
15
An Experiment Description
Language for Supporting
Mobile IoT Applications

Kostas Kolomvatsos, Michael Tsiroukis
and Stathes Hadjiefthymiades

Pervasive Computing Research Group,
Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens,
Panepistimiopolis, Ilissia, 15784, Greece

Abstract

Mobile IoT applications consist of an innovative field where numerous devices
collect, process and exchange huge amounts of data with central systems or
their peers. Intelligent applications could be built on top of such information
realizing the basis of future Internet. For engineering novel applications,
experimentation plays a significant role, especially, when it is performed
remotely. Remote experimentation should offer a framework where experi-
menters can efficiently define their experiments. In this chapter, we focus on
the experiments definition management proposed by Road-, Air- and Water-
based Future Internet Experimentation (RAWFIE). RAWFIE offers, among
others, an experimentation language and an editor where experimenters can
remotely insert their experiments to define actions performed by the nodes in
a testbed. RAWFIE proposes the Experiment Description Language (EDL)
that provides the elements for the management of devices and the collected
data. Commands related to any aspect of a node behavior (e.g., configuration,
location, task description) are available to experimenters. We report on the
EDL description and the offered editors and discuss their key parts and
functionalities.

461

462 An Experiment Description Language for Supporting Mobile

15.1 Introduction

The Internet of Things (IoT) assumes the pervasive presence of numerous
devices in the environment that are capable of performing simple processing
tasks by involving multiple interactions among them. Such devices are
wirelessly connected and adopt unique addressing schemes to be uniquely
identified in the network. Objects make themselves recognizable and they
obtain intelligence by taking or enabling context related decisions thanks to
the fact that they can communicate information about themselves and they
can access information that has been aggregated by other things, or they can
be components of complex services [38]. The number of Internet-connected
devices surpassed the number of human beings on the planet in 2011, and by
2020, Internet-connected devices are expected to a number between 26 and
50 billion. For every Internet-connected PC or handset there will be 5–10 other
types of devices sold with native Internet connectivity [28]. Novel applications
can be built on top of the vast network to improve the services offered to
end users and, thus, to improve their quality of living. Mobile IoT involves
devices capable of moving in the environment and record the ambient infor-
mation. A typical example is the adoption of Unmanned Vehicles (UV). UVs
can be categorized into: Unmanned Ground Vehicles (UGVs), Unmanned
Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). UVs act
autonomously and can carry a set of sensors and communicate each other as
well as with a central system where they can transfer the data that they record
during their movement.

In this context, the research and technical challenges towards the develop-
ment of a smart World are many. These challenges call for efficient solutions
either horizontally (application neutral) or vertically (application dependent).
Mobile IoTshould overcome the vertical oriented legacy architectures and lead
to open systems and integrated environments that will support intelligent appli-
cations on top of contextual knowledge collected/produced by autonomous
nodes. The aim is to create innovative ecosystems of moving devices like
UVs. An efficient means for building high quality applications is remote
experimentation. Remote experimentation has already adopted in domains
like education [1, 7, 13, 21]. It involves a real experiment with real equipment
that is controlled remotely through the Internet. Remote experimentation can
offer many advantages as physical experimentation is expensive, difficult
to maintain and restricted to specific areas. Usually, testbeds are adopted
to host a set of devices that will execute an experiment. A testbed is a
platform/environment where hardware (e.g., a number of devices) is available

15.1 Introduction 463

to perform transparent and replicable testing of tools or technologies. Testbeds
can be located around the World and host devices belonging to multiple types,
if possible.

The Road-, Air- and Water-based Future Internet Experimentation
(RAWFIE) platform comes to offer remote experimentation functionalities to
the interested researchers and professionals. RAWFIE delivers a framework
for interconnecting numerous testbeds over which remote experimentation
will be realized. The RAWFIE platform originates in a European Union-
funded (H2020 call: FIRE+ initiative) project which focuses on the mobile
IoT paradigm and provides research and experimentation facilities through
the ever growing domain of unmanned networked devices (vehicles). The
purpose of the proposed structure is to create a federation of different network
testbeds that work together to make their resources available under a common
framework. Remote experimentation is realized on top of real devices. These
devices have specific characteristics that may vary according to their type
(e.g., UGVs, UAVs, USVs). Devices characteristics may vary even devices
belong to the same category as they come from their manufacturers.

In remote experimentation, there is a gap between experimenters and
devices realizing an experiment. Experimenters are researchers or profession-
als and may not be aware of the characteristics of the devices. Experimenters,
likely, are not aware of the low level instructions that should be transferred
to the devices during the execution of the experiments. To cover this gap
and serve non experienced experimenters/professionals, RAWFIE offers an
abstraction of the underlying functionalities. This abstraction is realized by
a Domain Specific Language (DSL). A DSL is a language designed for
a specific field of applications. Its aim is to solve problems related to a highly
focused field of research. DSLs target to more specific tasks than classic
programming languages. They provide expressions for describing parameters
of a domain and they have a concrete syntax. A number of semantics are
adopted to lead to the automatic generation of specific tools important for the
creation of the final code [17]. The most significant advantage of the DSLs
usage is that they provide the opportunity to non-experienced users to write
more easily domain specific programs [20]. These programs are not dependent
on the underlying platform, thus, providing an additional advantage. RAWFIE
offers an Experiment Description Language (EDL), i.e., a DSL, and two
editors (textual and visual) devoted to assist non-experienced users to easily
define their experiments. A code generation component is responsible to trans-
late each experiment expressed in the EDL into the information transferred

464 An Experiment Description Language for Supporting Mobile

to mobile nodes. Hence, RAWFIE efficiently interconnects experimenters
coming from various domains with the nodes present in numerous testbeds.

The rest of the chapter is organized as follows. Section 15.2 is devoted
to the description of the problem while Section 15.3 presents the related
work. Section 15.4 discusses our approach for creating a DSL for abstracting
the complexity of the UxVs characteristics and Section 15.5 reports on the
technical details. Section 15.6 presents a case study where we create and
launch an experiment with the proposed tools and Section 15.7 discusses our
future research directions. Finally, in Section 15.8, we conclude our chapter.

