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Since the advent of space flight and the establishment of long-duration space
stations in Earth’s orbit, such as Skylab, Salyut, Mir, and the ISS, the upper
boundary of our biosphere has extended into space. Such space missions
expose humans and any other organisms to living conditions not encountered
on Earth.

22.1 Radiation Environment

Life on Earth, throughout its almost four billion years of history, has been
shaped by interactions of organisms with their environment and by numerous
adaptive responses to environmental stressors.Among these, radiation, both of
terrestrial and of cosmic origin, is a persistent stress factor that life has to cope
with [7]. Radiation interacts with matter, primarily through the ionization
and excitation of electrons in atoms and molecules. These matter–energy
interactions have been decisively involved in the creation and maintenance of
living systems on Earth. Because it is a strong mutagen, radiation is considered
a powerful promoter of biological evolution on the one hand and an account of
deleterious consequences to individual cells and organisms (e.g., by causing
inactivation or mutation induction) on the other.

In response to harmful effects of environmental radiation, life has
developed a variety of defense mechanisms, including the increase in the
production of stress proteins, the activation of the immune defense system,
and a variety of efficient repair systems for radiation-induced DNA injury.
Radiobiologists have long believed that ionizing radiation, such as gamma
rays, kills cells by shattering DNA. Recently, Daly [12] and Frederikson [17]
showed that proteins—not DNA—are the most sensitive targets, at least in
some radiation-sensitive bacteria. In cells, oxidatively damaged DNA repair
enzymes generated by sublethal ionizing radiation doses would be expected
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to passively promote mutations by misrepair. Oxidized proteins, however,
might also actively promote mutation by transmitting damage to other cellular
constituents, including DNA [16, 36].

22.2 Change in Gravity Environment

Microbes have the ability to sense and respond to mechanical stimuli. The
response of microbes to certain mechanical stimuli has profound effects on
their physiology [19, 38, 39, 46, 52]. The response of a cell to mechanical
stimulation, such as stretch or shear force, is called mechano-adaptation
and is important for cell protection in both prokaryotes and eukaryotes
[19, 24, 25]. A great deal of progress has been made in understanding certain
aspects of microbial mechano-adaptation, for example, mechanisms used by
bacteria to respond to changes in osmotic gradients [9, 19, 41]. Studies have
also documented that microbes can sense and respond to changes in culture
conditions when grown in the buoyant, low-fluid-shear environment of micro-
gravity [14, 26, 38, 39, 52]. It has been hypothesized that cells sense changes
in mechanical forces, including shear and gravity, at their cell surface [24, 46].

Mechanical culture conditions in the quiescent microgravity environment
of space flight are characterized by significant reductions in fluid shear [20].
This is because convection currents are essentially absent in microgravity [27].

The most commonly used microgravity simulator is the rotating wall vessel
(RWV) culture apparatus (Synthecon; Texas, USA) developed by the NASA
biotechnology group at Johnson Space Centre in Texas. This apparatus consists
of a rotor, a culture vessel, and a platform on which the vessel is rotated. The
RWV has separable front and back faces; the front face contains two sampling
ports, and the back is provided with a semipermeable membrane for aeration.
The assembled vessel is filled to capacity (zero headspace) with medium and
inoculum, and air bubbles are removed to eliminate turbulence and ensure a
sustained low-shear environment (<0.01 Pa).

In the vessel rotating around a horizontal axis, the liquid moves as a single
body of fluid in which the gravitational vector is offset by hydrodynamic,
centrifugal, and Coriolis (circular movement) forces resulting in the mainte-
nance of cells in a continuous suspended orbit. In fact, this system “confuses”
the biosystems (e.g., cells growing culture) perception of gravity’s direction.
By placing cells along the axis of rotation and spinning them perpendicular
to the gravity vector, they rotate through the vector. Because the cell spins at
a constant rate and gravity remains constant, the gravity vector is nulled from
the cell’s perspective [21]. Thus, the RWV does not generate microgravity as
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on the ISS, rather it randomizes gravity vectors and mimics the low turbulence
of a space environment. Since the RWV apparatus provides a low-shear
culture environment that simulates the aspects of space (and therefore “models
microgravity”), Nickerson et al. [39] have adopted the terminology low-shear
modeled microgravity (LSMMG) to refer to the RWV culture environment.

