13

Wireless Software and Hardware Platforms
for Flexible and Unified Radio
and Network Control (WiSHFUL)

Nicholas Kaminski!, Spilios Giannoulis2, Ilenia Tinnirello®,
Peter Ruckebusch?, Piotr Gawlowicz*, Domenico Garlisi?,
Jan Bauwens?, Anatolij Zubow*, Robin Leblon®, Pierluigi Gallo®,
Ivan Seskar®, Luiz, A. DaSilval, Sunghyun Choi’, Jose de Rezende®
and Ingrid Moerman?

Trinity College Dublin
2iMinds-Ghent University

SCNIT

4Technische Universtit Berlin
*nCentric Europe

6Rutgers University

"Seoul National University
8Universidade Federal do Rio Janerio

13.1 Introduction

In the last years, we have assisted to an impressive evolution of wireless
technologies for short distance communication (like IEEE 802.11, IEEE
802.15.4. Bluetooth Low Energy, etc.) due to the need of coping with the
heterogeneous requirements of emerging applications, such as Internet of
things, the Industry 4.0, the Tactile Internet, the ambient assistant living,
and so on. Indeed, for optimizing the technology performance in these
scenarios, it is often required to support some forms of protocol adaptation, by
allowing the dynamic reconfiguration of protocol parameters and the dynamic
activation of optional mechanisms, or some targeted protocol extensions.
In both cases, prototyping, testing and experimentally validating potential

385



386  Wireless Software and Hardware Platforms for Flexible

solutions is a complex task, which generally requires significant time and
resource investment. On one side, off-the-shelf wireless interfaces are based
on radio chips which implement only the obligatory parts of the standards and
arbitrarily selected optional parts, with only partially documented interfaces
and with drivers being either closed or limited in functionality. On the other
side, many powerful Software Defined Radio (SDR) platforms, while offering
excellent flexibility at the physical layer, typically have limited performance
and lack high-level specifications and programming tools as well as standard
APIs for developing protocols.

Consequently, testing of new solutions often proves problematic, as
experimenters can only rely on the limited optimization space enabled by
the drivers, or on open software architectures where many functionalities
have to be written from scratch and are tightly dependent on the specific
hardware platform. In many cases, different experimentation platforms have
to be considered for working on specific optimizations, because each platform
supports a different level of complexity and controllability. This heterogeneity
further slows down the innovation process, because experimenters have to be
familiar with platform-specific architectures and programming tools before
prototyping their solutions.

To overcome the aforementioned shortcomings and reduce the threshold
for experimentation, we propose a novel approach within the European
project WiSHFUL [1]. The project main goal is the design and development
of a software architecture enabling a flexible radio and network control
of heterogeneous experimentation platforms, based on standardized wire-
less technologies and SDRs, through unified programming interfaces. More
specifically, the architecture is devised to allow:

e Maximal exploitation of radio functionalities available in current radio
chips, as opposed to today’s radio drivers that restrict radio functionality.
For example today’s radio drivers for IEEE 802.11 do not support TDMA
(Time Division Multiple Access) operation, while the hardware perfectly
supports it.

o Clean separation between radio control and protocol logic, as opposed
to today’s monolithic implementations, which do not allow to work
separately on the logic for enabling specific protocol features and the
definition of these features.

To frame this effort, several driving scenarios were identified to capture the
challenges associated with the increasing density and heterogeneity of wireless
devices in a concrete and tangible manner. These scenarios directly present



13.2 Background 387

asetof relevant and significant requirements for developing the functionalities
required by the WiSHFUL control framework in order to investigate the
challenges of future wireless systems experimentation. Each showcase focuses
on a different source for inter-device and inter-technology interference and
displays a scenario, which requires novel experimentation functionalities.

Following the definition of this set of motivating scenarios, an architecture
is presented to support future wireless experimentation. This architecture is
constructed to address the requirements of the tangible scenarios, capturing
key challenges of future systems while allowing for extensions to support
investigation of as yet unforeseen challenges.

13.2 Background

The need for fine-grained control of communication networks is well demon-
strated by the interest of the scientific community in solutions that enable
software defined networking, (SDN). OpenFlow [2], for instance, is a good
example of an SDN-enabler because it allows researchers to control routers,
without knowing the internals of vendor-specific implementations. OpenFlow
focuses on controlling the forwarding rules between devices (e.g. switches,
routers and wireless access points) connected by means of pre-installed links
(usually wired). However, it does not explicitly deals with wireless links,
where conditions change over time and strongly depend on interference and
propagation conditions. Indeed, for wireless links the use of forwarding
functionalities, which have inspired the match/action abstraction used for
wired link, cannot be adequate for capturing the inter-link and inter-network
dependencies, despite the fact that some extensions have been proposed,
e.g. OpenRadio, for classifying the traffic flows on the basis of PHY-related
fields and configuring the transmission power of the links. Actually, a closer
look reveals that the wireless community has arguably anticipated, if not
even inspired, the wired networking shift towards centralized controllers, for
example with the CAPWAP protocol (Control And Provisioning of Wireless
Access Points) [3] for the remote control of wireless access points. However,
the CAPWAP control model was based on parametric control of technology-
specific configuration parameters. WiSHFUL goal is more forward-looking,
and resides in i) devising a generic programming model for wireless devices
and wireless links, based on technology-independent programming abstrac-
tions and ii) showing that they can be handled with a network control
framework which include global and local controllers.



388  Wireless Software and Hardware Platforms for Flexible

To accomplish this goal, WiSHFUL pushes towards the identification of
viable abstractions for radio behavior, by integrating four different platforms
exposing high-level programming models for heterogeneous wireless tech-
nologies while taking into account the emerging solutions and standardization
work concerning reconfigurable radio systems (ETSI-RRS) [4]. The four
supported platforms are: Wireless MAC Processor (WMP) for IEEE-802.11
radios [5], Time-Annotated Instruction Set Computer (TAISC) for IEEE-
802.15.4 radios [6], the Implementing Radio in Software (IRIS) for SDRs [7]
and finally the popular Atheros chip based cheap-of-the-self wireless cards
running the ATHO9k driver [8]. Moreover, the WiSHFUL control framework
complements OpenFlow, by enabling the coexistence of local and global
controllers devised to react to the network events at different time scales. In
the next phase WiSHFUL also plans to extend to support cross-layer control
from the network layer and above as well, providing SDN like characteristics
regarding the management and fine-tuning of control knobs ranging from
routing protocols parameters and realization of flow control to transport layer
parameters like TCP window for example. GITAR [9] supports the cross layer
parameter control, especially in the context of WSNs, but can be used in
all platforms that are supported within WiSHFUL as a cross layer parameter
management component.

13.3 Motivating Scenarios

The emerging wireless ecosystem is characterized by a heterogeneous mix
of technologies, operators, and service providers attempting to coexist in
a single environment, and featuring a high-density deployment of wireless
devices. High heterogeneity in device capabilities (in terms of spectral bands,
coverage, management functionalities, networking models, etc.) combined
with limited open, vendor-independent configuration interfaces complicate
achieving the often conflicting goals of independent providers and integration
of technologies to provide coherent service. Indeed, wireless devices often
employ multiple radio interfaces, spanning over several standards (such as
LTE, Wi-Fi, ZigBee and Bluetooth) or offering more esoteric capabilities in
the form of programmable interfaces, based on software defined radio (SDR)
techniques.