15.2 Problem Statement

The definition of an experiment on top of a number of devices located
in testbeds around the Globe involves the creation of a script containing
commands that will be executed by the devices. Devices should receive the
instructions defined in the script and move in the environment towards the
execution of the experiment. For instance, an experiment may instruct a group
of UVs to move around an area and collect data related to environmental con-
ditions (e.g., temperature, humidity). In this scenario, experimenters should
know the low level characteristics of the devices (e.g., commands for defining
navigational instructions to UVs). However, this is not the usual case. It is
difficult for experimenters to know the low level commands especially when
they are working in a completely different domain. Imagine a researcher
working in biomonitoring and the effects of environmental conditions in
humans’ health. The researcher does not have any technical knowledge on
the functionalities provided by the UVs, however, he/she wants to instruct
the devices to perform some processing tasks. The problem is more intense
when we take into consideration that a testbed may incorporate many different
devices with different characteristics. Experimenters cannot be aware of the
different sets of commands to handle the heterogeneity of the devices. Due to
the wide range of devices and technologies that testbeds could incorporate, a
number of different commands could be adopted to instruct devices to execute
experiments.

The above discussion shows the need for an abstraction in the underlying
technologies. Such an abstraction will give the opportunity to experimenters
to use the devices transparently and define commands for UVs in a more
user friendly way. Hence, even non-experienced experimenters can use the
provided platform and define their experiments that will be executed to
any available testbed. In general, users, not having a lot of experience

15.3 Background and State of the Art 465

with programming languages, are not able to develop efficient software
components like experiments for mobile IoT. In this case, Model Driven
Engineering (MDE) can provide a lot of advantages not only to under-
experienced programmers but also to proficient ones that are unfamiliar
with the specific domain. MDE is a software development methodology for
creating models for a specific domain. MDE technologies offer a promising
approach to address the inability of the third generation languages to express
domain concepts effectively [32]. The aim of MDE is to increase efficiency in
developing applications. DSLs follow the principles of the MDE development
and can provide a number of advantages in cases where domain programming
knowledge is limited [22, 35]. DSLs target to more specific tasks than classic
programming languages. They provide expressions for describing parameters
of a domain of interest and they have a concrete syntax.Anumber of semantics
are used in order to lead to the automatic generation of specific tools important
for the creation of the final code [17].

RAWFIE offers the EDL, that provides a terminology for defining experi-
ments for mobile IoT. The EDL offers an abstraction for any aspect of an
experiment like the necessary metadata, statements, commands related to the
devices, group of devices management and so on. The EDL terminology is
invoked through the provided Experiment Authoring Tool (EAT). Two editors
are provided: the textual and the visual . Editors are built on top of the EDL
and incorporate all the necessary functionalities like those originated in typical
IDEs as well as functionalities related to the compilation and validation of the
defined experiments.

15.3 Background and State of the Art

Anumber of research efforts deal with the devise and development of Vehicular
Ad Hoc Network (VANET) testbeds for performing diverse applications (e.g.,
accident warning systems, traffic information control and prevention systems,
pollution and weather monitoring, etc.). C-Vet [8] stands for the vehicular
testbed developed in the University of California at Los Angeles (UCLA)
campus offering both Vehicle to Vehicle (V2V) and Vehicle to Infrastructure
(V2I) connectivity. The testbed is composed of 60 vehicles that circulate in the
UCLA campus in order to support extended applications and services. CarTel
[16] is a testbed developed by Massachusetts Institute of Technology (MIT)
that has been active in Boston and Seattle. CarTel is comprised of six vehicles
equipped with sensors and communications units that feature Wi-Fi (IEEE
802.11b/g) and Bluetooth. This testbed provides an important insight on how

466 An Experiment Description Language for Supporting Mobile

to handle intermittent connectivity, and how feasible this kind of connectivity
is to explore a class of non-interactive applications. SAFESPOT [31] is a
testbed that was run for 4 years in six cities across Europe. It uses vehicles
equipped with OBUs, RSUs and Traffic Centres (communicating through
Wi-Fi) to centralize traffic information and forward safety-critical messages.
The project’s goals were to: a) use the infrastructure and the vehicles as sources
and destinations of safety-related information and develop an open, flexible
and modular architecture and communication platform, b) Develop the key
enabling technologies: ad-hoc dynamic network, accurate relative localisation,
dynamic local traffic maps, c) Develop and test scenario-based applications
to evaluate the impacts on road safety, d) Develop and test scenario-based
applications to evaluate the impacts on road safety and e) Define a sustainable
deployment strategy for cooperative systems for road safety, evaluating also
related liability, regulations and standardisation aspects. HarborNet [2] is a
real-world testbed for research and development in vehicular networking that
has been deployed successfully in the sea port of Leixoes in Portugal. The
testbed allows for cloud-based code deployment, remote network control and
distributed data collection from moving container trucks, cranes, tow boats,
patrol vessels and roadside units, thereby enabling a wide range of experiments
and performance analyses.

DSLs have attracted a lot of attention in various application domains
as they provide abstraction in the definition of applications oriented to a
specific research field [14]. Every DSL has special characteristics and their
size varies according the domain of application. Normally, DSLs are small
in length and cover only the essential features and concepts of the domain
under consideration [25], however, they are characterized by expressiveness
[22]. This approach keeps the length of the notation small, thus, increasing
the abstraction level. DSLs are more declarative or descriptive than legacy
programming languages [36]. The design of a DSL involves the study of
the domain under consideration and the identification of the most important
concepts of that domain. The semantics of the domain should be implicit in
the language notation [15].

For a theoretical survey in DSLs, the interested reader should refer in
[25] while an empirical study on the use of a DSL in industry is presented
in [12]. A number of contributions discuss the advantages of DSLs [18, 33,
34, 36] while a survey on the process for developing a DSL is described in
[22]. In general, DSLs lead to easy maintenance of potential modifications,
increase flexibility and productivity. DSLs are adopted to a set of research
domains. In robotics, DSLs focus on increasing the level of automation,

15.3 Background and State of the Art 467

e.g., through code generation, to bridge the gap between the modeling of
robotics and implementation. In [24], the authors survey the corresponding
literature and classify a number of publications in the robotics field. DSLS are
also adopted in banking [3], telecommunications [6], web services definition
[12], autonomic computing [19]. DSLs are already adopted in a number of
research projects like IPAC1 and PoLoS2. The IPAC (Integrated Platform
for Autonomic Computing) aims at delivering a middleware and service
creation environment for developing embedded, intelligent, collaborative,
context-aware services in mobile nodes. A DSL is implemented to support
engineers to efficiently define applications that will be uploaded in mobile
nodes. The PoLoS project aims to design specify and implement an integrated
platform, which will cater for the full range of issues concerning the provision
of Location Based Services (LBS). PoLoS proposes a DSL for ‘annotating’
LBSs that will be combined in the final workflow.

