

Computer Vision based Text to Language Translation

Devanshu Roy1, Dhanyata S. Nayak2, Bhuvaneshwari G.3, Chandana B. N.4, Dr. Shantala Devi Patil5

1,2,3,4School of Computer Science Department, 5Associate Proffesor, Reva University, Bangalore, India

Abstract— Blind people face immense difficulty understanding and comprehending text due to inability to see said text, and need external assistance to guide

them with the same. Also, tourists face the obvious issue of language gaps and comprehension difficulties of the local language. The goal here is to give users a

way to understand any text with their own comfortable language. This paper proposes an application that uses a fast and accurate text to language translation

system and uses a text-to-speech library to speak the translated text out to the user. In this work, we propose Computer Vision to capture and detect text from

cameras and Tesseractv5, an OCR based on a Long Short-Term Memory (LSTM) to classify said text into alphabets. Then we use translation on said text, to the

desired language and use Text-to-Speech libraries to output the same in computer generated speech. Furthermore, also a Python module has been developed that

can be used to convert English text to computerized Braille script.

Keywords—Language translation, OCR, Text-to-Speech, Computer Vision, OpenCV, computerized Braille.

1. INTRODUCTION

Billions of people in the world are visually impaired. It is a huge struggle for them to understand texts written on a piece of
paper, and thus forcing them to use systems like Braille text, to feel and understand text. Although there are many electronic
equipment that can assist in reading, there are few to actually translate the same for them. Also, life would be more convenient if
said blind people could use a computer program to read out that same text to them, thus making them independent in the process.

 Also, in today’s world, where travelling is so common between various nations, language gaps are a challenge to a satisfied
tourism experience. Also, the biggest issue tourists might face when they visit a certain place, is to understand the texts in the
national/local language of their own place. This paper proposes a Computer Vision solution to capture and detect text from
cameras and Tesseractv5, an OCR based on a Long Short-Term Memory (LSTM) which is a type of Recurrent Neural Network
(RNN) to classify said text into alphabets. Then translation is used on said text using Python module ‘translate’, to the desired
language and use Text-to-Speech library, called gTTS in Python, to output the same in computer generated speech.

 Furthermore, for people who are both blind and deaf, a Python module has been developed that can convert English text to
Braille. This means the translation from source language can be done to English, then converted to Braille text, which can have
further applications for comprehension of the text to the blind and deaf user.

2. LITERATURE SURVEY

Handwriting-feature-based algorithms have been designed to approach the handwriting problem [1] as if it were a voice
recognition problem, that is, by treating the input as a signal.

User input in handwriting recognition has a defined beginning and end, similar to how data points are segmented [2].

Optical character recognition (OCR) is a technique for converting scanned or printed text images[3], as well as handwritten
text, into editable text that may be further processed.

The output of OCR is the text, which is saved in a file when the text is converted to speech (speech. txt). To transform the text
to speech, Festival software[4] is utilised.

[5] illustrates a practical use of these technologies, in which a TTS approach is leveraged to provide voice-assisted text
reading, followed by OCR to detect it.

Edge AI accelerators like the Neural Compute Stick-2, OpenVINO, and TensorflowLite are featured in [6,] as well as smart
depth sensors such as OpenCV AI Kit-Depth.

 It was suggested that a person with a visual impairment could benefit from a low-cost mobile application[7]. Optical character
recognition (OCR) and text-to-speech (TTS) technology can be used in the smartphone app. The users will hear an alarm sound to
let them know what occurred in the mobile application.

3. TESSERACT OCR

Tesseract [8] (latest versions 5.x.x) is an Open-Source Optical Character Recognition (OCR) Engine that is licensed under
Apache 2.0 license. Starting from version 4.x.x, it has implemented an LSTM Deep Learning model, that is based on a Recurrent

Neural Network (RNN), giving fast and accurate results. The inclusion of the RNN LSTM has also given the users with the facility
to train their own data sets and models, to be used with Tesseract OCR Engine.

4. METHODOLOGY

Firstly, camera input is taken, image is extracted and preprocessed. Alternatively, an image stored in local storage can also be
used. Then, a competent Optical Character Recognition algorithm called Tesseractv5 is implemented to extract text from the
image. Tesseractv5 is an Open-Source OCR algorithm.

The text is then processed, and then translated using translation APIs, one of the best being Python “translate” API.

Translated text then is fed to a Text-to-Speech API, to speak out the translated text to the user. gTTS Python module, based on
Google Text-to-Speech is a competent API for the same. Refer the below figure 1.1 for the flowchart of the workflow of the
translation module.

Fig 1.1 – Flowchart of Workflow

 The Python library “pytesseract” is used to make usage of Tesseract in Python. pytesseract (Python Tesseract) is a wrapper for
the Open-source OCR engine called Tesseract.

 OpenCV is also used, which is an Open-source Computer Vision library. It is used to read the image file locally, or via camera
input, and then resize the image to a smaller resolution than the system resolution. OpenCV also has a functionality to eliminate
noise in captured images by blurring the image using Gaussian blur.

Fig 1.2 – cv2.GuassianBlur() official Syntax

 This helps eliminate noise in images by smoothening the edges in the images.

 Hence resizing and gaussian blurring is the necessary pre-processing applied on the images.