Experimental-driven research is essential for analyzing the performance
of this eco-system, because of the difficulty in simulating or modelling the
interactions between heterogeneous technologies, protocol configurations,
environments and network operators. We consider some exemplary scenarios



13.3 Motivating Scenarios 389

in order to identify the functional requirements and control models required
for testing optimization and coexisting strategies dealing with the complexity
of the wireless eco-system. From the analysis of these scenarios, we identified
two main groups of functional requirements: i) configuring the radio of
each wireless node, in terms of set-up of physical transmission parameters,
bandwidth allocation, medium access schemes and prioritization mechanisms
for different transmission queues, ii) configuring the network-wide policies for
dealing with different traffic flows, by defining logical links and paths between
nodes, mapping of traffic flows into transmission queues, performing flow
control among multiple links and interfaces, etc. Moreover, it is required to
introduce monitoring functionalities at different levels for collecting statistics
about the radio performance and the local channel views.

13.3.1 Interference Management among Overlapping Cells

In dense wireless networks, co-channel interference is a fundamental problem,
especially in the case of WiFi technologies working on the unlicensed ISM
bands characterized by the availability of a few orthogonal channels and by
the coexistence of multiple independent networks. Ultimately, this scenario
examines questions related to the dynamic control of multiple Access Points
in a coordinated manner. A possible solution for controlling co-channel
interference is working on the adaptation of contention parameters and
transmission opportunities used by co-located APs. Some research work has
suggested the use of airtime as a metric to quantify the channel resources
that are granted to each AP. The airtime is the sum of the channel holding
times used by a given cell during a reference time interval. To enforce any
decision about the network configuration, it is also required to represent a
network global view, by considering the interference relationships among the
APs, which depend on the specific location of the stations. In particular, it is
required to detect hidden nodes, which may experience severe collision rates.

Consider the example network given in Figure 13.1. This scenario assumes
four active flows in the following QoS classes — the first three are best effort
(BE) while the last one is voice. Each flow is assigned to one of the two
APs. Furthermore, let us assume that AP1 and AP2, are operating on the same
radio channel. In such a case a cell-edge user like node STA2 may suffer
from interference due to hidden node, i.e. the downlink traffic from AP1 to
STA?2 will collide with traffic originated from AP2. By solving the hidden
node problem, the performance of all nodes in neighboring wireless networks
can be improved.



390 Wireless Software and Hardware Platforms for Flexible

Global Controller —*™ 'Contsolplane
— Data plane
Hidden Flow Set airtime
nodes info access i %
A Statistics ¥ ConfigManager '. \
f 7 ; \
: ;

| ! \ Configure time
1] 1 slotting &
assign airtime
access slots to
flows

!

i Get information
1 . about hidden nodes !
\ | &active flows \

|
1
1
i
I
I
I

Local
controller

AP1

Figure 13.1 Traffic-aware 802.11 airtime management scenario.

The challenges of this scenario may be addressed by monitoring the
performance of each AP. Such monitoring would make degradation associated
with inefficient management clear, thus allowing rescheduling of flows to
avoid interference. To accomplish this goal, global monitoring of network
performance would be required. Specifically, some control entity would need
the ability to monitor the active flows for detecting hidden nodes and to define
appropriate channel access patterns and assign airtimes for solving the hidden
node problem by dividing the competing flows in the time plane. Furthermore,
tight time synchronization between APs is required for time-slotting airtime.
This may be achieved by usage of PTP running over backbone interfaces.

13.3.2 Co-existence of Heterogeneous Technologies

In dense wireless networks, the co-existence of heterogeneous technologies
using the same wireless resources is challenging. Indeed, although technolo-
gies working on ISM bands intrinsically deal with mechanisms for managing
interference, such as carrier sense, adaptive modulations, spreading solutions,
etc., it has been demonstrated that they can experience severe throughput



13.3 Motivating Scenarios 391

degradation in case of coexistence of heterogeneous links, because of asym-
metries in recognizing other technologies and reacting to their presence. A
central controller could overcome these problems, by supporting a harmonized
spectrum allocation across separate wireless technologies. This will enhance
the performance in both networks and make the quality of service (QoS)
characteristics (such as throughput, latency and reliability) more predictable.

As areference example, we consider the coexistence between IEEE-802.11
(Wi-Fi in 2.4 GHz band) and IEEE-802.15.4e (time-slotted channel hoping,
TSCH) illustrated in Figure 13.2. The simultaneous operation of both networks
in close proximity will inevitably lead to performance degradation due to
cross-technology interference. This is because of contention-free explicit
scheduling of radio resources in TSCH and the unreliability of carrier-sensing
(listen-before-talk) mechanism used in Wi-Fi as far as detecting IEEE 802.15.4
transmissions is concerned, rendering Wi-Fi unable to sense any wireless
transmission of the other technology. The QoS in both networks can be
increased by making them aware of each other.

One can imagine multiple co-existence schemes for Wi-Fi and TSCH.
Some basic schemes can be implemented by only modifying the sensor
network. More advanced, and also promising, schemes require cooperation
between the networks. This scenario examines a traffic-aware interference

802.11
network

802.15.4 TSCH
network

Figure 13.2 Example illustrating two co-located wireless networks of different technology.



392 Wireless Software and Hardware Platforms for Flexible

avoidance scheme where, depending on the network load in both networks,
other decisions are made. For such a scheme two possible cases, illustrated
by Figure 13.3, must be considered. In the first case the sensor network is
highly loaded. Here it is more efficient to perform any interference avoidance
in the Wi-Fi network, thus reducing the overhead on the more loaded sensor
network. To accomplish this, the sensor network would need to provide the
scheduling information to allow the Wi-Fi network to delay transmissions to
points in time where a collision will not occur. In the second case the network
load in the Wi-Fi is high, suggesting that excluding the spectrum used by
Wi-Fi from the hopping scheme of the sensor network is a more promising
approach to co-existence.

More advanced approach is to use a cross-technology TDMA protocol
to coordinate the transmission between both types of nodes and reduce
interference to a minimum. The system runs a TDMA radio program on the
Wi-Fi nodes, adapts time slots to traffic requirements, keeps free some slots
that are implicitly reserved to TSCH, and uses the remainder for transmission,
in order to minimize cross interferences.

To support the experimental investigation of this scenario, a great deal
of functionality is required. A mechanism for the discovery of co-located
wireless networks within interference range is certainly necessary to identify
whether a problem exists. Furthermore, a range of mechanisms to support
mutual network awareness is required, including the ability to share infor-
mation regarding network load between heterogeneous networks, to expose
the medium access control (MAC) schedule of the TSCH network to other
coexisting technologies, as well as to notify the coexisting technologies about
the wireless channel used in the IEEE 802.11 network. Moreover, mitigation

f A Case I: highly loaded sensor network Case II: highly WiFi network
|
WiFi delays | TSCH)  channel not
channel access M used by TSCH TS
. ¥
Wi s e
char;fn;el' Ll H-TSCH WiFi I wiFi  {_TSCH ]
|
. I TSCH
: TSCH |
((TscH
1
L)

t

Figure 13.3 The proposed co-existence scheme for avoiding interference between Wi-Fi and
TSCH.



13.3 Motivating Scenarios 393

functionality must be available, potentially including the configuration of
spectrum access in the Wi-Fi network, configuration of channel exclusions
within the TSCH network, time synchronization between both networks,
and the tuning of MAC parameters according to frames size and slot
allocation.

13.3.3 Load and Interference Aware MAC Adaptation

It is well known that contention-based access protocols work better than
scheduled-based protocols in case of intermittent and unpredictable traffic
flows [10]. Moreover, the contention parameters can be optimized as a
function of the time-varying number of nodes which have traffic to transmit.
However, for most wireless technologies, the choice of contention-based
or scheduled-based access protocols, as well as the configuration of the
contention parameters or schedule periods can only be configured statically,
and cannot be adapted to the varying network conditions.