In [40], the authors demonstrate a framework to automate the generation
of DSL testing tools. The presented framework utilizes Eclipse plug-ins for
defining DSLs. Moreover, a set of tools concerning a translator, and an
interface generator are responsible to map the DSL debugging perspective
to the underlying General Purpose Language (GPL) debugging services.
The aim is to present the feasibility and the applicability of debugging and
testing information derived by a DSL in a friendly programming environment.
A program transformation engine supporting the debugging process written
in a DSL is described in [29, 39, 40]. The discussed approach concerns the
methodology of generating a set of tools necessary to use a DSL from a
language defined in a specific grammar. Such tools are: the editor, the compiler
and the debugger [11]. This research effort focuses on issues related to the
debugging support for a DSL development environment. The debugger is
automatically generated by a language specification. Authors describe two
approaches for weaving the debugger in conjunction with the DSL Debugging
Framework (DDF) plug-in. The first approach is applicable when the aspect
weaver is available for the generated GPL while the second approach involves
the Design Maintenance System (DMS) [4] transformation and is applied when
the aspect weaver is not available.

In [30], the authors describe a prototyping methodology for of Domain
Specific Modeling Languages (DSMLs) on an independent level of the
MDE architecture. They argue that the prototyping method should describe

1http://ipac.di.uoa.gr/
2http://polos.di.uoa.gr/

468 An Experiment Description Language for Supporting Mobile

the semantics of the DSML in an operational fashion. For this, they
use standard modeling techniques i.e., Meta Object Facility (MOF) [23]
and Query/View/Transformations (QVT) Relations [27]. By combining this
approach with existing metamodel-based editor creation technologies they
enable the rapid and cost free prototyping of visual interpreters and debuggers.
Authors utilize the Eclipse Modelling Framework (EMF) which is similar
to MOF and using the Ecore metamodel of a DSML they can generate
the DSML plug-in with EMF. The created plug-in provides the basis for
the creation, access, modification, and storage of models that are instances
of the DSML.

A logic programming based framework for specification, efficient imple-
mentation, and automatic verification of DSLs, is presented in [10]. Their
proposal is based on Horn logic and, eventually, constraints to specify
semantics of DSLs. The semantic specification serves as an interpreter or more
efficient implementations of the DSL, such as a compiler, can be automatically
derived by partial evaluation. The executable specification can be used for
automatic or semi-automatic verification of programs written in a DSL as
well as for automatically obtaining conventional debuggers and profilers. The
syntax and semantics of the DSL are expressed through Horn logic. The Horn
logic syntax and semantics are executable leading to the automatic definition
of an interpreter. The authors in [10] present their approach and give some
examples indicating the efficiency of the discussed methodology.

15.4 The Proposed Approach

15.4.1 The RAWFIE Platform

The purpose of the RAWFIE initiative is to create a federation of different
testbeds that will be combined to make their resources available under a
common framework. Specifically, RAWFIE aims at delivering a unique, mixed
experimentation environment across the space and technology dimensions.
RAWFIE will integrate numerous testbeds for experimenting in vehicular
(road), aerial and maritime environments. The basic idea behind the RAWFIE
effort is the automated, remote operation of a large number of robotic devices
(UGVs, UAVs, USVs) for the purpose of assessing the performance of differ-
ent technologies in networking, sensing and mobile/autonomic application
domains. RAWFIE features a significant number of UVs for exposing to
the experimenter a vast test infrastructure. All these items are managed
by a central controlling entity which is programmed per case and fully

15.4 The Proposed Approach 469

overview/drive the operation of the respective mechanisms (e.g., auto-pilots,
remote controlled ground vehicles). Internet connectivity will be extended to
the mobile units to enable the remote programming (over-the-air), control and
data collection. Support software for experiment management, data collection
and post-analysis is virtualized to enable experimentation from everywhere
in the world. The vision of Experimentation-as-a-Service (EaaS) is promoted
through RAWFIE. The IoT paradigm is fully adopted and further refined for
support of highly dynamic node architectures.

The RAWFIE architecture consists of tree tier design patterns. Each tier
is separated in different software elements, each one providing a different
functionality. The components are implemented with standard interfaces for
safe interconnection between them. The discussed tiers are: i) the front-end
tier, ii) the middle tier and iii) the data tier. The front end tier includes
the services and tools that RAWFIE provides to experimenters to define and
perform the experimentation scenarios. The RAWFIE Web portal provides to
users, a web interface to federation resources and services. The user friendly
environment of the portal makes experimenters creating straightforward suc-
cessful experiment scripts. The front end tier has an authorization component,
for checking the authorization of a user by his/her credentials. The Testbed and
Resource Discovery component shows the availability of the testbed and the
resources respectively while running. The Experimentation Suite is consisting
of five tools and are the following: i) the Monitoring tool – it manages the
presentation of the information needed for monitoring the status of the nodes
and the data collected during the experiments; ii) the Launching tool – it
is informed for the end of an experiment’s execution to initiate the next
booked scenario in the case of the entire use of a testbed or it is invoked
(manually) to start an script that experimenters desire; iii) the Booking tool –
it allows experimenters to book a spatiotemporal interval for running their
experiments, thus, providing automatic coordination in the use of the testbed
resources among experimenters; iv) the Visualization tool – it interconnects
with the Visualization Engine of the middle tier receives the resource traces.
The resource traces are graphically displayed to the web interface; v) the
Authoring tool – it includes all the necessary mechanisms to allow access
of the experimenters in the RAWFIE experimentation suite and the available
EDL editors.

