 1. Assuming an average power dissipation of 6..594nW as well as a static power dissipation of 17.57nW, that is measured either by circuit's delay. With a longer delay, this circuit must spend more time before it can produce

an output. This value represents the circuit's overall power usage. Where Vdd seems to be the supply voltage and Iavg is indeed the average current, respectively. Static and dynamic power dissipation combine and is

Shown using by,

 $P(t)=Vdd \times I(t)$ (3)

Static Power Dissipation is,

 $P=I \times Vd(4)$

STATIC POWER DISSIPATION

Just after power and delay computation power delay product were determined, which would be the multiplication from both delay & power, denoted by PDP.

PDP=Delay ×Power (7)

Circuit performance may be better understood by designers and end users alike thanks to all these circuit performance estimates.

CONCLUSION

The FinFET 18 nm technology node has already been successfully demonstrated using two separate techniques. GDI and PT-based Data Selectors have the highest power dissipation. GDI-based Mux performs better in terms of latency and power consumption in both cases. In terms of power consumption, GDI-based Data selectors consumes 1.266uW, which really is 1.266 percent below than PT-based Mux. Average power dissipation, GDI, and PT-based Mux dissipates 6.596nm and 6.39nW for the GDI mux, respectively. It is 6.3 times quicker than PT-based Data Selector in terms of operating speed, which means that GDI is more efficient than PT. Although each Data Selector function differently, it is possible to pick a suitable Mux for just a given circuit design based on a designer's needs, according this research.

REFERENCES

[1] A. Wang, B. H. Calhoun and A. P. Chandrakasan, "Subthreshold Design for Ultra-Low-Power Systems," Springer, Science, pp. 1-209,2006.

[2] P. Mittal, Y. S. Negi and R. K. Singh, "Impact of Source and Drain Contact Thickness on Performance of Organic Thin-Film

Transistors", Journal of Semiconductors, Vol. 35, No. 12, pp. 124002-1-124002-7, 2014.

[3] P. Mittal, Y. S. Negi and R. K Singh, "Analytical modeling and parameter extraction of organic thin-film transistor: effect of contact resistance, doping concentration, and field-dependent mobility," Adv.Mater. Res., Vol. 622, pp. 585–589, 2013.

[4] E. Giacomin, J. R. Gonzalez and P. E. Gaillardon, "Low-Power Multiplexer Designs Using Three-Independent-Gate Field Effect Transistors", IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp.33-38, 2017.

[5] M. Vyas, S. K. Manna and S. Akashe, "Design of Power Efficient Multiplexer using Dual-Gate FinFET Technology", IEEE International Conference on Communication Networks (ICCN), pp. 111-115, 2015.

[6] K. Mishra and S. Akashe, "Design Different Topology for Reduction of Low Power 2:1 Multiplexer Using Finfet In Nanometre Technologies", vol. 12, No. 4, pp. 1350026-1-1350026-12, 2013.

[7] Basha, S. M., Ahmed, S. T., Iyengar, N. C. S. N., & Caytiles, R. D. (2021, December). Inter-Locking Dependency Evaluation Schema based on Block-chain Enabled Federated Transfer Learning for Autonomous Vehicular Systems. In *2021 Second International Conference on Innovative Technology Convergence (CITC)* (pp. 46-51). IEEE.

[8] A. Morgenshtein, V. Yuzhaninov, A. Kovshilovsky, and A. Fish, "Full- Swing Gate Diffusion Input logic—Case-study of low-power CLA adder design" Integration, VLSI Journal, Vol. 47, pp. 62–70, 2014.

[9] A. Morgenshtein, A. Fish, and I. A. Wagner, "Gate-Diffusion Input (GDI): A Power-Efficient Method for Digital Combinatorial Circuits" IEEE transactions on very large-scale integration (VLSI) systems, Vol. 10, No. 5, 2002.

[10] K. Yano, Y. Sasaki, K. Rikino and K. Seki, "Top-down pass transistor logic design", IEEE Journal of Solid-State Circuits, Vol. 31, No. 6, pp. 792–803, 1996.