In order to experimentally validate the possibility to perform MAC layer
adaptations or to switch from one MAC protocol to another as a function
of an estimate of the network topology and contention level, it is required
that nodes can infer about the number of neighbors, network congestion
and node visibility by monitoring elementary channel events (busy intervals,
hello messages, collisions). Moreover, pre-defined MAC protocols such as
CSMA and TDMA can be abstracted from the physical layer and avail-
able for different technologies by exposing the same list of configurable
parameters, including the contention windows for CSMA and the frame size
for TDMA protocols. Under these assumptions, different adaptation logics
can be developed for maximizing the network throughput, minimizing the
delay jitters or the packet losses, regardless of the specific node technology
(Figure 13.4).

As an example, we initially consider only a few active wireless nodes using
a CSMA base MAC.

13.3.4 In-Situ Testing

Wireless testbeds are imperative for testing innovative technologies such as
protocols, hardware, and several other modules of any wireless solution.
Many of these technologies will serve in dynamic wireless environments
and under challenging conditions. For the sake of maintainability and
experiment repeatability, however, testbed infrastructure is often fixed. Relo-
cating nodes is difficult since their power supply and/or network connections



394 Wireless Software and Hardware Platforms for Flexible

802.15
Domain

802.11
Domain

Figure 13.4 Deployment of a single local program across several platforms.

are mounted on wall sockets. The testbed environment is thus less dynamic
and the conditions are more stable, thus making the evaluation of experimental
wireless solutions in testbeds less realistic.

A portable testbed that can be easily deployable on remote, real-world
locations is clearly necessary. Such a testbed would need to be straightforward
to deploy where needed, include rugged equipment and self-contained power.
Furthermore, a wireless mesh backbone to ensure connectivity between the
nodes would be required to allow operation in a variety of environments.
This backbone would need to employ the sort of interference management
suggested by previously discussed scenarios. Finally, the portable testbed must
operate in a transparent manner to allow users to examine the phenomena of
interest.

Taking the successful Fed4FIRE approach [9] as a model for the use of
testbed, the following steps, illustrated in Figure 13.5, would be required on
the portable testbed during experiment life-cycle:

1. When the experimenter arrives at the location, the flight case is plugged
into the power grid and the servers and switches boot. Optionally, the
experimenter can connect the switch uplink to the Internet.

2. As the servers boot, the backbone also configures itself automatically. It
creates a wireless mesh among the nodes.



13.3 Motivating Scenarios 395

WISHFUL Deployment Scenario
JFed
Armive at remate kocation- - i

(Daploy extra mesh o crvaton
‘nodes) ~ . Jof wrsiess masn. OomMF
a8 roces on the ekt
: st 124 be corracsen
: s e cordeat sarvee
H e
: A et ¥ H
i Corraser 1 . i <emeasuroments are
: Floacurce Cortroter o i stored localty on the nodes ==
i ina nodes @ vanasiea i
i vee Toe Backbons netwcr i
! -
with iment (via =
i | Finalze expernimont
o
m]

Figure 13.5 Sequence diagram for the deployment of the portable testbed.

. When everything is up and running, the experimenter launches the jFed
tool from a laptop that is either inside the flight case or connected to the
central switch. The experiment is designed or loaded from a previous
run.

. jFed will perform the needed actions via the testbed management server
and the nodes will be provisioned with the desired software.

. After this process, the user is informed and the actual experiment is
started.

. The user will deploy all nodes in the field; they remain connected and
accessible via the wireless backbone.

. If there should be a bad wireless link between one or several nodes, an
extra backbone node can be added to optimize the mesh network.

. Via Orbit management framework (OMF), the experimenter starts his
experiment. OMF will make the calls to the nodes over the backbone



396  Wireless Software and Hardware Platforms for Flexible

network. These calls can include (but are not limited to) the setup of
a wireless interface, the changing of channels or the starting of an
application.

9. While the experiment is running, the measurements are stored locally on
the nodes.

10. As the experiment finishes, the experimenter can collect all nodes and
properly dock them in the flight case, physically connecting them again
with the core network.

11. The measurements are fetched from the individual nodes and the experi-
ment can be torn down. If the throughput of the wireless mesh network is
high enough, or the amount of measurement data is low, the measurement
can be transported over the wireless backbone in real time to a database
server in the flight case.

12. jFed will ask the central testbed server to clean the nodes up, and the
flight case can be closed and plugged out.

The proposed portable testbed will allow to experiment in any given environ-
ment and to take into account the real wireless characteristics of this particular
environment in the results of the experiment. Thus all the solutions targeting
the aforementioned motivating scenarios can and will be tested in different
environments to also test their robustness and stability in diverse wireless
environments.

13.4 WiSHFUL Software Architecture

Experimentation is certainly a vital tool in the development of future wireless
solutions. Furthermore, as illustrated by the above discussion of scenarios for
future wireless networks, a large variety of functionality must be supported
to investigate the challenges most relevant in the advancement of wireless
communications. Moreover, the increasing diversity of wireless solutions and
competing radio technologies, along with the ever more stringent requirements
on the reliability of test results, has caused wireless test facilities to evolve to
be exceedingly complicated imposing steep learning curves for new experi-
menters. Therefore, as the need for investigating a broad range of scenarios
grows, so does the difficulty in doing so.

For these reasons, the WiSHFUL project directly targets lowering the
experimentation threshold by developing flexible, scalable, open software
architectures and programming interfaces to prototype novel wireless solu-
tions. Specifically, WiSHFUL develops mechanisms for unified radio control
to provide developers with deep control of physical and medium access



13.4 WiSHFUL Software Architecture 397

components without requiring deep knowledge of the radio hardware platform
and unified network control to allow the rapid creation, modification, and
prototyping of protocols across the entire stack. These mechanisms chiefly
take the form of UPIs that operate across a range of hardware platforms. In
this way WiSHFUL empowers experimentation facilities with the capability
to experiment with emerging wireless technologies.

13.4.1 Major Entities

The WiSHFUL architecture, illustrated in Figure 13.6, contains several entities
designed to support the investigation of future networks. First and foremost
within this architecture is the collection of UPIs, with each UPI providing
specific functionality to experimenters. The radio interface (UPI_R) consists
of a set of functions that ensure uniform control of the radio hardware and lower
MAC behavior across heterogeneous devices. The functions provided herein
take a generic form in order to provide experimenters with consistent operation
over hardware specific implementations. The network interface (UPI_N)
parallels the UPI_R with a set of functions that provides uniform control over
the upper MAC and network layer protocol behavior across various devices.
Again, the UPI_N consists of generic functions to provide a consistent and
straightforward experimentation experience across heterogeneous platforms.
The global interface (UPI_G) extends the reach of the control provided by
both the UPI_R and the UPI_N across several devices in a coordinated and
generic manner. The generic functions of UPI.LR, UPIN, and UPI.G are
supported by monitoring and configuration engines (MCEs) that contain and
manage the platform specific implementations of UPIs within WiSHFUL
empowered facilities. Naturally, the UPI_R and UPIN are supported by a
local MCE, while the UPI_G employs a global MCE. Finally, the hierarchical
control interface (UPI_HC) enables hierarchical communication between CPs
structured in a standard manner. Note that this interface does not directly
interact with hardware, but rather provides experimenters with the means to
explore hierarchical control by offering a convenient method of inter-control
program communication.