Albrecht-Buehler [1] suggested that reduced gravity suppresses buoyancy-
driven convection and thus limiting the mechanism of mixing of fluid to
diffusion. Along similar lines, McPherson [34] suggested that the lack of
convective mixing under reduced gravity conditions created a quiescent
environment that resulted in a “depletion zone” around a growing protein
crystal, which favored the formation of a crystal with better quality. Based
on these studies, it was hypothesized that this same type of phenomenon
might occur around a growing bacterial cell under reduced gravity conditions
[28, 45]. Similarly, a few studies have speculated that bacteria may indirectly
respond to reduced gravity conditions because of changes in their immediate
environment resulting either from changes in mass diffusion or from other
chemical alterations, such as accumulation of toxic by-products [28], or
limitations in the availability of nutrients [3–5, 52]. Gene expression studies
performed on Escherichia coli K12 under modeled reduced gravity conditions
support the hypothesis that bacteria are actively responding to the changes
in nutrient availability, imposed by the altered mass transport under these
conditions [49, 52]. Creation of zones of nutrient depletion over-time in
their immediate surroundings makes these bacteria respond in a way that
is similar to their entrance into stationary phase (starvation). Stationary phase
cells are generally characterized by the expression of starvation inducible
genes and genes associated with multiple stress responses. Microgravity-
exposed bacteria appeared, for example, better able to handle subsequent
stressors including osmolarity, pH, temperature, and antimicrobial challenge.
More recently it was reported that the fluid quiescence and reduced mixing
could enhance the accumulation of quorum sensing (QS) molecules in the
bacterium’s surroundings and thus promoting QS-related gene expression,
independently of change in cell concentration [22, 31].

Another microgravity simulator the random positioning machine (RPM)
or three-dimensional clinostat is a laboratory instrument to randomly
change the position of an accommodated (biological) experiment in three-
dimensional space [23]. The layout of the RPM consists of two frames
and experiment platform. The frames are driven by means of belts and two
electromotors. Both motors are controlled on the basis of feedback signals
generated by encoders, mounted on the motor-axes, and by “null position”
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sensors on the frames. On the RPM, the samples are fixed as close as possible
to the center of the inner rotating frame. This frame rotates within another
rotating frame. The RPM has been extensively use to study cytoskeleton
structure and motility of human cells [35, 53] and plant gravitropism [6, 23]
and more recently the RPM has been used to study bacterial cultivation [8, 13,
30–33]. Comparing LSMMG to RPM cultivation, the two simulators appeared
to induce a similar response in Rhodospirillum rubrum [31] while Pseu-
domonas aeruginosa only responded to cultivation in LSMMG compared
to the control conditions [11] and Cupriavidus metallidurans proteome was
highly affected only by RPM cultivation [30]. Therefore, one should be
cautious to conclude which of the two simulators induced the higher response
when cultivating bacteria.

The use of magnetic levitation has also been introduced to balance the
force of gravity on a levitating object [10, 50]. However, a major constrain
in using diamagnetic levitation is the requirement for large magnetic fields
gradients at the levitation point that may influence biological systems. In
addition, oxygen dissolved in the liquid culture medium is similarly attracted
by the magnetic field [2]. Since oxygen in the liquid is consumed by the
bacteria and replaced at the liquid–air interface (from the oxygen in the air
above the liquid), an oxygen concentration results, producing a corresponding
gradient in the magnetic force density that can cause convection in the liquid
medium. Therefore, for diamagnetic levitation to be a useful model of space-
related microgravity, where density-driven convective transport is absent,
paramagnetically driven convection of oxygen should be prevented.This could
be achieved by performing experiment in anaerobic conditions or in nonliquid
culture [15]. Beuls et al. [8] compared 3 microgravity simulators, LSMMG,
RPM, and diamagnetic levitation, and found no differences in the capacity
of Bacillus thuringiensis to perform plasmid transfer compared to the control
condition. In this case of Gram-positive bacterium, this ability to exchange
plasmids in microgravity, as efficiently as occurring on Earth, could be seen
as highly relevant in the frame of potentially increasing antibiotic resistances
and bacterial virulence in space [8].

22.3 Space Flight Experiments and Related Ground
Simulations

In general, one could conclude that space flight has been shown not to hinder
bacterial growth, on the contrary, it can enhance the growth of planktonic
bacterial cultures, possibly through its influences on fluid dynamics [28].
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Biofilm formation can also occur in microgravity [33, 42], an issue that, for
example, must be addressed during the design of air and water recycling
systems for long-term space flights [40].

