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9.1 Convection Analog in Microgravity

Thermal convection within fluids is ubiquitous in nature and engineering.
It plays a major role in heat transfer and is a main driver for geophysical
and atmospheric structures. This thermally driven convection is conjoined
with Archimedean buoyancy force due to the variation of the density with the
temperature T in the gravitational field �g. In most of the fluids, the density
decreases with the temperature and its behavior can be modeled by a linear
relation for a small temperature variation: ρ(T) = ρ0[1 – α(T – Tref )], where
ρ0 = ρ (Tref ), Tref is the reference temperature, and a is the volume thermal
expansion coefficient. The Archimedean buoyancy force reads

�F = − ρ0 α (T − Tref ) �g (9.1)

Thermal convection induced by Archimedean buoyancy in the fluid layer con-
fined between two parallel horizontal plates has been widely investigated since
long time and is known as Rayleigh-Bénard convection [1]. It develops with a
critical wave number qc = 3.117, when the Rayleigh number Ra = αΔTgd3/νκ
exceeds its critical value Ra = 1707.8 (ΔT: temperature difference between
the plates, ν and κ: kinematic viscosity and thermal diffusivity of a fluid, and
d : the gap between the plates).

When gravity is absent, that is in microgravity conditions, may occur no
phenomena related to the Archimedean buoyancy. However, it is possible
to provoke thermal convection by using an electric field coupled with a
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temperature gradient applied to a fluid. This convection is often referred to as
thermo-electrohydrodynamic (TEHD) convection. In fact, a dielectric fluid in
the electric field �E pertains to a ponderomotive force, the density of which is
given by [2]

�F = ρf
�E − 1

2
�E2�∇ε + �∇

[
ρ

(
∂ε

∂ρ

)
T

�E2

2

]
(9.2)

where ρf is the free charge density. The first term is the Coulomb force
density, the second term is called dielectrophoretic (DEP) force density, and
the last one is the electrostriction force density. In case of incompressible fluid
motion without interface, the last term can be lumped into the pressure term
of the momentum equation. Thermo-electrohydrodynamics has been used as
an active method for heat transfer enhancement [3, 4].

9.1.1 Conditions of DEP Force Domination

The spatial distribution of free charges varies under an electric field. This
variation process occurs with a timescale τ e = ε/σ called the charge relaxation
time, where σ is the electric conductivity of the fluid. In dc electric field or ac
electric field with a frequency f < τ e

−1, free charges accumulate at locations
where σ varies in space, for example, at the surface of the fluid, and the
Coulomb force density is often dominant component in (9.2). When the electric
field is alternating at frequency f >> τ e

−1, then no free charge accumulation
occurs. If the frequency is also higher than the inverse of the viscous relaxation
timescale τν = d2/v, only the time-averaged components of (9.2) are concerned
with the electrohydrodynamics so that the Coulomb force has no influence on
it. Then, the DEP force, which always contains a static component, drives the
electrohydrodynamics. For electric field frequency f = 50 Hz, the relaxation
times τ e and τν should be larger than 0.02 s.

Assuming the linear variation of the dielectric permittivity with tempera-
ture, that is ε(T) = εref [1 – αe(T – Tref )], the dielectrophoretic force can be
reduced, after removing a gradient force component, to

�F = − ρ0 αe (T − Tref ) �ge (9.3)

where we have introduced the electric gravity given by [5, 6]

�ge = ∇
[

εrefαe
�E2

2ρ0α

]
. (9.4)
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The electric gravity represents the gradient of the electrostatic energy stored
in the dielectric fluid.

This TEHD convection driven by the DEP force in microgravity is the
subject of this chapter. The chapter is organized as follows: After introducing
the physical basis of the TEHD convection, we will discuss the electric
gravity in three classic shapes of capacitors and then equations governing
the convection development from the quiescent conductive state of the fluid.
The chapter will end on some results from stability analysis and open questions
and, additionally, will give a short summary on application in extended
microgravity experiments.