The RAWFIE middle tier is the layer that lies between the UVs testbeds and
the experimenters (front-end tier). It provides the software interfaces needed,
and includes useful software components related to security, trust, control and
visualization aspects. This tier provides the infrastructure which facilitates the

470 An Experiment Description Language for Supporting Mobile

creation and integration of applications in the RAWFIE platform. It provides
uniform, standard, high-level interfaces to the application developers and
integrators so that the applications can be easily composed and reused. It
will supply a set of common services to perform various general purpose
functions in order to hide the distributed nature of the testbeds and facilitate
the collaboration between different applications. The middle tier is consisted
of the following modules: i) the Experiment Validator – it validates the
experiment scenario to avoid syntactic and semantic errors. For instance,
if the experimenter requests more resources than the available ones in the
selected timeslot in the specified testbed site, the validator will avoid the
execution of the experiment and send error message to the experimenter; ii) the
Experiment Controller – it provides functionalities for the automatic control of
the executed experiments according to the defined scripts; iii) the Visualization
Engine – it is responsible for gathering sensing information from the UVs,
processing the data and finally forwarding them to the visualization tool of
the front-end tier; iv) the Testbed directory – it includes information relevant
to the testbeds and resources (i.e., location, facilities) as well information on
the capabilities of a particular resource and its requirements for executing
experiments e.g., in terms of interconnectivity or dependencies; v) the Data
Collection and Analysis module – it is responsible for the data collection and
data the analysis-processing. Furthermore, it stores the measurement streams
in the Data Storage components of the RAWFIE infrastructure. RAWFIE also
provide a large, secure, cloud-based central repository in which collected data
can be anonymized and made available to users; vi) the Launching Service – it
provides functionalities related with the automatic and the manual launch of an
experiment; vii) the Booking Service – it is adopted for performing bookings
in the available testbeds and resources; viii) the System Monitoring Service –
it secures that the platform works properly and identifies any potential error
in the RAWFIE framework.

Finally, the data tier is in charge of ensuring data persistence. All the data
elements and the code repos are stored to Data Storage and Code Repositories
and servers to the Cloud, respectively.

15.4.2 The RAWFIE EDL

The Experiment Description Language (EDL) is a DSL for creating simple
or more complex experimental scenarios for the IoT domain. The EDL
is designed for the RAWFIE purposes aiming to help domain experts or
non-experienced users (e.g., experimenters) to effectively create and handle

15.4 The Proposed Approach 471

IoT remote experimentation. The major goal of the EDL is the provision
of a high level of abstraction that shields experimenters from the com-
plexities of the underlying implementation of the RAWFIE platform and
the available devices. In the most interesting case, the EDL provides ele-
ments for handling resource requirements/configuration, location/topology
information, task description, testbed-specific commands etc. Its syntax is
simple and combines some common characteristics of well-known XML or
legacy programming languages. The EDL is built with the help of the Xtext
framework3. The following listing presents a small part of the proposed EDL
grammar.

Experiment:
'Experiment'

metadata=MetadataSection
(requirements=RequirementsSection)?
(declarations=DeclarationsSection)?
execution=ExecutionSection

'∼ Experiment'
;
/********** Metadata Section **********/
MetadataSection:

'Metadata'
met+=Metadata

'∼Metadata';
Metadata:

'Name' name = ID
(experimentVersion=Version)?
(experimentDescritpion=Description)?
(experimentDate=Date)?;

Version:
'Version' ver=VER;

Description:
'Description' name=ID;

Date:
'Date' dat=DAT;

3https://eclipse.org/Xtext/

472 An Experiment Description Language for Supporting Mobile

An experiment as realized through the EDL terminology is seen to have
the following parts:

• Metadata section. It contains generic information related to each experi-
ment like the name, the date, etc. This information is important to define
the necessary description for each experiment and, thus, to facilitate the
efficient management of the available experiments.

• Requirements section. It contains information related to the requirements
of each experiment in terms of the testbed data, the location, the duration
or the distance that the nodes should cover during the experiment
execution. In addition, in this section, the experimenter should define the
number of nodes that will be involved in the experiment and, thus, the
RAWFIE platform is capable of knowing the needs for the experiments
under consideration.

• Declarations section. It concerns the necessary declarations like cons-
tants and variables declaration adopted to store data during the experi-
ment execution. The discussed declarations are the key element to
connect the experiment business logic with the data retrieved by UxVs
and perform processing in a higher level than the device itself.

• Execution section. It involves commands related to the management of
the core business logic of each experiment. The EDLoffers statements for
the nodes or group of nodes management. Every aspect of nodes/groups
behavior can be realized with specific terminology in the execution
section. In addition, a number of statements are devoted to: (i) waypoints
management; (ii) time line management (e.g., sequential or parallel exe-
cution); (iii) coordination management; (iv) control management (e.g.,
activation/deactivation of sensors); (v) configuration management (e.g.,
data management in each node); (vi) communication management
(e.g., change in network interfaces).

It should be noted that ‘typical’ commands originated in legacy programming
languages are also included in the EDL. Hence, assignments, conditionals
statements (i.e., if, switch) and iterations (i.e., for, while) are also in place.
In the following listing, we present a small part of an EDL script related to
the definition of the behavior of a node. The ‘Route’ command instructs the
node to follow a set of waypoints defined by multiple WP commands. Each
waypoint is identified by three numbers: time, x, y and z coordinates. For
instance, the command WP<3, 50, 22, 15> instructs the node, at time 3, to
be at the location (50, 22), at height/depth 15.

15.4 The Proposed Approach 473

Node
ID node1
Route[

WP<1, 10, 12, 12>
WP<3, 50, 22, 15>
WP<15, 84, 42, 15>
WP<18, 36, 22, 15>
]

DataManagement
Time 14 Algorithm average(history = 10)

∼DataManagement
NodeCommunication

NIC WiFi
∼NodeCommunication
DataManagement

Time 25 Algorithm average(history = 5)
∼DataManagement

∼Node

15.4.3 The EDL Textual Editor

On top of the EDL terminology, RAWFIE provides two editors: the textual
and the visual editors. Both editors are provided as a Web application in a
common interface separated in two parts. Editors are responsible to provide
the necessary functionalities to the experimenters towards the creation, update,
compilation and validation of their experiments. Editors are a collection of
tools for defining experiments and authoring EDLscripts through the RAWFIE
Web portal. Rich editing facilities are supported in the textual editor together
with an advanced content assist and checking mechanism at syntax time. The
EDL keywords are highlighted with different color while the code folding
(only in the standalone version of the textual editor) functionality enables
blocks of code to be hidden or expanded at will. Some of the provided
functionalities of the textual editor are: (i) syntax coloring; (ii) content assist;
(iii) validation and quick fixes; (iv) code completion; (v) error checking. A set
of additional tools for syntactic and semantic validation are also available.
The textual editor gives ‘access’ to the EDL concepts through which an
experiment will be defined. Editors are synchronized and experimenters
have the opportunity to define nodes routes and other related information
directly on the map of the area under consideration (in the visual editor)

474 An Experiment Description Language for Supporting Mobile

Figure 15.1 The content assist functionality of the EDL textual editor.

and the list of waypoints is immediately transferred to the textual editor. In
Figure 15.1, we see a snapshot of the provided textual editor where the content
assist functionality gives us hints about the upcoming commands that should
be inserted in an experiment.

