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18.1 Introduction

In the late 1800s, physics appeared too much as a field that had reached its
limit. It was thought that given enough perseverance everything could be
understood, based on established laws like electromagnetics, mechanics and
hydrodynamics.

Then came a revolution—new fields, for example, quantum mechanics,
relativity, elementary particles and later deterministic chaos, nanophysics,
changed the way the world was perceived.

As is so often (practically always in research) the case, these fundamental
discoveries raised more questions than they could answer, and new branches
of research emerged.

Now after about 100 years, there is a conviction that the next “big frontier”
is Biology—understanding cells, cell interactions, the genome, proteins,
enzymes, etc. There is clearly a lot of truth in this and physics has played
an important part in making this possible by developing the fundamentals
of electron microscopy, cryotomography, etc.—the tools needed to make
advances in biology possible.

But is physics at its fundamental level really understood today? Has
the discovery of the Higgs Boson tied up the missing link in elementary
particle physics and field theory? Are there serious questions still unanswered
or is physics now entering an era of incremental advances with no major
breakthrough to be expected?

In this section, we will summarize some of these outstanding major issues,
the approaches made towards tackling these and, in particular, the role played
by microgravity and space research.
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18.2 The Topics

Some of the most intriguing issues in fundamental physics today are the
following:
1. On cosmic scales

• The incompatibility of quantum mechanics and general relativity
• Quantum entanglement and action at a distance
• The nature of “dark matter” and “dark energy”
• Constancy of “fundamental constants” in time and space
• Compatibility of inertial and gravitational mass
• Physics inside black holes
• Origin of the universe—quantum gravity

2. On more everyday scales

• Nature of the onset of cooperative phenomena
• Atomistic understanding of fluids
• Origin and onset of instabilities
• Origin and onset of turbulence
• Limits of hydrodynamics—transition to nanofluidics
• Phase transitions (equilibrium/non-equilibrium)
• Critical point phenomena
• Renormalization group theory at the particle level

In other words, the behavior and self-organization of matter at the indi-
vidual particle level appears to be one of the most interesting regions of
contemporary research. This is driven not only by the pure quest of knowledge,
but there are also application interests involved as systems get smaller and
smaller.

Where does “Space” and in particular “microgravity” enter in our quest to
learn more about these fundamental issues? And why is it important to probe
these topics further?

To provide an answer to the second question is to look at history. Without
quantum mechanics, we would not have semiconductors, computers of a qual-
ity provided by the smart phone processors would occupy an indoor basketball
court, most medical diagnostic and therapeutic devices (e.g., tomography,
pacemakers and hearing aids) would not exist—too large and prohibitively
expensive—and many other devices we have become used to, like satellite
navigation (which would be useless within hours without knowledge of
general relativity), lasers, smart phones and telecommunication, would still
be science fiction. So to conclude, every major physics breakthrough has the
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potential at some point in the future to become utilized for the benefit of
humanity (but also for our detriment, if used wrongly). But this is common
wisdom, and the ethics of utilizing or refraining from utilizing knowledge
is always going to be with us—whether it is throwing a stone, deploying an
atomic bomb or manipulating the genome. Whatever it is, if enough research
is done to understand the consequences, then well-founded decisions are
possible. If the understanding is faulty, decisions are very likely faulty, too.

So basic research is necessary and (mostly) beneficial if used correctly.
The answer to the second question, “Where does space research play an

important or even a decisive role in fundamental physics?” will be summarized
next with a few examples. There is not enough scope in this chapter for a
complete treatment of all the interesting topics, so some selection has to be
made.

18.3 Fundamental Physics in Space

We have listed some of the major outstanding questions in fundamental physics
above. Now the utilization of the special conditions offered by space has to
be evaluated. Experiments in space are difficult and costly, so the return (in
terms of knowledge) has to be correspondingly great. Otherwise the economic
reality will soon overcome the scientists’ dreams.

• Space offers a world without gravity. Since gravity is one of the funda-
mental topics, this fact alone makes space a very attractive proposition
for new and novel experiments that cannot be performed on Earth.

