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The need for safety assurance in critical systems demand for new tools and
techniques which are able to provide the required confidence while main-
taining the costs relatively at a low level. Fault Injection (FI) is a technique
extensively used in several domains, such as space, but sporadically used in
the railways. In this chapter, we present a fault-injection tool able to com-
plement the traditional verification and validation procedures, to validate the
safety of ProSigma, a Safety Integrity Level (SIL) 4 safety-critical system for
railway signaling, implementing a Triple Modular Redundancy (TMR) archi-
tecture. This tool is based on the Joint Test Action Group (JTAG) technology,
and allows emulating the effects of hardware faults. Results from the FI
campaigns show the ProSigma system exhibiting a high degree of tolerance
to most of the injected faults, and unexpected behavior in some cases. The
results also confirm the efficacy of the proposed technique to help understand
worst-case scenarios for validating safety of such a critical system.

11.1 Introduction

The products in all technical and societal domains are required to be certified
against hidden design and implementation defects that may induce malfunc-
tioning, which may cause critical damage to the system itself, including
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the environment and humans. Several accidents caused by malfunctioning
systems are sadly known, going along with the human technological rise.

A safe system is a system that will not cause harm to its users and
the environment, in case a malfunctioning occurs. Safety, thus, comes to
be an attribute of systems, which corresponds to guarantee the absence of
catastrophic consequences on the user(s) and the environment to a certain
extent. A system whose malfunctioning is likely to cause harm to users or the
environment is named a safety-critical system.

Since their first realization, railway system fall into the class of safety-
critical systems. For assuring the safety of such systems, best practices
and standards have been proposed and used along with their technological
evolution. In the last decades, a new series of standards have been proposed,
namely the CENELEC standards (e.g., EN 50126, EN 50128, EN 50129, EN
50159), for regulating the development and safety assessment of software and
hardware. In particular, the EN 50128 describes methods to be used in order
to provide software that meet the demands for safety integrity. Although not
directly referring fault-injection as a possible technique for verification and
validation (V&YV) processes, this is an approach extensively used in other
domains, such as space.

Fault injection (FI) consists of the deliberate insertion of faults (i.e.,
realistic perturbations) in computer systems components in order to evaluate
the dependability and safety properties of systems or to validate specific
fault handling mechanisms. As typically FI tools perform FI campaigns
with minimal user intervention (ideally, the process is fully automatic), it is
possible to perform very large number of experiments (very often thousands
or even millions), which makes FI a valuable method to anticipate worst-case
scenarios or rare failure modes that are very hard to anticipate using analytical
modeling or simulations techniques.

In this chapter, we present a FI tool and report some preliminary results
meant to validate a TMR system for railway signaling. In the field of railway
interlocking systems copper-based, long-distance connections exists between
relay switches and remote equipment. In the case of constructing a new
system, such as the one reported in this paper, the state-of-the-art solution is
to apply Internet Protocol (IP) based signal transmission using Global System
for Mobile communications (GSM) or fiber-optic communication. These new
technologies pose significant safety challenges, which constitutes a relevant
scenario for using FI.

The rest of the chapter is organized as followed: Section 11.2 presents
background on V&V processes, certification and standards of railway sys-
tems, and FI; Section 11.3 presents the ProSigma system railway signaling
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system; the proposed FI tool-based on On-Chip Debugging (OCD) tech-
nology is described in Section 11.4. The experimental application of the
proposed FI tool for the validation of the safety of the ProSigma signaling
system is presented in Section 11.5, where results obtained are discussed.
Section 11.6 concludes the chapter.

11.2 Fault Injection for V&V and Certification

Several approaches have been proposed to assess and guarantee the correct
functioning of a given product. Among these systems V&V are activities that
allow verifying whether a product meets its own requirements (Verification),
and that the product does what is expected to be done (Validation). How-
ever, the application of V&V is challenging, as the definition of methods,
strategies, and tools for verifying and validating a system adequately, while
simultaneously keeping the cost and delivery time reasonably low, is inher-
ently complex. Companies, in fact, are often, on one hand, pushed towards
meeting predefined quality goals, and on the other hand, required to deliver
systems at acceptable cost and time to market. It is not rare to find companies
following a brute-force approach, by focusing large volume investments
into tooling and in-house training, especially when coming down to the
development of mission- and safety-critical systems.