15.4.4 The EDL Visual Editor

The visual editor is an innovative and powerful tool for creating experiments
in the RAWFIE authoring tool. The main goal of the visual editor is to provide
a user friendly environment that simplifies the creation of an experiment by
adopting ‘typical’ GUI functionalities (e.g., mouse actions). Experimenters
have the opportunity to define basic UVs actions (e.g., waypoint definition)
directly on the map. A set of tools, in the form of buttons, are available to the
experimenters. Each button has a specific orientation i.e., nodes management
(e.g., addition, deletion), nodes behavior definition (e.g., activation of sensors,
define data management algorithms) while with the use of the mouse, exper-
imenters can define the route of each UV in the area. Every node is depicted
in the map with a different color to avoid confusion in the cases where an
experiment involves multiple nodes. In addition, the visual editor gives the
opportunity to experimenters to define the time when an action/movement
should take place maintaining the spatio-temporal aspect of the experiment.
It should be noted that both editors are synchronized while the error messages
and warnings are presented in the textual editor area.

15.5 Technical Details 475

15.4.5 The Validator and the Generator

The EDL validator is responsible for performing syntactic and semantic
analysis on the provided EDL scripts. The validation is performed on top of the
proposed EDLmodel that is based on the EDLgrammar. The validator accesses
the provided script and identifies any semantic errors that could jeopardize the
execution of an experiment. Specific constraints should be fulfilled when the
experiment workflow is defined. These constraints are continuously checked
by the proposed editors and in case some of them are validated to be false,
errors will be presented to the experimenters through various means (e.g.,
with red color). The main responsibilities of the validator are: (i) it provides
syntactic and semantic validation of each experiment workflow; (ii) it applies
a set of constraints that should be met in order to have a valid experiment;
(iii) it is capable of applying semantic checking for nodes communication,
spatio-temporal management, sensing and data management.

RAWFIE also offers a code generation component. When no errors are
present, the component has the opportunity to generate specific files e.g., part
of the final code to be uploaded in the UVs. The code generation component
takes as input the experiment workflow in terms of EDL commands and
transforms them in the appropriate target language. This component conveys
design and implementation issues that need to be handled in such a way
that will help experimenters to avoid errors and development problems.
The module receives commands from the available editors, data from the
underlying model (the terminology of the EDLas depicted by the Ecore model)
to create the experiment code/files.

15.5 Technical Details

15.5.1 The EDL Grammar

The EDL and the provided editors are built by adopting the Xtext framework4.
The Xtext is a framework for the development of DSLs. It offers functionalities
that let engineers to define their language using a powerful grammar. The
grammar is the most important part of the Xtext framework and, actually, it is
DSL by itself. The grammar aims to provide functionalities for describing the
concrete syntax of a DSL(e.g., the EDL) and how it is mapped to an in-memory
representation. The in-memory representation of the EDL is the semantic
model. The semantic model is produced during the experiment definition by

4https://eclipse.org/Xtext/

476 An Experiment Description Language for Supporting Mobile

the parser. The definition of the EDL with the help of the Xtext involves the
automatic creation of the corresponding Ecore model (i.e., a meta model of
the EDL) that describes the structure of the EDL’s abstract syntax tree (AST).
The Xtext infers the Ecore model from the EDL grammar and adopts Ecore’s
EPackages to define the Ecore model. Ecore models are declared to be either
inferred from the grammar or imported. By using specific directives, engineers
instruct the Xtext to infer an EPackage from the grammar.

After the generation of the EDL meta-model (i.e., the Ecore model), we
also get a set of tools and functionalities like the parser, the linker, the type
checker, the compiler as well as editing support for Eclipse, IntelliJ IDEA
and Web. The parser creates an in-memory object graph while experimenters
define the script of each experiment. The object-graph is an instance of the EDL
Ecore model. The parser is fed with a sequence of terminals and walks through
the so-called parser rules. A parser rule produces a tree of non-terminal and
terminal tokens i.e., the parse tree. Parser rules provide a building plan for
the creation of EObjects that form the EDL semantic model (i.e., the AST).
It should be noted that the EDL terminal rules are described using Extended
Backus-Naur Form-like (EBNF) expressions.

15.5.2 The EDL Validator and Generator

The Xtext framework offers a set of automatic validation functionalities.
Validation is very important to identify when the defined experiments are in
‘agreement’ with the EDL grammar. The first step of validation is performed
by the available parser. The parser checks the syntactical correctness of any
experiment while presenting error and warning messages. Such messages are
automatically implied through the provided Xtext functionalities and show if
an experiment complies with the terminology of the EDLgrammar. In addition,
the linker checks for broken cross-references between EDL concepts. The
provided editors automatically validate all cross-links by navigating through
the EDL model so that all the installed Eclipse Modeling Framework (EMF)
proxies get resolved.

Apart from the automatic validation tools, RAWFIE EDL offers a set
of custom tools adopted for validation purposes. The custom validator is
written in the Xtend language5 and adopts pure Java classes. The Xtend is
a statically-typed programming language which translates to comprehensible
Java source code. Syntactically and semantically, the Xtend has its roots in

5http://www.eclipse.org/xtend/

15.5 Technical Details 477

the Java programming language but is improved on many aspects. It offers
extension methods for enhancing closed types with new functionalities while
type inference and full support of generics offer compatibility with Java. Other
advantages of the Xtend language are the operator overloading, powerful
switch expressions, polymorphic method invocation, template expressions.
The Xtend is very expressive, readable and any Xtend method can be invoked
by Java classes in a transparent way.

The custom validator aims to define additional constraints for the defined
experiments. In RAWFIE, the custom validator is adopted to define constraints
in a semantic level for any experiment. The custom validator returns error
or warning messages when violations in the experiment logic are present.
The validator has access to the underlying database to get data related to
the testbeds and UVs as well as to the experiments. Through this approach,
RAWFIE platform can have full control of the defined experiments and forbid
any action that cannot be performed by the nodes when the experiment will be
realized. It should be noted that the custom validator is extended by adopting
a Java class that includes the management of any check/functionality that is
difficult to be handled by the Xtend language. In the following listing, we see
a part of the validation script.