The separation between radio and network functionality occurs within
the MAC layer of the OSI stack. In particular, WiSHFUL considers the
Upper MAC and higher layers as network control functionality, relegating
the Lower MAC and lower layers to radio control functionality. The Upper
MAC is responsible for inter-packet states that are not time critical, including
framing and management functions, where some form of negotiation between



398  Wireless Software and Hardware Platforms for Flexible

DH 1dN

uoyninByuod)
g b

2IMOAIYOIe TN AHSIA JO weiderp [emdodouo)  9°¢y N3

upIouowW

auibug
uolpinBijuod)
9 Buuojuow

0207

wniboig |o4u0) [PGOID

DH 1dN

A




13.4 WiSHFUL Software Architecture 399

nodes is required. The Lower MAC, on the other hand, directly interacts
with the physical layer (PHY) transmission and reception operations, where
minimization of processing latency is certainly critical. Typical Lower MAC
functions include sending and receiving data, back-off, inter-frame spacing,
and slot synchronization. As such, this distinction reflects the focus on inter-
device coordination within the network control and more direct hardware
operations within the radio control.

13.4.2 User Control

The interfaces of the WiSHFUL architecture are designed to support the
user in controlling wireless hardware and the accompanying protocol stacks.
WiSHFUL views user control as being embodied in CPs, which are either local
or global in nature. In general, CPs are user defined software that implement
the controlling logic for a wireless experiment and makes use of the UPI_.R
and/or UPIN for hardware/protocol control. Local Control Programs (LCPs)
are those that use the local information and abilities of a single device, while
Global Control Programs (GCPs) interact with a group of devices.

The WiSHFUL architecture supports a two-tier control hierarchy. These
two tiers work in a coordinated manner, being orchestrated at the global
level. Indeed, GCPs can instantiate LCPs on wireless nodes, performing a
sort of control by delegation, or can act directly on the wireless nodes in a
coordinated manner. Control by delegation is needed when the reconfiguration
decisions or the parameters to be monitored have strict time constraints, which
cannot be guaranteed by the control network. In fact, the physical channel
used for conveying control messages to/from the GCP can be unreliable and
introduce some latencies. Since radio performance depends on highly variable
network conditions (e.g. channel propagation, fading, interference, access
timings, etc.), control by delegation is particularly important for radio control.
The architecture also supports hybrid approaches, in which some control
operations are managed at the global level, while some others are delegated
to wireless nodes. The coordination between global and LCPs is achieved
by employing the UPI_HC. Currently, the WiSHFUL framework follows a
proactive approach. A CP has to trigger the execution of UPI functions on
the wireless node under control. This polling-based approach might be not
sufficient for every CP’s implementation requirements. Therefore, itis planned
to offer support also for a reactive approach in the near future. Here the user
will be able to define a trigger, i.e., when a certain condition is fulfilled, a
registered callback function is executed to handle the event.



400 Wireless Software and Hardware Platforms for Flexible

13.4.3 Hardware Interfacing

Figure 13.7 illustrates how the WiSHFUL radio control works on three
different platforms, namely the Iris SDR framework [6], TAISC [5] and
WMP [4]. The global MCE runs remotely on a Linux machine and allows
implementing node configuration that depends on network-level decisions
and can be executed in a time-coordinated fashion among multiple nodes.
Each of the WiSHFUL enabled nodes runs a local MCE that offers the same
local services and the same UPI functions on different platforms by means
of a specific connector module (CM). This unified approach unloads the
experiment from the burden of dealing with a multiplicity of configuration and
utility tools, such as iw, iwconfig, iptables, iwlist, iperf, b43fwdump, etc. These
tools, indicated in Figure 13.7 as local control services, are heterogeneous
upon platforms/operating systems and depend on the hardware and software
configuration of the device under test.

The CM operates in conjunction with local MCEs to expose the uni-
form UPI functions on different hardware and software radio platforms.

MCS = Monitor and Configuration Service
MCE = Monitor and Configuration Engine

Figure 13.7 WiSHFUL architecture, UPIs, and supported platforms.



13.4 WiSHFUL Software Architecture 401

The module achieves two main goals: i) diverting platform-independent UPI
calls to platform-dependent implementations and ii) providing a unified way to
deal with a plethora of tools provided by heterogeneous operating systems (e.g.
iw, iwconfig, iptable) or platforms (e.g. bytecode-manager for the WMP). Note
that certain UPI functionality may or may not be supported by every platform,
depending on the capabilities of the platform and the implementation status
of the CM.

Figure 13.8 illustrates the interaction from MCE to the CM and subse-
quently the radio platform. The local MCE delegates each UPI call to the
appropriate CM that executes the call using platform-specific sub modules.
Currently, all local MCEs and CMs are implemented in Python, except from
sensor nodes that, in addition to the Python implementation, also have a native
implementation using GITAR [6]. The native implementation is used when
the sensor nodes are decoupled. In case they have a Linux host PC (e.g.
in testbeds) the Python implementation can be used. This allows to easily
prototype wireless solutions for sensor networks that can also work in real
deployments, when their host PCs are not available.

13.4.4 Basic Services and Capabilities

Alongside, the UPIs themselves, the WiSHFUL framework offers a number
of basic services that are summarized here.

=0 UNUX System e e e e
Local MCE =T il
libba3 ytecode- | 3 1
— manager 543 I I
WMP Connector iw iwconfig - |
Module [r=bi] o ool ! Broadcom Card |

USER SPACE KERNEL SPACE | Rilipiscipindnieagitegeiig

UNUXSystem = | e e e e e - 1

I
Atheros Connector nerunx | | MAC cfg80211 |
moane fo [ [2] L)y

I
| I
L] D] Lo k=) s o |

UPI_R

TAISC Connector o G

— ! TAISC 1
Module Contiki module —— | |

Python Connector

IRIS Connector |
Module IRIS modul + >,

Figure 13.8 WiSHFUL adaptation modules.



402  Wireless Software and Hardware Platforms for Flexible

13.4.4.1 Node discovery

A GCP often requires functionality for automatic node discovery. WiSHFUL
provides the protocol developer an easy way to define the set of nodes he
wants to control. Any wireless node belonging to the same experiment group
can be controlled by a GCP using the WiSHFUL UPIs. From that set of nodes
the user can either select all of them or just a sub-set.

13.4.4.2 Execution semantics

The WiSHFUL MCE (local and global) supports two execution semantics.
The first is a synchronous blocking UPI call where the caller, i.e. the CP, is
blocked until the callee, i.e. any UPI function, returns. The second option is
an asynchronous non-blocking UPI function call. Here any UPI call returns
immediately. The caller has the option to register a callback function so that
he can receive the return value of the UPI call at a later point in time.

13.4.4.3 Time-scheduled execution of UPI functions

Besides the possibility of immediate execution of UPI functions either using
a blocking or non-blocking scheme, the WiSHFUL MCEs also provide the
possibility for time-scheduled execution of UPI functions at a particular point
in time. This is important if nodes need to coordinate their actions in time,
e.g. a set of nodes must perform a time-aligned switching to a new channel.
The possibility for time-scheduled execution of UPI functions is especially
important for GCPs if a non-real-time backbone networking system like
Ethernet is used. In such networks we cannot expect that the WiSHFUL
control commands are received by all nodes at the same time, e.g. due to
CSMA non-deterministic behavior. Moreover, network congestion and delay
are also reasons for providing hierarchical control over UPI_HC between local
and GCPs.

13.4.4.4 Remote execution of UPI functions

WiSHFUL provides full location transparency. Any UPI function can be
executed either locally by a LCP or remotely by a GCP. In the latter case, the
WiSHFUL global MCE transparently serializes all input and output arguments.
The calling semantic for both the local and remote calls is call-by-value. This
has to be considered when extending the UPIs with additional functionality.
Finally, as with the local execution also the execution of remote functions can
be time-scheduled. This is especially important if a given UPI function needs
to be executed at the same time on a set of wireless nodes.