Validation and verification are time-consuming activities in traditional
software engineering even for non-critical applications. In the case of safety-
critical systems, which are often embedded, the complexity of V&V and
certification procedures are exacerbated by the need of keeping properties
such as safety or availability, and by involving custom and Commercial Oft-
The-Shelf (COTS) hardware elements and application dependent-interfaces,
resulting in an extremely large number of potential factors.

Safety-critical systems also required, over time, the creation of a field
of study particularly aimed at focusing on safety-related issues: safety engi-
neering. Safety engineering is a well-established field, including several tech-
niques for the assurance and assessment of safety in a system. Among these,
Failure Modes and Effects Analysis (FMEA), Preliminary Hazard Analysis
(PHA), and Fault-Tree Analysis (FTA) are some of the most used techniques.
In particular, FMEA is a technique that aims at collecting the known system’s
failure modes, and studying its propagation paths through the system and its
effects. Failure Modes, Effects and Criticality Analysis (FMECA) is a version
of FMEA in which criticality is taken into account, aiming to identify all
critical and catastrophic subsystem or system failure modes.



230 Validating a Safety Critical Railway Application Using Fault Injection

FMEA is performed mainly manually, even though several works for an
automated FMEA have been proposed [1].

Such techniques are expected to be part of the V&V process of a safety-
critical system, and even be mandatory. In this direction, standards started to
rise with the aim of reducing risks related to the use of safety-critical systems.

11.2.1 Standards for Safety-critical Railway Applications

Standards have been proposed for developing safety-critical systems, both
general and domain specific and suggesting strategies, processes, and tech-
niques to adopt along the entire development cycle.

The specification, design and validation of dependability-related aspects
concerning railway applications are regulated by the CENELEC standards.
The most important European standard concerning robustness in this field is
the standard EN 50128:2011 — Railway applications — Communication, sig-
naling, and processing systems — Software for railway control and protection
systems (EN 50128) [2]. The EN 50128 gives indication about the lifecycle
that has to be followed, the techniques and measures to be applied, the
necessary competences, and the expected documents and their content. The
Software Requirements Specification shall express the required properties of
the software being developed. These properties, which are all (except safety)
defined in ISO/IEC 9126 series, shall include (among others) robustness
and maintainability. The Software Verification Plan shall address (among
other properties) the evaluation of the safety and robustness requirements
(defined in the Software Requirements Specification). Several techniques
and methodologies are also indicated for ensuring the software robustness
properties, as Software Error Effect Analysis (i.e., SW-FMEA).

Furthermore, the EN 50128 concentrates on methods that need to be used
in order to provide software that meet the demands for safety integrity. The
EN 50128 defines robustness as the “ability of an item to detect and handle
abnormal situations”. The most important of software techniques to assess
and increase the robustness are the following: Defensive Programming, Infor-
mation Encapsulation, Fault Detection and Diagnosis, Error Detecting and
Correcting Codes, Diverse Programming, Software Error Effect Analysis,
Control Flow Analysis, Common Cause Failure Analysis, FI, Boundary Value
Analysis, and Coding Standard.

Generally, Railway Safety Cases shall provide evidences that the consid-
eration of Robustness (error cases, abnormal inputs, etc.) is provided together
with the system validation and verification.
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According to the standard CENELEC EN 50129:2003 [15], safety-related
software has been classified into five safety integrity levels, where O is
the lowest and 4 is the highest. To be conforming to SIL 4 requirements,
the safety availability of the equipment must be over 99.999%. From the
safety functionality point of view (CENELEC EN 50129:2003 [15]), SIL is
a number that indicates the required degree of confidence that a system will
meet its specified safety functions with respect to systematic failures. From
the software point of view, CENELEC EN 50128:2011 [14] defines software
safety integrity level as a classification number that determines the techniques
and measures that have to be applied to software.

11.2.2 Fault Injection

Fault injection is a technique consisting in deliberately injecting faults (e.g.,
bombarding devices with radiations) or modifying parts of the system in a
way that emulates the presence of such faults.

Fault injection has been used extensively in research and also already
recommended by several standards, such as space [3] and automotive [4]
industry standards, in addition to Information and Communication Technol-
ogy (ICT) industry in general [5]. The space industry, in particular, has a long
tradition of using FI as part of the V&V activities, namely to simulate the
effects of cosmic radiation in on-board systems. As mere examples, here are
some references for the interested reader [6—8]. There are also some examples
of the use of FI in the railway industry [9, 10].