@Check
def checkDuration(RequirementsSection reqs) {

if (Double.parseDouble(reqs.duration) <= 0)
error("The experiment duration cannot be accepted!

Please insert a positive number.", reqs,
Literals.REQUIREMENTS SECTION DURATION, 101);

}
@Check
def checkMinDistance(RequirementsSection reqs) {

if (Double.parseDouble(reqs.minDistance) <= 0)
error("The experiment min distance cannot be accepted!

Please insert a positive number.", reqs,
Literals.REQUIREMENTS SECTION MIN DISTANCE, 101);

}
@Check
def checkMaxDistance(RequirementsSection reqs) {

if (Double.parseDouble(reqs.maxDistance) <= 0)
error("The experiment max distance cannot be accepted!

478 An Experiment Description Language for Supporting Mobile

Please insert a positive number.", reqs,
Literals.REQUIREMENTS SECTION MAX DISTANCE, 101);

}
@Check
def checkAlgorithm(Algorithm users algo) {

if(!edlV.checkAlgorithm(users algo.algName))
error("Please type another algorithm. The " +

users algo.algName + " is not supported. Available
algorithms: " + edlV.getAlgorithms(), users algo,
Literals.ALGORITHM ALG NAME, 101);

}

The Xtend language is also adopted for the creation of the EDL generator.
The generator undertakes the responsibility of defining a set of files and code
that will be executed directly by UVs. The generator is consisted of a set of
Xtend files and multiple Java classes that depict each command defined by the
experimenter into UVs commands. The Xtend can infer the types of variables,
methods, closures, and so on and, thus, it can produce the mapping between
EDL terminology and the target code.

15.5.3 The EDL Editors

The RAWFIE authoring tool offers two editors: the textual and the visual.
Both editors offer their functionalities on top of the server part of the EDL.
The server part is adopted to be the basis for building the Web version of the
discussed editors. The EDL server is responsible to perform the validation
(syntactic and semantic checking) as already described. All the backend Xtext
functionalities are invoked with HTTP requests to the server-side component.
The server immediately responds to any request and sends to the front end
application data in the form of messages. The text content is either loaded
from the Xtext server or provided through JavaScript. The Web integration of
Xtext supports two operation modes: (i) stateful mode – in the stateful mode,
an update request is sent to the server whenever the text content of the editor
changes. With this approach a copy of the text is kept in the session state of the
server, and many Xtext-related services such as AST parsing and validation
are cached together with that copy; (ii) stateless mode – no update request is
necessary when the text content changes, but the full text content is attached
to all other service requests.

15.6 Case Study: Create and Launch an Experiment 479

The client side of both editors is built through the adoption of JavaScript.A
set of JavaScript files are responsible to visualize the proposed functionalities,
accept experimenters commands and send the appropriate requests to the
server-side component. The map presented in the visual editor is created with
the adoption of OpenLayers6. OpenLayers is a pure JavaScript library for
displaying map data in the most modern Web browsers, with no server-side
dependencies. Experimenters have the opportunity to define in the graphical
interface the routes and characteristics of the UxVs that they should perform
during the execution of the experiment and, accordingly, the contents of both
editors are synchronized. Hence, experimenters can easily switch from one
editor to the other.

15.6 Case Study: Create and Launch an Experiment

In this case study, we show the steps required to define and launch an
experiment. We assume that the experiment, initially, involves two (2) USV
nodes. Assuming that the experimenter has booked the desired time for the
experiment execution, he/she should login into the RAWFIE Web portal where
he/she has access to the offered tools (Figure 15.3). There, the experimenter
can access the authoring tool and use the provided editors. At the left, he/she
can insert commands to the textual editor while at the right he/she can define
nodes information in the visual editor.

For each editor, a set of buttons and menus are available. In Figure 15.3, we
can see the available toolbars with a short description. Experimenters can use
the available tools to insert the templates of specific commands. In Figure 15.4,
we present an example where we insert the code templates for any basic part
of an experiment.

In any step of the definition of an experiment, experimenter can use the
provided content assist functionality to see the upcoming commands according
to the EDL terminology (Figure 15.5). In addition, when an error is identified
by the parser, the corresponding line of the experiment is marked with a red
line and the error message is presented when the experimenter moves the
mouse on the specific line (see Figure 15.6).

Nodes routes can be easily defined either in the textual or in the visual
editor. As mentioned both editors are synchronized, thus, the experimenter
can easily switch for the one to the other. In Figure 15.7, we see the
routes for the two nodes under consideration. Experimenters can easily

6http://openlayers.org/

480 An Experiment Description Language for Supporting Mobile

F
ig

ur
e

15
.2

T
he

R
A

W
FI

E
W

eb
po

rt
al

an
d

th
e

au
th

or
in

g
to

ol
.

15.6 Case Study: Create and Launch an Experiment 481

Figure 15.3 The editors’ toolbars and buttons (above: the textual editor – below: the visual
editor).

Figure 15.4 An example of inserting code templates in the textual editor.

482 An Experiment Description Language for Supporting Mobile

Figure 15.5 The content assist functionality.

Figure 15.6 Error identification by the parser.

Figure 15.7 Waypoints definition for two USVs.

add more waypoints to each route by simply clinking on the map or they
can move/remove waypoints by clicking on the mark (circle) of the waypoint
that will be moved/eliminated. For performing any action with the route of a
node, we should, first, select the corresponding layer as Figure 15.8 depicts.

15.6 Case Study: Create and Launch an Experiment 483

Figure 15.8 Node selection.

Figure 15.9 The addition of a node in the visual editor.

In Figure 15.9, we present the route of a third node that is added into our
experiment.

For each node, we can also define the sensors, the data management
algorithms or the communication interface that will be activated in specific
time intervals during the execution of the experiment. In Figure 15.10, we
present the popup window where the experimenter can manage the adoption
of sensors for a USV. The specific example instructs a USV to activate the
sonar from t = 4 to t = 10 and from t = 32 to t = 44. The same rationale
stands for the invocation of data management algorithms and communication
interfaces.

484 An Experiment Description Language for Supporting Mobile

Figure 15.10 A part of the custom validation script.