13.4 WiSHFUL Software Architecture 403

13.4.4.5 Time synchronization

A wide range of WiSHFUL applications, like the centralized control of
channel access, requires a tight time synchronization among wireless
nodes. The way the wireless nodes are time synchronized is platform and
architecture-dependent. Basically, we distinguish between systems based
on whether a backbone network exists. Here in order not to harm the
performance of the wireless network the nodes are time synchronized
using the backbone (e.g. Ethernet) and some time-protocol like Precision
Time Protocol (PTP). Wireless nodes without a backbone have to rely on
other techniques for time synchronization (e.g. through global positioning
system, GPS).

13.4.4.6 Packet forgery, sniffing and injection

WiSHFUL provides a wide range of functionality for packet forgery, sniffing
and injection. A CP can use this to create and inject network packets into any
layer of the network stack of a node or to receive copies of packets.

13.4.4.7 Deployment of new UPI functions

WiSHFUL provides an open and extensible architecture, which can be easily
extended by new UPI functions. Any new introduced UPI function can be
implemented in a different way for different platform and software archi-
tecture. Therefore, in WiSHFUL for each platform there is separate CM, as
discussed above.

13.4.4.8 Global control

To enable remote usage of UPI functions using the UPI.G interface, a
system supporting remote procedure calls is required. For this purpose
the arguments of UPI functions have to be serialized and sent to proper
node. The proposed framework provides a user-friendly interface that
hides all complexity of serialization and transferring data between GCP
and nodes.

13.4.4.9 Remote injection and execution of user code

To enable support for global management and control of the deployment of a
WiSHFUL controlled experiment, the proposed framework supports “on-the-
fly” injection of user defined functions (constituted of UPI) to be executed
locally on a node directly from a GCP.



404  Wireless Software and Hardware Platforms for Flexible

13.5 Implementation of Motivating Scenarios and Results

In order to clarify the potentialities of the WiSHFUL architecture and unified
programming, in this section we present some examples of control logic
and protocol adaptations developed for the motivating scenarios presented
in Section 13.3. The goal is not designing a novel optimization logic for each
scenario, but rather demonstrating the flexibility of the proposed approach by
separating the logic for controlling the experimentation platforms from the
specific transmission mechanisms running on the platform.

13.5.1 Interference Management Among Overlapping Cells

We decompose this scenario into two tasks: 1) hidden node detection and
2) hybrid TDMA-MAC management. For investigation of both tasks, we
implemented a WiSHFUL enabled Wi-Fi network.

13.5.1.1 Hidden node detection

The first task to be solved for the efficient airtime management showcase is the
detection of wireless links, which are suffering from performance degradation
due to hidden terminals (Figure 13.9). Specifically, only flows using links,
which are suffering from the hidden node problem, should be assigned to
exclusive time slots. Hence, WiSHFUL provides functionality, which detects
links which are suffering from the hidden node problem.

LY

>
@

Figure 13.9 Example illustrating a hidden node scenario. As nodes A and B are outside their
carrier sensing range the packet transmissions from A and B would collide at node C.



13.5 Implementation of Motivating Scenarios and Results 405

13.5.1.1.1 Application of WiSHFUL framework
For hidden node detection WiSHFUL provides the following UPI network
functions which are used by GCPs.

Given a set of nodes using the specific wireless interface,radio channel
(e.g. 6) and detection threshold (e.g. 0.9) this function returns a boolean matrix
indicating which nodes are inside each node’s carrier sensing range and which
are outside:

| def getNodesInCarrierSensingRange(self, nodes, wifi_intf, rfCh, detection_th)

Furthermore by using this function that returns a boolean matrix indicating
which nodes are inside each node’s communication (reception) range and
which are outside it is possible to reach to a conclusion if there is a hidden
node for any pair of nodes forming a link in the network:

| def getNodesInCommunicationRange(self, nodes, Wi-Fi_intf, rfCh, detection_th)

These two functions are used to detect links hidden by some node. As an
illustrative example, consider the case where nodes A and B are outside of
carrier sensing range and C is inside the reception range of both A and B. In
this case packet transmission from A to C and B to C must use exclusive time
slots in order to prevent performance degradation due to packet collisions.
The technical details of this functionality is further discussed in deliverable
D4.2 [12].

13.5.1.1.2 Results

The used algorithm performs two steps. First, we use the UPI functionality to
estimate which nodes are in carrier sensing range and which are outside. The
algorithm uses the following approach:

o [t first compares the measured isolated broadcast transmit rate of each
node with the one achieved by transmitting concurrently with some other
node in the network. If the latter is smaller we know that the two nodes
are in carrier sensing range.

e Second, we use the UPI functionality to estimate which nodes are in
communication range. The corresponding UPI function sets each wireless
node in sniffing mode. Then, in each round a single transmitter is
transmitting raw 802.11 broadcast frames while the other nodes are
capturing the received frames.



406 Wireless Software and Hardware Platforms for Flexible

With the information which nodes are in carrier and reception range we are
able to estimate which links are suffering from hidden nodes and hence must
be protected.

13.5.1.2 Hybrid TDMA MAC

Enterprise IEEE 802.11 networks need to provide high network performance
to support a large number of diverse clients like laptops, smartphones and
tablets as well as capacity hungry and delay sensitive novel applications like
mobile HD video and cloud storage. Moreover, such devices and applica-
tions require much better mobility support and higher QoS and quality of
experience (QoE).

IEEE 802.11 uses a random access scheme called distributed coordination
function (DCF) to access and share the wireless medium. The advantage
of DCF is its distributed and asynchronous nature making it suitable for
unplanned ad-hoc networks which have no infrastructure. The main disad-
vantage is its inefficiency in congested networks. Moreover, it suffers from
performance issues due to hidden and exposed node problem which is a severe
problem in high density enterprise networks.

In contrast to DCF, in TDMA the channel access is scheduled in a
synchronized and centralized manner, and hence is able to provide the required
high QoS/QoE requirements of enterprise environments. WiSHFUL allows to
build TDMA on top of today’s off-the-shelf Wi-Fi hardware by providing
a flexible and extensible software solution. Currently, the focus is being set
on the downlink whereas in the future also the uplink will be considered for
support from the TDMA scheme.

Following the software-defined networking (SDN) paradigm we separate
the control plane from the data plane and provide an application programming
interface (API) to allow local or global CPs to configure the channel access
function. In particular it allows to configure the TDMA downlink channel
access by defining the number and size of time slots in the TDMA super-frame.
Moreover, for each time slot a medium access policy can be assigned which
allows to restrict the medium access for particular stations (identified by their
MAC address) and traffic identification (e.g. VoIP or video). The latter can be
used to program flow-level medium access. Finally, for each time slot we can
configure whether carrier-sensing is activated or not. The latter would results
in the classical TDMA MAC while keeping carrier-sensing within each slot
allows for transparent coexistence with legacy networks that are not aware
of the TDMA scheme being used within the WiSHFUL enabled network.
The data plane itself resides in each AP and is controlled by the WiSHFUL
runtime system.



13.5 Implementation of Motivating Scenarios and Results 407

The control plane in our design is managed by either a global or local
WiSHFUL CP which takes as input the channel access scheme specified by
the applications. Any application is responsible to decide on how to map the
per-flow QoS requirements on the channel access. An example would be to
measure which wireless links are suffering from hidden node problem and
to assign exclusive time slots for flows requiring high QoS. However, the
provided centralized coordination for channel access requires a tight time
synchronization among APs. In WiSHFUL time synchronization is performed
using the wired backhaul network and hence is not harming the performance
of the wireless network. The utilized Precise Time Protocol (PTP) gives an
accuracy in microsecond level. The WiSHFUL MCE running on each AP
locally is responsible for coordination of channel access as configured by the
local or global CP.