• Space is huge. Distance is of great relevance in many fundamental
experiments, so here again space provides an attractive environment.

• Space is undisturbed. On Earth many environmental effects “con-
taminate” measurements, especially as the precision gets increasingly
important.

It is not surprising, therefore, that proposals for utilizing the unique
space environment have received a strong support throughout the scientific
community. Highly rated fundamental research topics are as follows:

• Quantum communication
• Wave-particle duality
• Quantum gases/Bose–Einstein condensation (BEC)
• Atom interferometry
• Constancy of fundamental constants
• Critical point studies in colloids and complex plasmas
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• Solidification of colloids in space: Structure and dynamics of crystal, gel
and glassy phases

Such a broad and technologically novel approach using the special
conditions for research offered by space—promising giant steps in our under-
standing of physics—was last seen at the beginning of the twentieth century.
Today the “enabling factor” is the availability of research under microgravity
conditions, in particular the ISS.

One of the major puzzles—perhaps even the major puzzle in physics—
is the incompatibility between “General Relativity Theory” and “Quantum
Theory”. Both theories have been tested and verified to typically 1 part in
1010 quantitatively, and must be regarded as very sound. Nevertheless, they
are incompatible. A great deal of research effort is spent to understand this,
but so far no convincing explanation is forthcoming. One possible resolution
of this puzzle is self-gravity, which could destroy the particle wave function.
Experiments to test this (e.g., massive particle interferometry, massive BEC
interactions) need microgravity.

Another major question concerns the fundamental constants, for example,
the gravitational constant, the fine structure constant, Planck’s constant, the
elementary charge, the proton/electron mass and speed of light. Are these
“constants” really universally constant, or do they vary with time on time
scales (and accordingly length scales) of the age of the universe? A possibility
to test this requires enormously precise and stable clocks. These are usually
based on atomic or optical processes. Comparisons can provide new thresholds
of constancy or perhaps even measure possible time effects. Stable clocks
require microgravity.

Then there is the issue of “gravitational mass” and “inertial mass”, as
discussed in the famous “equivalence principle.” Are they really the same?
And how precisely can we measure the predicted gravitational redshift? Such
experiments can only be conducted in space if we wish to push the limits of
detection to new records.

And last but not least, there is the topic of “mesoscopic quantum states”
and the issue of the “wave–particle duality”. On the one hand, this concerns
Bose–Einstein condensates of comparatively huge (billions of elementary)
masses, the interactions between such mesoscopic quantum states and the
possible effect of self-gravitation and quantum entanglement. Such massive
BECs require microgravity in order to grow (and cool) them. On Earth, they
cannot be trapped long enough. On the other hand, one would like to investigate
wave properties of large particles using modern versions of the “double-slit”
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experiment. Since the de Broglie wavelength of particles is inversely pro-
portional to their mass and proportional to their velocity, going to larger
particles requires lower velocities (and consequently longer time scales while
the particles are moving)—an impossible constraint to maintain on Earth under
gravity.

18.3.1 Fundamental Issues in Soft Matter and Granular Physics

“Soft matter” is a name given by the 1991 Nobel Prize Laureate Pierre-Gilles
de Gennes to a class of substances (e.g., polymers, colloids, gels and foams)
that exhibit macroscopic softness and whose structure and dynamics is not
governed by quantum effects (e.g., mesoscopic and supramolecular materials
and material assemblies). “Soft matter” describes a broad interdisciplinary
field covering physics, chemistry and biology, with applications as disparate
as paints, new and extreme materials, functionalized (bio) surfaces, etc. Two
“recent additions” to this field of soft matter are “complex plasmas” and
“granular matter”.

The need for experiments in space again stems from the gravity-free
environmental conditions. Under microgravity, some systems are easier to
produce, and fragile structures can survive longer. Processes such as con-
vection are absent and therefore cannot inhibit delicate structure formation.
Finally, there is the topic of self-organization and dynamical processes at the
atomistic level.

Experiments in complex plasma physics have been conducted on the ISS
since the very beginning, a period covering 14 years so far. During this long
time, the research focus has evolved considerably.