Various experiments suggested that antibiotics are less efficient in space
flight conditions [29, 48]. Bacteria exposed to space flight stresses may become
more resistant to antibiotics over a short, introductory period, while losing
most but not all of that resistance over the long term [29]. For the future,
this possibly changing response of bacteria to antibiotics in space flight may
imply that disinfection may be problematic. In addition, it may be difficult
to treat an illness or injury with antibiotics on short-term missions, due
to the tendency of bacteria to resist them. On long-term missions, such as
periods spent on space stations or trips to other planets, it may be difficult to
predict the response of bacteria to a certain antibiotic. While most bacteria
seem to become more susceptible to antibiotics after long-term space flight
exposure [29], a few may retain resistance, leading to potential hazard for the
all crew.

Recently, Wilson et al. [54] provided the first direct evidence that growth
during space flight can alter the virulence of a pathogen; in this study,
Salmonella enterica serovar Typhimurium grown in space flight displayed
increased virulence in a murine infection model compared with identical
ground controls. Importantly, these results correlate with previous findings in
which the same strain displayed increased virulence in the murine model after
growth in the low-shear microgravity-like conditions of the RWV bioreactor
[37, 55]. In agreement with the increased virulence observed for the space
flight samples, bacteria cultured in flight exhibited cellular aggregation and
extracellular matrix formation consistent with biofilm production. More-
over, several Salmonella genes associated with biofilm formation changed
expression in flight [54].

Very few attempts were made to mimic space-ionizing radiation on ground
and compare it to actual space flight experiment involving microorganisms.
Rea et al. [43] studied the effect of ionizing radiation on photosynthetic
organisms including the cyanobacterium Arthrospira platensis that appeared
to maintain the highest photosynthetic efficiency in flight experiments. The
authors concluded that in space, the effect of ionizing radiation is enhanced
compared to that observed in ground facilities with a single beam of radiation.
Our group had a more complete approach trying to match the actual dosimetry
measurements inside the ISS meaning about 2 mGy over 10 days [18] at
the time of our space experiment involving R. rubrum on agar plates and
combining it with ground simulation of microgravity using the RPM [32].
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We could put forward the importance of medium composition and culture
setup on the response of the bacterium to space flight-related environmental
conditions but low overlap was obtained for both the microgravity simu-
lation and the ionizing radiation experiments compared to the space flight
experiments.

One must be aware that space experiments are always subject to the
inconveniences of access to space. Space biology researchers face many
limitations; include sample preparation long before the flight with pro-
longed storage, a strictly limited number of samples and repetitions, strong
acceleration during take-off, and a second storage period before recov-
ery and analysis of the samples. In addition, during space flight cells are
exposed to many more changing factors than just the reduced gravity (e.g.,
increased gravity/acceleration during launch and landing, increased radi-
ation doses, different electromagnetic fields, pressures changes, enclosed
environment) and ionizing radiation. These constraints always impose a
certain degree of caution when drawing conclusions on the effects of space
on cells and organisms [45]. It could be therefore difficult to detect the
subtle effects caused by the low dose of space radiation inside the ISS
while drastic effects on liquid samples due to change in gravity conditions
could be easily put forward. As a consequence, these studies did indicate
that the effects observed in space flight experiments are partially (poten-
tially even largely) due to the low-shear environment typical of the space
environment.

Contrary to open environments, confinement conditions can influence the
prevalence, ecology and diversity of the microbial communities via unusual
conditions of atmospheric humidity, water condensation, or accumulation of
biological residues [51]. Confined habitats such asAntarctic Concordia Station
are used as a model environment for long-duration space flights to study
human adaptation to isolated and confined extreme environmental situations
as they allow to map and monitor the dynamics of airborne bacteria over a
certain period of time. In a recent study, Shiwon et al. [44] detected resistances
of up to five antibiotics in several staphylococcal and enterococcal strains
from ISS and Concordia. On the other hand, Timmery et al. [47] identified
putative pathogens able to perform horizontal gene transfer and potentially
able to acquire new DNA and sharing genetic material in Concordia. Because
most of the microorganisms originate from the crew, continuous evaluation
of the bacterial ecological status in such confined environment was highly
recommended [47].
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