Faults are the hypothesized cause of an error (an unexpected internal
state of a system) that can lead to a system failure (e.g., crash, performance
degradation, or any interruption of the service provided by the system) [11].
Hardware faults, such as bit-flip and stuck-at, occur in hardware components,
while software faults are defects in a piece of software that exist due to some
issue during the development phase, such as a missing system specification
or poor testing. FI consists of deliberately inserting faults into a system in a
way that emulates real faults [12]. It is a well-known approach used in many
works, where the observation of systems in the presence of faults is needed,
such as for fault tolerance and dependability validation [13, 14], estimation
of fault-tolerance parameters [12], and benchmarking [15].

The type of faults injected typically fall into three kinds: hardware faults
(e.g., bit flips), software faults (i.e., bugs), or input corruption at component
interface level (often named as robustness testing). Although the initial FI
tools are used to hardware approaches to inject (hardware) faults, including
pin-level, heavy-ion radiation, and electromagnetic disturbances, modern FI
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tools use software approaches to inject the faults (actually, faults are emulated
by software by mimicking the fault effects through the injection of errors).
As modern FI tools use software to inject/emulate the faults, a key issue is the
precision of the fault models. That is, the injected faults should be represen-
tative of the real faults that affect systems in the field. This is not a problem
for the hardware faults, as the classic bit-flip or bit stuck-at models (at the
processor register or memory level) are widely accepted, but the injection
of realistic software faults (i.e., bugs) is far more complex. In software FI,
the goal is to inject software faults (bugs) in a given software component
to emulate the erroneous behavior that may result from the activation of
residual bugs that may exist in that component. In this way it is possible
to evaluate whether the system can cope up with the failures in the target
software component or not, or to perform an experimental estimation of the
risk of (re-) using software components.

An example of a survey of the earlier FI methods can be found in [16]
and a very recent and extensive survey (57 pages) covering software FI is in
[17], where the issue of defining realistic software fault models is explained
in detail.

11.3 The ProSigma Safety-critical Railway
Interlocking System

ProSigma [18] is a versatile Hardware—Software (HW-SW) system designed
primarily for railway trackside signaling and communication purposes. It
is a Safety Signal Transmitter (SST), which provides fail-safe signal trans-
mission with high availability. It captures the analog signal outputs of the
railway interlocking system, processes and transmits this information to a
remote control center (DaKo). The ProSigma system is designed to be SIL
4 certified according to CENELEC EN 50126-1, 50126-2, 50128, and 50129
standards [12-15].

In case of disconnection or system failure, the outputs move into a safety
position. The system is built from modular cards installed in racks, which
enables system designers to scale the system according to the application
needs.

11.3.1 Concepts of Generic Product, Generic Application
and Specific Application

To ease the certification process, the system software is designed to have a
three-layered architecture as it can be seen in Figure 11.1.
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Generic application

Generic product

Figure 11.1 The ProSigma abstraction layers.

The bottom layer, called Generic Product (GP), implements the common
functionalities of the system, including time synchronization, handling Con-
troller Area Network (CAN) communication and other HW interfaces. The
GP is quite complex, but it has to be certified only once, as it is common to
all applications.

The middle layer, called Generic Application (GA), is a lightweight soft-
ware component running on the top of the GP. Each GA handles one railway
object (e.g. railway traffic signal, switch, etc.). Because of the simplicity of
the code, the certification process of GA is relatively easy.

In the deployment phase of the system the GAs has to be parameterized
with the actual values of the specific environment (e.g., voltage comparator
thresholds, sampling frequency, etc.), which result in Specific Applications
(SAs), which are the top layer of the software architecture. In the ProSigma
system, the Logic and Input (LI) cards implement these three-layers design
architecture.

11.3.2 The System Architecture and Functionality

A ProSigma test system was built in a pilot project to assess the benefits and
drawbacks of FI, whose experimental results are presented in this chapter. The
system has identical functionality but limited number of components com-
pared to the one which is deployed trackside. The system adds a networking
layer on top of a conventional relay based interlocking system. This network
layer transmits the railway object states — represented by the relay outputs —
to a remote control center (DaKo). The system architecture (Figure 11.2)
consists of the following components:
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Figure 11.2 System architecture.