In the early years, the emphasis was on researching the properties of
this “new state of matter”—the structure of plasma crystals, propagation of
waves, domain boundaries, dislocations, crystallization fronts, melting, etc.—
all at the “atomistic” level of the motion of individually resolved interacting
microparticles, with a temporal resolution fine enough to investigate the
dynamics all the way into the range of, for example, the Einstein frequencies
in crystals, thus providing access to a physical regime that was previously not
accessible for studies at this level. In the last few years, it has been realized that
“active” experiments can provide an even bigger and more ambitious scope.
The focus now includes the following (remember all studies at the most basic
“atomistic” level):

• Fundamental stability principles governing fluid and solid phases.
• Non-equilibrium phase transitions (e.g., electro-rheology).
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• Phase separation of binary liquids.
• The principles of matter self-organization.
• Universality concepts at the kinetic level in connection with critical

phenomena (with the long-term aim of understanding the kinetic origin of
renormalization group theory, as developed by a Nobel Laureate Kenneth
Wilson)

• The physics (structure and dynamics) on approaching the onset of
cooperative phenomena in “small” nano-systems.

• The kinetic origin of turbulence.
• Non-Newtonian physics effects.

So far it has been demonstrated that complex plasmas—with their unique
properties of visualization of individual particles and comparatively slow
(10−2 s) dynamic time scales—can contribute enormously to all these areas
of research. On Earth, these studies are complemented by two-dimensional
systems since gravity forces acting on the (comparatively heavy) micropar-
ticles lead to flat membrane-like assemblies. Two-dimensional studies are of
great interest too, so that this complementarity is very valuable. The tasks
ahead are to utilize existing and new laboratories on the ISS for dedicated
experiments to study these basic strong coupling phenomena and to link
the observations to the complementary 3D research carried out in complex
fluid studies. The two fields—complex plasmas and complex fluids—may
be thought of as different states of soft matter (relating to the “gaseous”
or “plasma” state and “liquids” respectively) with correspondingly different
properties.

In most of the research topics in dust physics, microgravity provides a
unique even essential environment. For one thing, interstellar, protostellar
and planetary ring dust phenomena occur under weightlessness (so it appears
reasonable to also use such conditions in experiments) but in addition, some
processes require adequate observation time and controlled environments
that cannot be achieved in the Earth’s gravitational field.

At first glance, it seems strange for “granular matter”—close packed
assemblies of near-identical and/or size distributed particles—to be resear-
ched in space under microgravity conditions, especially when vibrations are
employed to create an artificial gravity. What is mostly not realized is the
enormous scope of granular matter in industry (sand, gravel, grains, etc.
are the most obvious, and on the finer scale are toner particles, colloids,
paints, etc.) and the surprisingly complex issues involved in size sorting,
storage, stability, transport, filling, etc. Size sorting can be achieved under
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gravity by, for example, vibration, and the larger particles then migrate to the
surface—somewhat counterintuitive since they are heavier.

In order to study the processes involved in granular matter physics to
understand and model them for the benefit of better and more controlled
application on Earth, it is imperative to vary the parameters influencing these
processes. One of these parameters, on Earth a constant, is gravity. In space,
gravity is absent (or very small). This has several benefits for fundamental
studies:

• bigger particles can be used
• time scales for experiments are larger
• the role of fluctuating forces (e.g., vibration) can be studied without

“interference” by a macroscopic directed force
• processes can be studied under controlled and variable conditions
• reliable models can be developed that can benefit industrial processes

While all of this seems very “application oriented,” there is also a
fundamental aspect to this research. This has to do with the self-organization
of “hard sphere” matter. In complex plasmas and complex fluids, we
discussed strongly interacting systems with a soft interaction potential (a
Debye–Hückel potential in the case of complex plasmas) on the one hand
and an overdamped hard sphere potential (complex fluids) on the other hand.
Granular matter closes a “systemic gap” by providing a virtually undamped
hard sphere system. In this sense, a new regime of parameter space becomes
available for studying self-organization processes.
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