 After detecting the text from image, this text is then stored in a variable, and pass this to a translate module. Python ‘translate’
module is the module of choice. Then the Translator class from the module is imported. Then an object is created with this class,
and it has a method ‘obj.translate(to_lang=”, from_lang=”)’ that takes in two arguments, to_lang to specify the destination
language and from_lang to specify the source language. The package ‘langdetect’ is used, which is a Python library to auto detect
the language from the OCR text, and then specify the user’s selected translation language, then pass them in the function.

 The output from this function is a text object, containing the translated text. Now, a Text-to-Speech library (gTTS) in Python is
used to convert this text to computer speech. gTTS generates .mp3 files with the computer speech, and these files are to be deleted
after code execution. Hence os.remove in Python is used, to remove the generated audio files (.mp3 files). This requires importing
of the ‘os’ Python library.

 A Python module ‘braille.py’ is also developed which contains a method ‘toBraille(text)’. This takes in text input in English,
and return the corresponding Braille output using the ASCII characters equivalent of the Unicode for the Braille characters. The
Braille ASCII characters were taken from Calculla’s website [9].

5. EXPERIMENTAL RESULTS

The resultant program was tested with multiple test input images:

French to English:

Input image:

Output from OCR:

Translated output:

 German to English:

 Input image:

Output from OCR:

 Translated output:

Hindi to English:

Input image:

Output from OCR:

Translated output:

(Note: Indian language translation isn’t fully accurate, there is a scope for improvement)

English to Braille:

This Braille text was verified online to translate back to the input text.

 Since this approach uses Tesseractv5, which is an Open-source OCR software based on an RNN architecture, it

leverages a Recurrent Neural Network for the OCR detection, hence giving us more accurate results than competing free

solutions for OCR. Furthermore, with the introduction of v5.x.x, the operations were reduced from double operations to float

operations, which reduced the resource overhead, hence it gave a better and faster performance compared to v4.x.x of Tesseract.

6. CONCLUSION AND FUTURE ENHANCEMENT

So, this program was able to detect, translate and output text in an image file, captured either from a camera input, or

stored locally. The braille module was also successfully able to convert English text to corresponding Braille output. The Braille

output is limited to Grade 2 Braille only. Furthermore, there are some translation inconsistencies with Indian languages, which

have future scope of improvement.

With sufficient image data sets, hand writing detection can also be implemented by training the data sets using the LSTM model

built into Tesseract OCR.

7. ACKNOWLEDGEMENT

It is our privilege to express our sincere gratitude to our major project guide, Dr. Shantala Devi Patil, for sharing her valuable

inputs, guidance, cooperation and constant encouragement throughout the duration of our project.

We express our sincere gratitude to our Head of Department Prof. Sunil Kumar S. Manvi for allowing us to present the project

on “Computer Vision Based Text to Language Translation”.

We also take this opportunity to thank all our lecturers who have helped us in this project.

We thank and pay respect to our parents and friends for their support and encouragement throughout.

Last but not the least we would like to thank all those who helped us directly or indirectly throughout the project.

8. REFERENCES

[1] Starner, T., Makhoul, J., Schwartz, R., and Chou, G. “On-line cursive handwriting recognition using speech recognition methods” in IEEE International

Conference on Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994, vol. v (apr 1994), V/125 –V/128 vol.5.

[2] Plamondon, R., and Srihari, S. “Online and off-line handwriting recognition: a comprehensive survey” in Pattern Analysis Machine Intelligence, IEEE

Transactions on 22, 1 (jan 2000), 63–84.

[3] Archana A, Shinde D. “Text pre-processing and text segmentation for OCR” in Int. Journal Computer Science Engineering Technology. 2012:810–12.

[4] Kamesh DBK, Nazma SK, Sastry JKR, Venkateswarlu S. “Camera based text to speech conversion, obstacle and currency detection for blind persons” in

Indian Journal Science Technology. 2016 Aug; 9(30)

[5] R. Ani, E. Maria, J.J. Joyce, V. Sakkaravarthy and M.A. Raja, "Smart Specs: Voice Assisted Text Reading system for Visually Impaired Persons Using

TTS Method" in IEEE Int. Conf. Innovations Green Energy Healthcare Technologies (IGEHT) , Mar. 2017.

[6] Jagadish K. Mahendran, Daniel T. Barry, Anita K. Nivedha, Suchendra M. Bhandarkar; “Computer Vision-Based Assistance System for the Visually

Impaired Using Mobile Edge Artificial Intelligence” in Proc. IEEE/CVF Conf. Computer Vision Pattern Recognition (CVPR) Workshops, 2021, pp. 2418-

2427.

[7] Mohd Nadhir Ab Wahab, “Text Reader for Visually Impaired Person” in 5th Int. Conf. Electronic Design (ICED) 2020, Perlis, Malaysia. Ser. 1755 012055

[8] Singh, K. D., & Ahmed, S. T. (2020, July). Systematic Linear Word String Recognition and Evaluation Technique. In 2020
International Conference on Communication and Signal Processing (ICCSP) (pp. 0545-0548). IEEE.

[9] Accessed: Apr. 5, 2022. [Online]. Available: https://calculla.com/ascii_braille

[1]

https://calculla.com/ascii_braille

	1. Introduction
	2. Literature Survey
	3. Tesseract OCR
	4. Methodology
	5. Experimental Results
	6. Conclusion and Future Enhancement
	7. Acknowledgement
	8. References