* Power Supply Unit (PSU), which supply 3.3 and 24 V of DC voltage to
the cards;

* An analog signal conditioning unit (JIF) which filters and down-scales
the relay output voltages from 0—48 V to 0-3 V range.

* Logic and Input card (LI) which are sampling the input voltages. They
also contain the railway logic.

* CAN to UDP protocol converter cards (ETH), which convert CAN
messages to UDP packets.

* UDP to X25 over IP protocol converter cards (RPI), which convert UDP
packets to X25 over IP telegrams.

* Two diagnostic centers, which are responsible to log status and commu-
nication information and to provide diagnostic data to the operator.

11.3.2.1 Logic and Input (LI) card

The input signals of the system are the analog output voltage signals of a
relay-based railway interlocking system: “Domino 70”. These voltage signals
are passed through a relay interface unit (JIF), which performs the voltage
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level interfacing for the Digital Inputs (DI) of the LI card. The Logic and
Input (LI) card is a TMR system composed of three microcontrollers from dif-
ferent controller families. Red, Green and Blue (R, G, B) are the codenames
for the three channels.

The Logic and Input (LI) cards are reading the analogous input signals
and interpret them according to the rules of the specific railway object, which
they are connected to. Finally LI cards transmit the status of the railway object
states via CAN bus. The three channels (R, G, B) communicate on separate
CAN buses, which are located on the back-panel of the mounting rack. See
Figure 11.3 for the LI card.

The firmware (FW) of the controllers has been developed by different SW
teams to avoid common mode faults. LI cards follow the three layered SW
architecture described before consisting of two different FWs: GP and GA are
parameters for the SA. On each channel, the FW of GP and GA are running
on the microcontroller in a time and space partitioning architecture. On all
channels, FW of the GPs handle the A/D conversion of the input signals. The
raw data of the converted signals are filtered with a SW implemented de-
bouncing algorithm in the GP to filter out the high frequency glitches of the
relays. The GP FW calls the GA FW every 32 ms and the de-bounced values
of the input signals are passed to the GA. The GA implements the railway
object.

The railway object used in this case study is called block direction, which
contains the information of the direction of traffic on the actual railway
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Figure 11.3 LI card interfaces.
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Table 11.1 Railway object outputs

Valent Input ~ Antivalent Input  Meaning in Case P1 =0 Meaning in Case P1 =1

0 0 Transient (0 x 20) or Transient (0 x 20) or
invalid (0 x 80) state invalid (0 x 80) state

0 1 Direction = Exit (0 x 02)  Direction = Entry

0 x 01)

1 0 Direction = Entry Direction = Exit (0 x 02)
(0 x 01)

1 1 Transient (0 x 20) or Transient (0 x 20) or
invalid (0 x 80) state invalid (0 x 80) state

segment. The object has one input encoded by a pair of valent-antivalent
input signals. Depending on the input signals and the value of parameter P1
the meaning of the direction could be entry, exit, transient or invalid as it
is described in Table 11.1. The valent-antivalent signal pair does not change
simultaneously so for a short period of time invalid input patterns (00 or 11)
are accepted as transients. After that time period is passed, the signals became
invalid.

The interpreted railway object state, encoded in the hexadecimal numbers
indicated in Table 11.1, is transmitted on the CAN bus. The Sigma bus in
Figure 11.3 indicates a proprietary application layer protocol implemented
on top of the CAN bus. Specific Application Module (SAM) contains the
parameters for the Generic Application. In the SAM module, 3 Flash memory
chips contain the parameters for the three channels R, G, B. The LI card
reads the parameter values from the memory via Serial Peripheral Interface
(SP]) bus.

Interfaces of a LI card can be seen in Figure 11.3.

Up to 10 railway object modules could be inserted in one rack. In case
there are more than 10 railway objects in a system, then the extra object
modules are inserted into multiple racks. The racks are connected together
to form a Local Area Network (LAN) using ETH cards.