13.5.1.2.1 Application of WiSHFUL presentation of UPIs used
The UPIs provided by WiSHFUL to set-up and control a hybrid TDMA MAC
are as follows:

def installMacProcessor(self, node, interface, mac_profile)
def updateMacProcessor(self, node, interface, mac_profile)
def uninstallMacProcessor(self, node, interface, mac_profile)

The UPI functions allow the installation, reconfiguration at runtime and
uninstallation of a hybrid TDMA MAC. The mac_profile is an object-oriented
representation of the hybrid MAC configuration (Figure 13.10).

€ helpers.mac_layer.AbstractMAC

m _init__(self)
€ helpers.mac_layer.HybridTDMACSMAMac £ helpers.mac_layer.AccessPolicy
m _init_(self, no_slots_in_superframe, slot_duration_ns) m _init__(self)
m gethlumSlots(self) m disablell{self)
m addAccessPolicy(self, slot_nr, ac) m allowAll(self)
m getAccessPolicy(self, slot_nr) m addDestMacAndTosValues(self, dstH
m getSlotDuration(self) m getEntries(self)
m printConfiguration(self) m printConfiguration(self)

Figure 13.10 UML class diagram showing the hybrid MAC relevant configuration.



408  Wireless Software and Hardware Platforms for Flexible

The following example shows how to set-up a new hybrid MAC
instance:# create new MAC for each node HybridTDMACSMA-
Mac(no_slots_in_superframe=7,slot_duration_ns=20e3)

# assign access policy to slot 0

acBE = AccessPolicy()

# MAC address of the link destination
dstHWAddr = '12:12:12:12:12:12'

# best effort

tosval = 0

acBE.addDestMacAndTosValues (dstHWAddr, tosVal)
slot_nr = 0

mac.addAccessPolicy(slot_nr, acBE)

# assign time guard slot 1

acGuard = AccessPolicy()

acGuard.disableAll() # guard slot

slot_nr =1

mac.addAccessPolicy(slot_nr, acGuard)

# UPI call

mac = radioHelper.installMacProcessor(node, iface, mac)

Finally, Figure 13.11 illustrates the hybrid MAC being configured to assign
exclusive time slots to two wireless links which are hidden to each other. In
order to account to time synchronization inaccuracy guard slots are added.

13.5.1.2.2 Results

Figure 13.12 depicts how the UPI functionality is implemented on a Linux
system using an Atheros Wi-Fi chip and the Ath9k wireless driver. When
the locally running WiSHFUL agent receives a command for the setup of a
hybrid MAC TDMA from the GCP (installMacProcessor() command), it starts

superframe #1 superframe #2

|
AP1 Guard STAL STAL STAL STAL Guard Idle Idle Idle Idle

STA2 t

AP2 Guard Idle Idle Idle Idle

Figure 13.11 [llustration of exclusive slots allocation in TDMA.



13.5 Implementation of Motivating Scenarios and Results 409

Wishful global
controller
A
User-space
PTP HMAC
agent daemon

NETLINK

Ethernet driver ) WiFi driver
(HW timestamping y/ (queue control)

|

Wired
backhaul
(Ethernet)

Figure 13.12 Overview of the components on the wireless node in the Linux-Wi-Fi prototype.

the HMAC daemon. The agent controls the (re)configuration of the HMAC
daemon using a message passing system (ZMQ). The task of the daemon is
to pass slots configuration information to the wireless network driver using
the NETLINK protocol. Moreover, it is responsible to inform the wireless
driver about the beginning of each time slot. The patched wireless driver uses
the slot configuration information to control which network queues are active
and which are frozen. Only packets from active queues are allowed to be sent
while the others are buffered.

In order to evaluate the proposed efficient airtime management scheme,
experiments were conducted in the TWIST 802.11 testbed. Ubuntu 14.04, Intel
i5s with a wired Ethernet NIC from Intel supporting HW timestamping and
an Atheros 802.11n wireless chip were used in order to setup the experimental
network deployment.



410 Wireless Software and Hardware Platforms for Flexible

fl IJW“W “W il 1'_ m/ ﬂ' WM”W\'

Flgure 13.13 IO graph illustrating the number of packets sent over time. The color indicates
a particular flow.

At the beginning of the experiment the global WiSHFUL CP used the
network function UPIs in order to detect the wireless links which are suffering
from the hidden node problem. Afterwards the GCP directed the hybrid MAC
on these nodes in such a way that exclusive time slots were assigned.

In the following graphs results are presented for two selected wireless
links which are suffering from the hidden node problem. These two links
were automatically discovered by our protocol and the proper hybrid MAC
was set-up. Figure 13.13 shows the 10 graph where the color indicates the
two different links (flows). We can clearly see that the provided hybrid TDMA
scheme is able to isolate the two flows as desired.

The performance improvement compared to standard 802.11 DCF is show
in Figure 13.14. On this particular link the throughput could be increased by a
factor of 5.2 and 2.8 respectively which is an impressive increase in network
capacity.

14 -

jary
L]

=
o

m standard 802.11 DCF
® hybrid TDMA MAC

Throughput [Mbit/s]

Client 1 Client 2
Figure 13.14 TCP/IP performance.



13.5 Implementation of Motivating Scenarios and Results 411

The described efficient airtime management scheme was fully imple-
mented and the source code is available in the WiSHFUL project’s Github
public repository [13].

13.5.2 Co-existence of Heterogeneous Technologies

Up until this time the coexistence of different wireless technologies in the
same domain has been inadequately supported and mostly is based on simply
selecting different wireless channels to divide into the frequency plane the
heterogeneous technologies that use the same spectral band in general like the
ISM band at 2.4 GHz.

The WiSHFUL control framework aims to provide solutions also in the
time plane based to inter-technology communication and synchronization.
Table 13.1 lists the communication technologies that are currently sup-
ported and summarizes, for each technology, the available operating systems,
hardware platforms and drivers.

The demonstration set-up presented in this scenario is deployed in the
iMinds w.iLab.t testbed and comprises of 32 Contiki sensor nodes with an
IEEE-802.15.4 radio and 14 Linux nodes with two IEEE-802.11 radios. Both
showcases are executed simultaneously and can be demonstrated remotely.
During execution, live measurements are taken and can be presented in
two formats: 1) live graphs displaying performance statistics and b) real-
time spectrum scanning plots using a universal software radio peripheral
(USRP) device. The following configuration options for both showcases are
possible:

13.5.2.1 Configuration options for the basic showcase

The experimenters can configure the Wi-Fi channel (2.4 GHz ISM band)
and select the bandwidth (20/40 MHz) used for sending Wi-Fi frames.
To mitigate interference, experimenters can choose the TSCH channels

Table 13.1 Supported platforms, OSs and drivers
Supported Platforms, Operating Systems and Drivers

Technology Operating System Platform Driver
IEEE-802.11 Linux, Windows Atheros, Broadcom Ath9k, NDIS
driver, WMP
1EEE-802.15.4 Contiki, TinyOS MSP430, CC2x20, Contiki/TinyOS
C(C283x drivers, TAISC
SDR Linux, Windows USRP, Xylink Iris, LabView,

ZebBoard GNU radio




412  Wireless Software and Hardware Platforms for Flexible

that must be blacklisted. It is also possible to add an extra external
Wi-Fi interference stream on a different channel and investigate the impact of
uncontrolled cross technology interference.

13.5.2.2 Configuration options for the advanced showcase

The experimenters can also dynamically change the cross-technology TDMA
schedule, e.g. allocation of slots between Wi-Fi and TSCH networks. More-
over, they can also specify a different synchronization pattern on-the-fly and
add multiple concurrent streams in the TSCH network.