9.1.2 Equations Governing DEP-Driven TEHD Convection

We consider a dielectric fluid confined inside a capacitor with applied alternat-
ing voltage V(t) =

√
2 V0 · sin(2πft). The TEHD convection in microgravity

conditions may be described by mass and momentum equations coupled to
energy and electric field equations. The assumption f >> τ e

−1, τν
−1allows

for use of the time-averaged description; that is, the electric field and, hence,
the electric gravity can be averaged over a period in the governing equations.
In the Boussinesq approximation, the equations for TEHD convection read

�∇.�u = 0 (9.5)

∂�u

∂t
+

(
�u.�∇

)
�u = − �∇ Π + ν �∇2�u − α (T − Tref )�ge (9.6)

∂T

∂t
+

(
�u.�∇

)
T = κ�∇2T (9.7)

�∇ ·
[
ε(T )�∇ϕ

]
= 0 with �E = − �∇ϕ (9.8)

where ϕ is the electrostatic potential.
In the energy Equation (9.7), the viscous dissipation and Joule heating

have been neglected, following the arguments developed by [7]. The reduced
pressure Π is given by

Π =
p

ρ0
− αeεref (T − Tref ) �E2

2ρ0
−

(
∂ε

∂ρ

)
T

�E2

2
. (9.9)

These equations must be solved together with appropriate boundary conditions
at surfaces Si of electrodes (i = 1, 2):
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�u = 0 T = T1; φ = V0 at S1, (9.10)

�u = 0 T = T2; φ = 0 at S2. (9.11)

From now on, we will consider T2 as the reference temperature, that is Tref = T2,
and correspondingly, εref will be referred to as ε2 = ε (T = T2).

9.2 Electric Gravity in the Conductive State for Simple
Capacitors

Consider a dielectric fluid at rest between electrodes in simple geometrical
configurations, that is plane, cylindrical, or spherical, with a temperature
difference ΔT = T1 – T2 and an alternative tension V0 between the electrodes
S1 and S2 (Figure 9.1). The temperature and electric fields can be computed
analytically from the Equations (9.5–9.8), whereby the electric gravity can be
derived by (9.4). Table 9.1 gives the expressions for these three configurations.

In plane capacitor, the gravity is due to the thermoelectric coupling
through the thermoelectric parameter B = αeΔT; it is always oriented along
the temperature gradient, that is �ge ↑↑ �∇T . In cylindrical and spherical
capacitors, the gravity is a product of two contributing factors: The first
g0 (∼r−n, n = 3 for cylindrical annulus and n = 5 for spherical shell)
comes from the inhomogeneity of the electric field due to the curvature,
and the second F(B, η, r) is the thermoelectric coupling. Moreover, the
electric gravity can be either centripetal, that is �ge ↑↓ �er, or centrifugal

Figure 9.1 Flow configurations: plane capacitor, cylindrical annulus, and spherical shell.



9.2 Electric Gravity in the Conductive State for Simple Capacitors 95

Ta
bl

e
9.

1
B

as
ic

co
nd

uc
tiv

e
st

at
es

in
di

ff
er

en
te

le
ct

ro
de

co
nfi

gu
ra

tio
ns

.P
ar

am
et

er
B

=
α
E
Δ

T
ha

s
be

en
in

tr
od

uc
ed

C
ap

ac
ito

r
Sh

ap
e

Te
m

pe
ra

tu
re

Fi
el

d
E

le
ct

ri
c

Fi
el

d
E

le
ct

ri
c

G
ra

vi
ty

Pl
an

e
ca

pa
ci

to
r

T
(x

)
=

T
2

+
( 1

−
x d

) Δ
T

� E
(x

)
=

E
(x

)�e
x
;

E
(x

)
=

−
E

2
[ 1

−
B

( 1
−

x d

)] −
1

E
2

=
B

ln
(1

−
B

)
V
0 d

�g
(x

)
=

−g
0
F

(B
,x

)�e
x
;

g 0
=

ε
2
α

E
B

ρ
0
α

d

( V
0 d

) 2

F
=

[
B

ln
(1

−
B

)

] 2
1

[1
−

B
(1

−
x

/
d
)]

3

C
yl

in
dr

ic
al

an
nu

lu
s

T
(r

)
=

T
2

+
ln

(r
/
R

2
)

ln
η

Δ
T

� E
(r

)
=

E
(r

)�e
r
;

E
(r

)
=

−E
2

[ 1
−

B
ln

(r
/R

2
)

ln
η

] −
1

R
2 r

E
2

=
−

B
ln

(1
−

B
)

V
0

R
2

ln
η

�g
(r

)
=

−g
0
F

(B
,
η
,
r)

�e
r
;

g 0
=

ε
2
α

E

ρ
0
α

(l
n

η
)2

V
2 0

r
3

F
=

[
B

ln
(1

+
B

)

] 2
1
−

(B
/
ln

η
)[

1
+

ln
(r

/R
2
)]

[1
−

(B
/
ln

η
)

ln
(r

/R
2
)]

3

Sp
he

ri
ca

l
sh

el
l

T
(r

)
=

T
2

+
η

1
−

η

( R
2 r

−
1) Δ

T

� E
(r

)
=

E
(r

)�e
r
;