11.3.2.2 ETH card

Primary function of the CAN to UDP protocol converter (ETH) card is to
collect the railway object state information of the three channels from the
CAN bus and transmit these messages as UDP datagrams on the Ethernet
network. As it can be seen from Figure 11.4, ETH cards are connected to
the CAN buses of all the three channels of the LI cards. This connection
is physically realized through the back panel of the modular racks. Each
ETH card contains two identical HWs. The inputs from both HWs are the
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Sigma bus
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p

Figure 11.4 ETH card architecture.

same CAN channels, while the outputs are connected to two distinct LAN
networks.

11.3.2.3 RPI card
The UDP messages are transmitted to the UDP to X25 over IP protocol
converter unit (RPI). RPI architecture is depicted in Figure 11.5. This unit
is responsible for converting the UDP packages to X25 over IP telegrams and
sending these to the data receiver (DaKo), which is not part of the system.

The RPI module also performs a voting on the data collected from the
three channels (extracted from the UDP packets), thus being central to the
correct functioning of the TMR schema. Moreover, it provides two times
2-out-of-2 fault tolerance schema applied to both received data and voting
result: the information is analyzed from two separated nodes (here named
node 0 and node 1), and differences among data cause the entire RPI node to
fail. Each node has a 2-out-of-2 architecture.

The underlying hardware of the UDP to X25 over IP protocol converter
card/RBC-Prolan Interface (RPI) card is identical to the ETH card.

The functionality of the RPI card includes:

* Managing X25 connection with the Radio Block Center;

* Voting about the object states;

* Transmitting object states to the RBC;

* Exchanging Heartbeat (HB) signals both on active and on the potentially
active channel.

11.3.2.4 Power Supply Units
In each rack, three Power SUpply (PSU) cards provide the necessary energy
for the operation of the system.
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11.3.2.5 Diagnostic centers
Two diagnostic centres (PSDK1 and PSDK?2) are monitoring and logging the
traffic on the internal and external networks.

11.3.2.6 Parameter modules
The parameter modules (PAR) contain the parameters of the GP and GA,
which are required for the operation of the system.

11.3.3 System’s Critical Aspects Worth to Study Using FI

Considering the block direction railway object, a dangerous situation occurs
when the DaKo system’s block direction information is the opposite direction
than the actual block direction. This situation could occur when an opposite
block direction information is sent to the DaKo or when the block direction
changes but the system does not transmit this information to the DaKo. Thus
the critical parts of the system are the input processing parts of the LI cards
and the voting part of the RPIs. These are the parts where fault-injection
should be applied to assess the system’s robustness.

11.4 The ProSigma Fl Framework

Hardware and software failures may both occur with non-negligible prob-
ability, especially in a complex safety-critical system operating in harsh
environments, and both types have a potentially huge impact on the system
and on the application (railway signaling in the ProSigma case). As presented,
the FI technique aims at emulating situations in which the system and its fault
tolerance mechanisms face the activation of hardware and software faults,
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and, at the same time, collecting information on the fault activation, errors
and failures caused.

The proposed FI framework has been designed to inject hardware and
software faults, taking advantage of on-board scan-chain circuitry (or OCD),
to emulate faults with controlled intrusiveness. The proposed framework also
provides the infrastructure for collecting the experiment results automatically,
allowing posterior validation of system safety requirements. In particular, the
FI framework is based on the JTAG scan-chain circuitry, a de-facto standard
implemented on a large variety of microcontrollers, including those used
in safety-critical scenarios. The JTAG allows, for instance, reading values
in RAM without interrupting the controller execution, and writing values in
local controller registries. These are key features to both inject the faults and
collect direct impact at CPU level. As an example, a bit-flip fault is injected
by stopping the controller execution, reading the value of a CPU register,
changing the value of a given bit (or bits), and writing back the new value
to the register. The intrusiveness of such injection operation is just a few
operation cycles.

11.4.1 Fault Injector Framework Architecture and Functionalities

The architecture of the FI framework, shown in Figure 11.6, is made up of
several components, distributed on a host system and on the target system,
namely:
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Figure 11.6 Fault injection structure and environment.
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* the fault injector component, executing a set of instructions directly
on the target system, using the OCD interface of the target system. The
fault to be injected are defined in a specific module of the injector, called
fault library;

* the workload generator, controlling the inputs to the target system. The
stimuli are stored in a workload library;

* the monitor, which collects information about the correct functioning
of the target system from the target system and its environment. The
data is stored in a collection module, including a data analyzer for
the user;

e the controller module, which orchestrates the several modules of the
FI tool according to parameters specified in the form of configuration
profiles.