After the definition of the experiment either in the textual or in the
visual editor, experimenters can save the experiment by clicking on the
corresponding save button (see Figure 15.3). At the same time, the appropriate
files to be adopted by the remaining components of the RAWFIE architecture
and the UxVs are generated. UxVs commands are stored in the database
and, accordingly, can be adopted by the RAWFIE experiment controller
component. The final step is to launch the experiment. Experimenters can
press the corresponding button and a popup window is presented in the
screen (Figure 15.11). Experimenters can select the experiment they desired
by selecting the experiment ID from the drop down list. Just after the selection
of the experiment, a call to the RAWFIE launching tool is realized and, thus,
the experiment can be immediately executed.

15.7 Discussion and Future Extensions

The RAWFIE EDL offers the necessary conceptual basis for efficiently
creating and launching experiments for mobile IoT applications. The provided
editors incorporate all the appropriate functionalities to assist experts as
well as non-experienced users to define their experiments in a user friendly
environment. In the first place of future research/development plans is the
incorporation of the error messaging mechanism in the visual editor. Hence,
the visual editor will become the appropriate tool for building experiments
while the textual part of the RAWFIE EDL will remain as the place where
experimenters can insert generic information for their scripts. Such informa-
tion is related with experiments metadata or requirements. The vision is to
have a fully graphical interface and only information that is difficult to be
inserted in the visual editor will remain as part of the textual editor. Hence,

15.7 Discussion and Future Extensions 485

Figure 15.11 Launching an experiment.

errors related to possible collisions, semantic/syntactic violations, etc., will
be depicted in the visual part of the provided editors through the adoption of
specific icons and colors. Experimenters will be immediately informed about
the presence of an error accompanied by suggestions for fixing the error as it
already stands for the textual editor.

In addition, another extension is to combine the RAWFIE authoring tool
with the experiment monitoring mechanism to get insights on the experiment
execution in real time. The aim is to have the system proposing possible
modifications in the experiment logic and depict the part of the experiment
that is currently executed. This way, experimenters can see in real time the
experiment workflow as it is executed by the nodes and decide if it is possible

486 An Experiment Description Language for Supporting Mobile

to change specific aspects of the script. For instance, the authoring tool can be
easily enhanced with functionalities related to the real time navigation of the
UVs and, thus, to be fully aligned with experimenters needs. Specific toolbars
can be provided for such purposes and experimenters will have the opportunity
to produce/generate new commands during the execution of the experiment
and UVs will have to change their routes/actions.

15.8 Conclusions

Mobile IoT applications can play an important role to the development of
techniques/tools/services for improving people’s lives in the new era of the IoT.
This can be done through the adoption of mobile nodes interacting with their
environment to collect and process data. Remote experimentation can build
on top of such autonomous devices and become the means for experimenting
with novel technologies before they are applied into real conditions. In
addition, remote experimentation can become the basis for collecting and
processing information related to many domains and, thus, to provide the
means for creating or improving new applications. The research project
RAWFIE offers a platform where numerous devices can be used in remote
experimentation activities. Due to the complexity in defining instructions
by adopting commands immediately executed by the autonomous devices,
the use of a DLS is an easy way to define instructions at a high level.
RAWFIE proposes a DSL called EDL that offers the necessary terminology
for efficiently defining experiments. A validator and a generator are also
proposed to validate the experiments and transform the high level commands
into commands immediately executed by the devices. In this chapter, we
describe the EDL, the validator, the generator and the available editors. We
also elaborate on technical details and provide a case study where we create
and launch an experiment from scratch. Our aim is to show the efficiency of
the proposed approach while describing future extensions that will improve
the offered functionalities and increase the satisfaction level of potential
experimenters.

References

[1] Albu, M. M., Holbert, K. E., Heydt, G. T., Grigorescu, S. D., Trusca, V.,
‘Embedding remote experimentation in power engineering education’,
in IEEE Transactions on Power Systems, Vol. 19, No. 1, pp. 139–143,
Feb. 2004.

References 487

[2] Ameixieira, C., Cardote,A., Neves, F., Meireles, R., Sargento, S., Coelho,
L., Afonso, J., Areias, B., Mota, E., Costa, R. A., Matos, R., Barros,
J., ‘HarborNet: A Real-World Testbed for Vehicular Networks’, CoRR
abs/1312.1920, 2013.

[3] Arnold, B. R. T., van Deursen, A., Res, M., ‘An algebraic specification
of a language for describing financial products’, In Martin Wirsing,
editor, ICSE-17 Workshop on Formal Methods Application in Software
Engineering, 1995, pp. 6–13.

[4] Baxter I., Pidgeon C., Mehlich M., ‘DMS: Program transformation for
practical scalable software evolution’, In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE), ACM Press, 2004,
pp. 625–634.

[5] Blackwell, A., Britton, C., Cox, A., Green, T.R.G., Gurr, C., Kadoda,
G., Kutar, M., Loomes, M., Nehaniv, C., Petre, M., Roast, C., Roe, C.,
Wong, A., Young, R., ‘Cognitive dimensions of notations: Design tools
for cognitive technology’, In Cognitive Technology: Instruments of Mind,
Springer-Verlag, 2001, pp. 325–341.

[6] Bonachea, D., Fisher, K., Rogers, A., Smith, F., ‘Hancock: a language
for processing very large-scale data’, SIGPLAN Notice, vol. 35(1), 2000,
pp. 163–176.

[7] de Lima, J. P. C., Rochadel, W., Silva,A. M., Simão, J. P. S., da Silva J. B.,
Alves, J. B. M., ‘Application of remote experiments in basic education
through mobile devices’, 2014 IEEE Global Engineering Education
Conference (EDUCON), Istanbul, 2014, pp. 1093–1096.

[8] Giordano, E., Tomatis, A., Ghosh, A., Pau, G., Gerla, M., ‘C-VeT
An Open Research Platform for VANETs: Evaluation of Peer to Peer
Applications in Vehicular Networks’, VTC Fall 2008: 1–2, 2008.

[9] Green, T. R. G., Blandford, A. E., Church, L., Roast, C. R., Clarke,
S., ‘Cognitive dimensions: achievements, new directions, and open
questions’, Journal of Visual Languages & Computing, vol. 17(4), 2006,
pp. 328–365.

[10] Gupta, G., and Pontelli, E., ‘Specification, Implementation, and Veri-
fication of Domain Specific Languages: A Logic Programming-Based
Approach’, Computational Logic: Logic Programming and Beyond,
Essays in Honour of Robert A. Kowalski, Part I, 2002, pp. 211–239.