E
(r

)
=

E
2
( R

2 r

) 2
[ 1

−
B

η

1
−

η

( R
2 r

−
1)]

−
1

E
2

=
−

B
ln

(1
−

B
)

η

1
−

η

V
0

R
2

�g
(r

)
=

−g
0
F

(B
,η

,
r)

�e
r
;

g 0
=

2
ε
2
α

E
ρ
0
α

(
η

1
−

η

) 2
V

2 0
R

2 2
r
5

F
=

[
B

ln
(1

−
B

)

] 2
[ 1

−
( R

2
2
r

−
1)

B
η

1
−

η

]/
[ 1

−
( R

2 r
−

1)
B

η

1
−

η

] 3



96 Electric Fields

�ge ↑↑ �er, depending upon the sign of the function F(B, η, r). The orien-
tation of the basic electric gravity in the spherical shell is summarized in
Figure 9.2. A detailed discussion of the electric gravity in cylindrical annulus
can be found in [6].

9.2.1 Linear Stability Equations and Kinetic Energy Equation

The characteristic scales can be used to introduce non-dimensional control
parameters. For timescale, we chose the viscous relaxation time τν , the gap d
between the electrodes is chosen as length scale, and ΔT is the temperature
scale. The resulting control parameters are the Prandtl number Pr = v/κ and
the electric Rayleigh number L = αeΔTgmd3/vk, where gm is the electric
gravity at the mid-gap and the thermoelectric parameter B.

The linearized equations near the quiescent conducting state (�u = 0) are
as follows:

�∇.�u = 0 (9.12)

∂�u

∂t
+

(
�u.�∇

)
�u = − �∇ Π + �∇2�u − L

Pr
[
(T − T2)�g′

e + θ�ge

]
(9.13)

Pr
[
∂θ

∂t
+

(
�u.�∇

)
T

]
= �∇2θ (9.14)

�∇
{

[1 − B (T − T2)] �∇φ − B θ�∇ϕ
}

= 0 (9.15)

where ϑ and φ denote the perturbation temperature and electric poten-
tial, respectively. Two components have been distinguished in the electric

Figure 9.2 Diagram of basic gravity orientation in the spherical shell. C & C means that the
gravity is centripetal and centrifugal in the inner and the outer layers, respectively.
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gravity: �ge in the basic conductive state and �g′
e related to the perturbation

electric field. The latter arises through the thermoelectric coupling (9.15).
The equation of the perturbation kinetic energy is obtained straightforward

from the previous equations and reads [6, 8]:

dK

dt
= WBC + WPC − Dv (9.16)

where

K =
∫
V

�u2

2
dV ; Pr WBG = −L

∫
V

θ�u.�gedV ;

Pr WPG = −L

∫
V

[
(T − T2) �u.�g′

e + θ�u.�g′
e

]
dV.

9.3 Results from Stability Analysis

9.3.1 Plane Capacitor

The TEHD convection in a dielectric fluid between two plates in microgravity
has been investigated by many authors [9–13]. It has been found that the critical
modes are stationary and the corresponding critical values are Lc = 2128.696
and qc = 3.226, where q is the wave number of the perturbations in the plane of
invariance. These values, which have been confirmed by different authors, are
different from the critical parameters of the Rayleigh-Bénard (RB) instability:
Rac = 1707.8 and qc = 3.117, where Ra =αΔTgd3/vk is the Rayleigh number
based on the Earth’s gravity �g. Stiles has shown that application of electric
potential to a stable configuration of fluid between two plates with an upward
temperature gradient leads to an instability with a threshold Lc that increases
with the value of –Ra [12].

Recently, Yoshikawa et al. [8] revisited the problem of TEHD in a plane
capacitor in microgravity by solving linear stability equations with considera-
tion of the feedback effect of the temperature on the electric field. They showed
that the difference in the critical parameters from the RB instability arises from
stabilizing effects of the thermoelectric feedback through the perturbation
electric gravity �g′

e; that is, WPG takes a non-negligible negative value. The
sensitivity of Lc and qc to the thermoelectric parameter B has also been found:
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Lc decreases as B exceeds the value of 0.3, while the critical wave number
increases.

In this work, they reported that just above the threshold of TEHD convec-
tion, the heat transfer coefficient is given by Nu = 1 + 0.78 (L/Lc – 1), while
for Rayleigh-Bénard convection, it is given by Nu = 1 + 1.43(Ra/Rac – 1).
This difference has been explained by the negative contribution of WPG to
the kinetic energy evolution: The thermoelectric feedback coupling impedes
convective flow.