Fault Injection campaigns consist of five phases, ranging from the definition
of the faults to their injection, ending in the analysis of the results. In details:

* Definition phase: the user defines the faults to inject and their locations,
the workload details and profiles, and the information to be monitored;

* Set-up phase: in this phase the user connects the FI environment
installed in the host system to the target system, configure the profile
of the FI campaign(s), and defines the target system requirements to be
validated automatically by the system;

» Execution phase: in this phase the user launches one FI campaign at a
time, which can be paused and resumed at any moment. A FI campaign
is made of several runs, each run executing the target system (in this
context the ProSigma system, or part of it) and injecting a fault (FI run,
or FIR). Alternatively, runs with no fault injected are called Golden runs
(GR), which are useful to observe the nominal behavior of the system;

* Analysis phase: this phase serves for analyzing the data collected for
possible errors and failure events collected. Depending on the target
system, a huge variety of analysis can be carried out;

* Validation phase, finally, correlating the errors and failure events, if
any, to the target system requirements defined.

11.4.2 The ProSigma Fl Tool (ProSigma-FIT)

The proposed framework was implemented into the ProSigma FI tool for
the ProSigma system (ProSigma-FIT). A representation of the implemented
FI environment is depicted in Figure 11.7. The tool can inject “bit-flips”
hardware faults, i.e., emulating the flip from 0 to 1 or viceversa, in one of



11.5 ProSigma Safety Assessment Through FI: Experiments and Results 241

Host system

usB

ocD Debugger

link

Figure 11.7 Fault injection structure and environment.

the positions of a given registers, These kinds of faults are usually caused
by environmental conditions, as charged particles passing through the cir-
cuitry. ProSigma-FIT injects faults in the microcontrollers that constitute the
ProSigma system, using a host system running Windows 7. The host performs
the injection using a debugger communicating through USB port, an external
electronic board equipped with circuitry for communicating with a given set
of microcontrollers using an OCD port (JTAG in the current case).

ProSigma-FIT is developed as a Java application, and it uses an external
library named OpenOCD, which eases the use of JTAG protocol by offering a
set of high-level command to a user of the host system. OpenOCD is a project
developed at University of Applied Sciences Augsburg [19]. The tool is made
of core classes, which include objects for injecting faults and saving data into
a MySQL database (Fault Injector package), a package for managing the FI
environment and the target environment (ProSigma Environment package),
and objects for monitoring the status of the target system and its environment
(Monitor package).

11.5 ProSigma Safety Assessment Through FI:
Experiments and Results

The ProSigma-FIT was used to assess the safety mechanisms implemented
by the ProSigma system, both at hardware and software level, as a whole.
The ProSigma-FIT was setup to target both CPU registers and RAM memory
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locations of both the targets locations (G channel of the LI card and RPI), and
to performed several FI campaigns.

11.5.1 Safety Assessment of the Prosigma System:
Experimental Setup

We injected hardware bit flips in the ProSigma system, namely in the G chan-
nel of the LI card (target system: TI LM3S52948 microcontroller), which is
one of the TMR channels, and in the RPI, node O (target: TI TMS570LS3137
microcontroller), which is one of the two modules contained in a RPI card
performing the voting functionality. The faults are injected using two JTAG
debuggers, namely the Texas Instruments LM3S8962 and the Texas Instru-
ments XDS100. Figure 11.8 shows a photo of the complete experimental
setup.

11.5.2 Results

The ProSigma-FIT injected a total of 10,702 faults in few days. Table 11.2
presents the failure modes (system’s modules level) monitored by the
observers in the LI and the RPI cards. Table 11.3 shows the FI campaigns
performed and presents a summary of key results. Figure 11.9 shows the
distribution of the failure modes in each FI campaign.

As an example, we selected one of the ProSigma system requirements
(R1) to be at validated. Due to the page limit, this chapter does not address the
validation of other requirements. The requirement selected is the following:

R1 — AFTER the INPUT status is set, the system’s client must
EVENTUALLY receive a message indicating the SWITCHING
STATE and the CORRECT OBJECT STATE.