13.5.2.3 Results
An example of the live performance statistics monitored during execution
of the first, basic showcase is given in Figure 13.15. The graph shows the
overall average network throughput measured over time. From the results,
it can be clearly seen that there is a substantial loss of throughput when
there is Wi-Fi interference. After blacklisting the affected TSCH channels,
the throughput rises up again close to its previous value. By changing the
configuration parameters described in Section V. A, an experimenter can
witness an immediate impact on the performance. Note that other statistics
such as packet loss, jitter, TX throughput can be measured as well.

While executing the more advanced showcase it is also possible to monitor
performance statistics in combination with real-time spectrum scanning using

Throughput

A (kbit
{ibits/ss) TSCHwith WiFi  TSCH with WiFi

TSCH no Wi-Fi interference and blacklisting

| l \

Time(sec)k

Figure 13.15 Live performance statistics showing the average network throughput (kbits/sec)
over time.



13.5 Implementation of Motivating Scenarios and Results 413

Beacon WiFi frame
RSSI \ ' Q
A (dBm) - ZigBee frame
i_m_m_lh--m__--- ___m_---”

\f =

PR ArEe™s

Figure 13.16 Live capture of RSSI (dBm) measured by the USRP over time.

USRP devices. Figure 13.16 illustrates the cross-technology synchronization
beacon and TDMA schedule in real-time using an energy detection plot (the
y-axes is RSSI in dBm). When configuring this showcase, experimenters will
have an immediate feedback on the USRP plot.

The results from both showcases demonstrate the effectiveness of cross-
technology interference mitigation and the ability to quickly set-up, investigate
and fine-tune an interference scenario using the WiSHFUL control framework.

13.5.3 Load and Interference Aware MAC Adaptation

Here, the application of WiSHFUL in order to enable technology-independent
MAC adaptation logic is presented. By employing the WiSHFUL frame-
work it is possible to: i) dynamically tune the parameters of contention-
based protocols based on load and interference conditions, and ii) switch
between protocols. The logic can work on Wi-Fi or IEEE 802.15.4 nodes,
regardless of the PHY layer capabilities and even on cognitive radio platforms,



414  Wireless Software and Hardware Platforms for Flexible

by exploiting the following main functionalities supported by the WiSHFUL
UPIL: sensing capabilities of wireless nodes, local tuning of CSMA contention
windows, and global coordination of MAC protocol switching.

A wireless network with a time-varying number of active nodes under the
same contention domain (where all the nodes are in radio visibility) is taken
into account and a wired ethernet network is available as a control network
between the GCP, the wireless stations and the access point. Each node runs a
local optimization function that is loaded by the GCP for tuning the contention
window of a CSMA protocol as a function of the network load.

In particular, a tuning function called Moderated EDCA backoff
(MEDCA) is used, whose goal is the minimization of the delay jitters on the
channel access times. Since these jitters depend on the exponential backoff
mechanism, which introduces short-term throughput unfairness among the
stations, the tuning function automatically finds a fixed contention window
equal to the average contention window value experienced under exponential
backoff.

When the number of stations crosses a given threshold, the GCP disables
the LCP and coordinates the on-the-fly protocol switch from MEDCA to
TDMA in all the nodes. As part of this, the GCP sets the TDMA parameters,
such as the number of slots and the slot allocation to each station, based on
the number of active flows.

13.5.3.1 Application of the WiSHFUL framework

Once calculated according to the MEDCA scheme, new contention window
values are set through the UPI_R function responsible of configuring lower
layer parameters as follows:

fupdate CW value
UPI_myargs = { "interface’ : 'wlan0', UPI_RN.CSMA_CW : ow, UPI_RN.CSMA_CW_MIN : cw, UPI_RN.CSMA_CW_MAX : cw}
upiRNImpl.setParameterLowerLayer (UPI_myargs)

#The GCP may activate TOMA by calling the UPI_R function setAetive:

UPIargs = {'position’' : position, 'radio_program name' : 'TDMA', ‘path’ : radio_program_pointer TDMA,
‘interface’ : ‘wlan0' }

rvalue = global_mgr.runAt(node, UPI_RN.setActive, UPIargs, exec_time)

#Finally, the GCP configures the TDMA parameters of each station through the UPIL_R utility function set_TDMA_parameters,

tdma_params={ 'TDMA_SUPER_FRAME_SIZE' : superframe_size_len, "TDMA_NUMBER_OF_SY¥NC_SLOT' : len(mytestbed.Wi-
Finodes), 'TDMA_ALLOCATED_SLOT': node_index)

| set_TDMA_parameters(node,log,mytestbed.global mgr,tdma_params)

13.5.3.2 Results
First focusing on contention window tuning, we activated six wireless nodes
running CSMA with exponential backoff contending under greedy traffic



13.5 Implementation of Motivating Scenarios and Results 415

sources towards a common access point. Figure 13.17 shows the throughput
performance achieved by each station. The short-term and long-term through-
put variability exhibit here results from the exponential backoff mechanism
(short-term) and the location-dependent interference conditions suffered by
each station (long-term).

For three of the above nodes, we activated the MEDCA backoff scheme.
Figure 13.18 shows that these stations achieve an average throughput com-
parable to that experienced with exponential backoff, but with smaller
fluctuations.

Turning to MAC protocol switching, Figure 13.19 shows the measured
packet loss and throughput before, during, and after the switch occurs. Radios
operated in CSMA for 90 seconds then switched to TDMA. Here we examined
32 sensor nodes, which sent iPerf traffic to a single sensor node acting as a
sink and used the output of the iPerf server to generate the graphs. All nodes
were in the same collision domain.

6 EDCA

18 , : , :

192.168.2.2 [DCF]
——— 192.168.2.5 [DCF]
~——192.168.2.10 [DCF]
—— 192.168.2.11 [DCF]
——— 192.168.2.7 [DCF]
| —— 192.168.2.13 [DCF]

thr [bps]

i i i i
0'40 10 20 30 40
time [s]
Figure 13.17 Throughput performance of 6 wireless nodes executing CSM A with exponential
backoff.



416  Wireless Software and Hardware Platforms for Flexible

x 10° DCF VS MEDCA
= ! ; : ; v 3 ' T '
: : : : : : —— 192.168.2.13 [DCF]
| I S R e b ~ — ~192.168.2.7 [MEDCA]
: : i : : - — & —192.168.2.11 [DCF]
: : : : : : —#— 192.168.2.2 [MEDCA]
1_3_\..... , ........ ........ ......... , ..... _9_192-1582.10[DCF]

Figure 13.18 Throughput performance with 3 stations employing MEDCA backoff.

13.5.4 Wireless Portable Testbed

The WiSHFUL project offers access to several wireless testbeds, such as
TWIST (TUB), w-iLab.t IMINDS), IRIS (TCD), Orbit (Rutgers University)
and a FIBRE Island at UFRJ. All of these testbeds are installed in either office
environments or other dedicated testbed environments. Because some research
requires doing measurement campaigns or actual testing in heterogeneous
environments, the WiSHFUL project also offers a portable testbed to the
community.

13.5.4.1 Portable testbed setup

The architecture of the portable testbed is presented in Figure 13.20. As can
be seen there are two distinct wireless networks (blue and yellow) present in
the testbed, namely BN (Backbone) network and DUT (Device Under Test,
or Experiment Node) network. These two networks will be configured and
controlled by the Experiment Management Servers. The blue arrows represent
a highly reliable wireless backbone that allows the user to place the nodes any-
where in the field without having the practical disadvantages of using cables.