9.3.2 Cylindrical Capacitor

The TEHD convection in annulus has interested some researchers by the
central nature of the electric buoyancy force (Table 9.1) and by its poten-
tial applications in heat transfer enhancement [3–5, 7–14]. Linear stability
studies have been developed assuming the axisymmetry of convection flow.
Sensitivity of the critical parameters to the direction of the temperature
gradient has been found [13]. However, most of these studies assumed
the small gap approximation (i.e., η ∼ 1) and neglected the thermoelectric
feedback.

In a recent study, Yoshikawa et al. [7] have released the small gap
approximation and the assumption of axisymmetry of perturbations. They
investigated the critical conditions of thermal convection for a large range of
radius ratio (0.02 < η < 0.999) with the complete feedback effect. They found
that the critical modes are non-axisymmetric stationary modes, although they
are neither toroidal nor columnal. The critical value Lc varies significantly
with η. For positive thermoelectric parameter B, the critical parameter Lc

recovers the value Rac = 1707.8 of the RB instability at large η, while it
converges to Lc of the plane electrode geometry (Figure 9.3). The computation
of the energy generation terms WBG and WPG for critical modes has led
to the conclusion that the basic electric gravity �ge is the driving force of
the convection: The TEHD convection is analogue to the ordinary thermal
convection. The thermoelectric feedback through the perturbation gravity
�g′

e has stabilizing effects and it becomes significant as η → 1. The sensitivity of
the critical parameters on curvature is analogous to that of thermal convection
with centrifugal gravity in differentially heated annulus with solid rotation
[15]. The TEHD convection in cylindrical annulus was observed in the
experiment [5] for a small value of Ra and in a recent experiment on parabolic
flight [16].
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Figure 9.3 Critical electric Rayleigh number Lc for the annular geometry (B = 10−4).

9.3.3 Spherical Shell

Rayleigh-Bénard convection in spherical shells with the condition of a radially
directed gravitational buoyancy force is a general basis in geophysical flows,
for example, for convective attributes in the inner Earth’s mantle or core
[17, 18]. Spherical laboratory experiments involving this configuration of
a “self-gravitating” force field [19] will always be dominated by “natural”
gravity, which is then vertically downward rather than radially inward. One
alternative is to conduct the experiment in microgravity, thereby switching
off the vertically upward buoyancy force. Supplementary, the application of
the electric field as introduced above allows realizing a DEP-driven TEHD
experiment as Rayleigh-Bénard analogue.

Travnikov et al. [20] perform a linear stability analysis for such a setup
in microgravity environment varying the radius ratio h from 0.1 to 0.9.
As a result, the eigenvalues are real, therewith delivering the independence of
the Prandtl number (as non-dimensional parameter of the physical properties
of the liquid). A lower curvature with η → 0.9 leads to the higher critical
onset of convection Lc and higher critical l-modes (e.g., η = 0.3, l = 2;
η = 0.5, l = 4; η = 0.7, l = 7; η = 0.9, l = 12). Critical values for higher η are
closer nearby each other. This leads to the specific design of a microgravity
experiment with η = 0.5 to avoid a critical slowing down during reaching
a stable convective state. Furthermore, symmetry-breaking bifurcations by
means of simulations together with path-following techniques and stability
computations have been applied for η = 0.5 in [21]. The patterns of convection
produce different symmetries in the form of axisymmetry, octahedral, and
fivefold ones. Transition to time periodic states captures a remnant tetrahedral
pattern symmetry before irregular flow appears.
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In both studies [20, 21], the critical Lc is referenced to the outer radius ratio.
To compare it with values from the literature, we can refer to, for example,
mantle models. In a very recent work, we discuss this extensively [22]. The
main objective for the comparison is the r−5 dependency of the electric
field, which is in contrast to the geophysical models. In mantles of planetary
bodies, however, the gravity is taken to be constant, whereas hydrodynamic
convective modes in the Earth’s liquid outer core are considered with a linear
dependency. But in [21–23], we conclude that the spatial dependency is not
such of relevance and that the whole scenario from the onset of convection
via transition to chaos is generic.

9.4 Conclusion

The thermo-electrohydrodynamic convection in dielectric fluids represents a
simple way of realizing thermal convection under microgravity conditions.
The present chapter has explained the main physical mechanism underlying
this convection. The key role of the electric gravity was highlighted for
three simple geometries of capacitors. The critical parameters depend on the
geometry parameters (curvature) and on the thermoelectric parameter. For
large values of thermoelectric parameter, the perturbation gravity increases
the threshold of the thermal convection. The thermo-electrohydrodynamic
convection in dielectric oils has been observed in experiments and might
play a growing role in the heat transfer enhancement of aerospace
equipment.
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