Most of the faults injected in the channel G of the LI card (i.e., one of
the channels of the TMR) caused effects in the ProSigma system, as shown
in Table 11.3. However, as expected, the system managed to tolerate all the
faults injected in the LI card. In addition to the more detailed analysis of the
fault effects (especially for the ones that caused Crashes and Performance
Failures) in the LI card, more comprehensive FI campaigns are needed to
gain additional confidence in the system. Previous FI experiments performed
for space application [3] have shown that unexpected error propagation due
to shared resources such as memory may cause common mode failures.
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Figure 11.8 The ProSigma system and the FI tool and environment.

Table 11.2 Failure modes

Target Observer  Failure Mode Conditions
LI card, G channel ~CANbus No PIT* messages  No PIT messages from the G
(NPm) channel on the CAN bus for
more than 3 seconds
LIcard, G channel ~CANbus No CONN** No CONN messages from the
messages (NCm) G channel on the CAN bus
for more than 3 sec.
LI card, G channel CANbus Performance PIT or CONN messages
failure (P) appear late on the CAN bus
(latency between 1 and 3
seconds)
LI card, G channel CANbus Crash (C) No PIT and CONN messages
for more than 3 sec.
RPI card, module 0 CAN bus  All the same failure modes defined for the

LI card

*PIT is a high-level protocol implemented by the ProSigma system in the LI card.
**CONN is a low-level protocol (right above the CAN messages) implemented by the
ProSigma system in the LI card.

Concerning the faults injected in the RPI (voting) card, a single campaign
was enough to observe Crash failures that caused the system to stop working,
entering in a fail-safe state. Next FI campaigns will be focused on the
comprehensive evaluation of the SW voting elements.

As shown in Figure 11.9, the faults injected caused a significant per-
centage of failures in the target (G channel and RPI). In particular, faults
injected in the LI card caused failures in the G channel in about 30% of the
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Table 11.3 Summary of FI campaign results
Target Failures

Campaign #FIRuns NCm NPm P C ProSigma Behavior
#1 (LI, registers) 674 0 15 5 152  Failure tolerated

#2 (LI, registers) 618 0 2 0 159  Failure tolerated

#3 (LI, registers) 720 0 5 1 172 Failure tolerated
#4 (LI, registers) 721 0 6 0 171  Failure tolerated

#5 (LI, RAM) 2,116 0 10 0 828  Failure tolerated
#6 (LI, RAM) 2,950 0 0 0 854  Failure tolerated
#7 (LI, RAM) 2,150 0 23 1 828  Failure tolerated

#8 (RPI, registers) 753 0 28 1 472 Safety state (Crash)
Total 10,702 0 61 7 3164

PIT
. "Q.:v mance
ox
20%

Figure 11.9 Fault injection campaign: failure modes distribution.

times, with “Crash” failures being the most frequent type, followed by “No
PIT messages” and “Performance”, and with “No CONN messages” failures
only occurred when a Crash occurred, without any isolated occurrence. Con-
versely, more than 60% of the faults injected in the RPI card caused failures,
most of which were “Crash”-type. We believe that such behavior is due
to additional fault tolerance mechanisms contained in the TMS570LS3137
microcontroller, as the lock-step schema.

Finally, during the campaigns we measured an average injection time
below Ims (round-trip-time host-controller-host). The injection operation
is hence quite invasive, being the period of the fastest microcontroller of
6.25 ns. However, the impact of the introduced latency can be tolerated by
the single target system. We aim at implementing dedicated module to reduce
the injection time in a future work.
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11.6 Conclusion

This chapter presented a FI tool based on the JTAG technology proposed for
validating a safety-critical railway signaling system, called ProSigma, a TMR
system for railway trackside signaling and communication purposes. The
ProSigma system has been developed at Prolan Zrt., and has been designed
for being certified by the CENELEC standards as SIL 4, the most demanding
level in terms of Safety availability.

The FI tool demonstrated to potentially reduce costs related to V&V
activities, as it is able to highlight critical situations in which the system under
test acts in a hazardous manner. The use of automated FI campaigns, focused
on several components of the target system, allows to expose the system to
a very large number of fault scenarios, helping gaining confidence in the
safety properties of the system under validation. Results from a thorough FI
campaigns are presented, illustrating the effectiveness of the FI tool and the
approach in general, which confirms to be a valid instrument to help on the
V&V of safety-critical system.
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