13.5 Implementation of Motivating Scenarios and Results 417

YOIMS Y syTew X oy, IndySno1y) [[e10A0 ay)
sarensny[1 ydei3 1omoj ay} ‘ssof 1o3oed Jo a3riuaorad [[eroro ay) smoys ydeis zoddn oy, "VINAL 03 VINSD Woij Sulyaimg I ¢l 2In3ig

[s] awiL

00z o8t 091 ort ozt 00T\, 08 09 or 0z 0
T T T T T > T T T T o w
WYL o} paydlms S| jod0joid DN UL SPUOISS 06 18T W x, g s m
I \ | 3
\ / [ 3
\ &
- YNAL \ VINSO 1o 3
i > fad
| na\y\g\ /\/‘x e s L
— T 1 6uisn %wﬂ . _ _ : z
[:7] S

[s] awnL
00z o8t 091 ort ozt 0ot o8 09 o 0z 0
T /\A T T T T o
- / H>ll\-a#.\\/\/ \_ + ot
N/ , A P 3
B /.‘ __ __ = / Hoz 3
& f_ __ & ..r.__ m
- < > | € *| qoe 2
vINaL | | VNSO ||
L | o
——— Z:1 Buisn Jepssopayoed, __ __ _,
| 1 | 1 (I I | L 1 |

0s



418  Wireless Software and Hardware Platforms for Flexible

(i)

Wireless backbone
mesh network

Figure 13.20 Portable testbed overview.

Italso allows interaction with the nodes during the experiment. As the Portable
Testbed introduces an additional network to an experiment, it is implemented
in such a way that an experimenter is not overwhelmed with additional and
complicated configuration procedures. In D6.1 [14], it is shown that Portable
Testbed follows the “Plug and Play” approach and an experimenter should be
able to use the same Testbed and Experiment Management tools as on the fixed
testbeds. It has to be noted that an experimenter does not have the possibility
to directly control the behavior of the Backbone network, but he is able change
the channel that the Portable Testbed uses. Moreover, logical L2 networks are
provided to interconnect DUT nodes in order to make them unaware whether
they are connected to Portable Testbed or to a regular wired Ethernet network.
This approach also reduces the required configuration because an experimenter
does not have to configure any routing on his DUT nodes.

A more detailed description of the testbed setup can be found in D6.1 and
D6.2 [15].

13.5.4.2 Hardware & packaging

In order to provide flexible means of transport for the portable testbed, an easy
to carry, robust and spacious case is desired. It also needs protective material
on the inside so the delicate electronics are not damaged during transport.
Plywood flight cases are used to secure the hardware in transport.



13.6 Conclusion 419

A primary flight case hosts the central switch and experiment management
servers. The EMS is a single, powerful embedded PC that hosts several VM’s
for each of the testbed core services. The DUT nodes are stacked in several
secondary flight cases. These are made from aluminum and robust plastic and
are slightly lighter than the primary case. To fix the nodes inside the case,
foam is used: a base of hard foam is glued to the bottom of the case and is cut
specifically to fit the DUTSs. In the top of the briefcase, softer, more flexible
polyurethane foam is used as its only function is to push down softly on the
nodes so they stay in place while transporting the cases.

DUT devices are COTS Intel NUC (Next Unit of Computing) devices
of model D54250WYKH. These are basically headless barebone PC’s. They
consist of an Intel Core 15 4250U processor, 4 GB of RAM, a gigabit Ethernet
port, several USB ports, a 320 GB hard disk and two Wi-Fi cards: one 802.11n
(WPEA-121N/W) and one 802.11ac card (WLE900VX 7AA). The nodes are
by default equipped with an 802.15.4 sensor node and a Bluetooth USB dongle.
The USB connections of the node can be used to attach extra hardware (e.g.
LTE dongles or other USB compatible hardware). The DUT features a default
embedded Linux operating system to which the experimenter can gain full
(root) access. The experimenter has full control over the operating system and
the software packages that are installed on the DUT. The DUT can also be
used as a proxy to access all USB peripherals of the node, like sensor nodes. If
the embedded PC provided by WiSHFUL does not satisfy the experimenter’s
needs, other hardware can be used as long as it can interface over Ethernet
with the backbone nodes. A more detailed description of testbed hardware can
be found in D6.2.

13.6 Conclusion

Advancing wireless communications requires overcoming several challenges.
Herein, several such challenges have been examined in the form of motivating
scenarios. These scenarios outline a number of requirements on experimen-
tation platforms for investigating the future of wireless communications. The
WiSHFUL project directly addresses these challenges and requirements by
defining a software framework to support unified experimentation across
several platforms beyond the today’s standards. Examples have been provided
through several case studies that apply the WiSHFUL framework to the
motivating scenarios and results obtained are presented. It is evident that
the use of the WiSHFUL framework provides the necessary functionality
to enable advanced wireless experimentation while in parallel it lowers the



420  Wireless Software and Hardware Platforms for Flexible

learning curve for any experimenter across multiple heterogeneous wireless
communication technologies.

Acknowledgment

The research leading to these results has received funding from the European
Horizon 2020 Program under grant agreement n645274 (WiSHFUL project).

References

[1] Fortuna, C, et al. (2015). Wireless Software and Hardware platforms
for Flexible and Unified radio and network control.. European Con-
ference on Networks and Communications (EuCNC 2015), Workshop
on 5G Testbeds and Hands-on Experimental Research, Paris, France,
June 29, 2015.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. 2008. OpenFlow: enabling
innovation in campus networks. SIGCOMM Comput. Commun.

[3] IETF Control And Provisioning of Wireless Access Points (CAPWAP)
Protocol Specification, https://tools.ietf.org/html/rfc5415

[4] ETSI TR 102 682, Reconfigurable Radio Systems (RRS); Functional
Architecture for Management and Control of Reconfigurable Radio
Systems, 2009.

[5] L. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli,
“Wireless MAC Processors: Programming MAC Protocols on Commo
dity Hardware” IEEE INFOCOM, March 2012.

[6] Bart Jooris; Eli De Poorter; Peter Ruckebusch; Peter De Valck;
Christophe Van Praet; Ingrid Moerman; TAISC: a cross-platform MAC
protocol compiler and execution engine; Under submission for Computer
Networks.

[7] Sutton, Paul, et al. “Iris: an architecture for cognitive radio networking
testbeds.” Communications Magazine, IEEE 48.9 (2010): 114-122.

[8] A. Zubow and R. Sombrutzki, “A low-cost MIMO mesh testbed based
on 802.11n,” 2012 IEEE Wireless Communications and Networking
Conference (WCNC), Shanghai, 2012, pp. 3171-3176.

[9] P. Ruckebusch, E. De Poorter, C. Fortuna, and I. Moerman, (2015).
GITAR: Generic extension for Internet-of-Things Architectures enabling
dynamic updates of network and application modules. Ad Hoc Networks,
January 2016, Vol. 36, Part 1, Pages 127-151.



References 421

[10] Wauters, Tim, et al. “Federation of Internet experimentation facilities:
architecture and implementation.” European Conference on Networks
and Communications (EuCNC 2014). 2014.

[117 A. C. V. Gummalla and J. O. Limb, “Wireless medium access control
protocols,” in IEEE Communications Surveys & Tutorials, Vol. 3, No. 2,
pp- 2—15, Second Quarter 2000.

[12] Deliverable D.4.2, WiSHFUL project, H2020, 2016, http://www.
WiSHFUL-project.eu/deliverables

[13] WiSHFUL project Github repository, https://github.com/WirelessTest
bedsAcademy

[14] Deliverable D.6.1, WiSHFUL project, H2020, 2016, http://www.
WiSHFUL-project.eu/deliverables

[15] Deliverable D.6.2, WiSHFUL project, H2020, 2016, http://www.
WiSHFUL-project.eu/deliverables