[11] Henriques P., Varanda Pereira M.J., Mernik M., Lenic M., Gray J.,
Wu H., ‘Automatic generation of language-based tools using LISA’, IEE
Proceedings Software, vol. 152(2), 2005, pp. 54–69.

488 An Experiment Description Language for Supporting Mobile

[12] Hermans, F., Pinzger, M., van Deursen, A., ‘Domain-Specific Languages
in Practice: A User Study on the Success Factors’, Technical Report,
Delft University of Technology, 2009.

[13] Herrera, O., Alves, G., Fuller, D., Aldunate, R., ‘Remote Lab Experi-
ments: Opening Possibilities for Distance Learning in Engineering
Fields’, chapter in Education for the 21st Century — Impact of ICT
and Digital Resources, 2006.

[14] Hudak, P., ‘Building domain-specific embedded languages’, ACM
Computing Surveys, vol. 28(4), 1996, pp. 196–202.

[15] Hudak, P., ‘Modular domain specific languages and tools’, In Proceed-
ings of the 5th International Conference on Software Reuse, Washington,
DC, USA, IEEE Computer Society, 1998.

[16] Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu,
A., Shih, E., Balakrishnan, H., Madden, S., ‘CarTel: a distributed mobile
sensor computing system’, SenSys: 125–138, 2006.

[17] Kelly, S., Tolvanen, J.-P., ‘Domain-Specific Modeling Enabling Full
Code Generation’, John Wiley & Sons, Inc., 2008.

[18] Kieburtz, R. B., McKinney, L., Bell, J. M., Hook, J., Kotov, A., Lewis,
J., Oliva, D. P., Sheard, T., Smith, I., Walton, L., ‘A software engi-
neering experiment in software component generation’, In International
Conference on Software Engineering, 1996, pp. 542–552.

[19] Kolomvatsos, K., Valkanas, G., Hadjiefthymiades, S., ’DebuggingAppli-
cations Created by a Domain Specific Language: The IPAC Case’,
Elsevier Journal of Systems and Software (JSS), vol. 85(4), 2012,
pp. 932–943.

[20] Kosar T., Martínez López P. E., Barrientos P. A., Mernik, M., ‘A prelimi-
nary study on various implementation approaches of domain-specific
language’, Information and Software Technology, vol. 50(5), 2008,
pp. 390–405.

[21] Kozil, T., Marek, S., Preparing and managing the remote experiment in
education, in Proc. of the 15th International Conference on Interactive
Collaborative Learning (ICL), 2012.

[22] Mernik, M., Heering, J., Sloane, A. M., ‘When and How to Develop
Domain-Specific Languages’, ACM Computing Surveys (CSUR),
vol. 37(4), 2005.

[23] Meta Object Facility http://www.omg.org/spec/MOF/
[24] Nordmann, A., Hochgeschwender, N., Wrede, S., ‘A Survey on Domain-

Specific Languages in Robotics’, Simulation, Modeling, and Program-
ming for Autonomous Robots: 4th International Conference, SIMPAR
2014, Bergamo, Italy, October 20–23, 2014.

References 489

[25] Oliveira, N., Pereira, M. J. V., Henriques, P. R., da Kruz, D., ‘Domain-
Specific Languages: A Theoretical Survey’, Faculdade de Ciências da
Universidade de Lisboa, 2009.

[26] Pereira, M. J. V., Mernik, M., da Cruz, D., Henriques, P. R., ‘Pro-
gram comprehension for domain-specific languages’, Computer Science
an Information Systems Journal, Special Issue on Compilers, Related
Technologies and Applications, vol. 5(2), 2008, pp. 1–17.

[27] Query/View/Transformation, http://www.omg.org/spec/QVT/
[28] Raymond James & Associates, ‘The Internet of Things – A Study

in Hype, Reality, Disruption, and Growth’, online at http://www.vidyo.
com/wp-content/uploads/The-Internet-of-Things-A-Study-in-Hype-
Reality-Disruption-and-Growt....pdf, July 2016.

[29] Rebernak, D., Mernik, M., Wu, H., Gray, J., ‘Domain-Specific Aspect
Languages for Modularizing Crosscutting Concerns in Grammars’,
IET Software, vol. 3, Issue 3, 2009, pp. 184–200.

[30] Sadilek, D. A., and Wachsmuth, G., ‘Prototyping Visual Interpreters and
Debuggers for Domain-Specific Modelling Languages’, in Proc. of the
4th European Conference on Model Driven Architecture: Foundations
and Applications, Berlin, Germany, 2008, pp. 63–78.

[31] SAFESPOT, available at: http://www.safespot-eu.org/
[32] Schmidt D., ‘Model-driven engineering’, IEEE Computer vol. 39(2),

2006, pp. 25–31.
[33] Spinellis, D., ‘Notable design patterns for domain-specific languages’,

Journal of Systems and Software, vol. 56, 2001, pp. 91–99.
[34] Spinellis, D., Guruprasad, V., ‘Lightweight languages as software engi-

neering tools’, In Proceedings of the Conference on Domain-Specific
Languages, 1997, pp. 67–76.

[35] Sprinkle, J., Mernik, M., Tolvanen, J.-P., Spinellis, D., ‘What Kinds of
Nails Need a Domain-Specific Hammer?’, IEEE Software, vol. 26(4),
2009, pp. 15–18.

[36] van Deursen, A., Klint, P., ‘Little languages: little maintenance’, Journal
of Software Maintenance, vol. 10(2), 1998, pp. 75–92.

[37] van Deursen, A., Klint, P., Visser, J., ‘Domain-specific languages:
an annotated bibliography’, ACM SIGPLAN Notices, vol. 35, 2000,
pp. 26–36.

[38] Vermesan, O., Friess, P., Guillemin, P., Sundmaeker, H., Eisenhauer,
M., Moessner, K., Le Gall, F., Cousin, P., ‘Internet of Things Strategic
Research and Innovation Agenda’, in Internet of Things – Converging
Technologies for Smart Environments and Integrated Ecosystems, River
Publishers, 2013.

490 An Experiment Description Language for Supporting Mobile

[39] Wu, H., Gray, J. and Mernik, M., ‘Grammar-driven generation of domain-
specific language debuggers’, Software Practice and Experience, Vol. 38,
2008, pp. 1073–1103.

[40] Wu, H., Gray, J., and Mernik, M., ‘Unit Testing for Domain-
Specific Languages’, IFIP Conference on DSLs, LNCS 5658, 2009,
pp. 125–147.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

