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4.1 Introduction

Following standards and applying good engineering practices during software
development is not enough to guarantee defects free software, thus additional
processes, such as Independent Software Verification and Validation (ISVV),
are required in critical projects. The objective of ISVV is to provide comple-
mentary and independent assessments of the software artifacts in order to find
residual defects and allow their correction in a timely manner. Independence
is the most important concept of ISVV and it has been referred to and used
in safety-critical domains such as civil aviation (DO-178B [1]), railway sig-
nalling systems (CENELEC [2]), and space missions (European Cooperation
for Space Standardization (ECSS), e.g., [3, 4]). However, such systems are
still far from being perfect and it is common to hear about software bugs in
aeronautics, train accidents caused by software problems, satellite systems
that need to be patched after launch, and so on.

Previous studies have analysed the results of ISVV activities [5, 7],
looked into consolidated ISVV metrics [8] and studied the importance of
independent test verification [9], showing that existing standards and good
engineering practices are not enough to guarantee the required levels of safety
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82 A Process for Finding and Tackling the Main Root Causes

and dependability of critical systems (CSs). Independence of Verification and
Validation (V&V) avoids author bias and is often more effective at finding
defects and failures. Independence can be managerial, financial or technical,
brings separation of concerns, complementarity, second/alternative opinions,
and also has the merit of pushing development and in-house V&V teams
to focus on the quality of their work. The role of independence at early
development phases is highlighted in EasterBrook [10] and clearly stated
in the requirements of several standards such as CENELEC [2] (depending
on the SIL level), and DO-178 [1] (where, for example, for the most critical
level – Level A – 33 out of the 71 objectives/requirements of the standard
must be satisfied with full independence).

The Orthogonal Defect Classification (ODC) [11] is a generic classifica-
tion technique that turns semantic information in the software defect stream
into a measurement on the process where defects have been caused, enabling
an efficient root cause analysis. ODC [11] can be applied to the defects
identified during ISVV in order to study their classifications (namely: type,
the fix that removed the defect; trigger, the defect identification activity/
condition; and impact, the effect of the defect if not corrected). ODC is the
most commonly used defect classification scheme, but it was not specifically
developed for CSs, or for systems that need to fulfil specific certification
requirements.

The application of ODC to the defects identified during ISVV has been
described in Silva and Vieira [12]. In that work, we used ODC to classify
a dataset of 1070 development, validation, and operation defects from space
applications that followed ECSS standards. The conclusions were that most of
the defect types found are related to: (i) documentation issues (this is logical
since the ECSS processes are heavily based on documentation evidences);
(ii) functionality issues (generally related to requirements understanding and
source code bugs that compromise the foreseen functionalities); and (iii)
defective implementations of the planned functions (algorithms). The classi-
fication has also shown that the main defect triggers are related to document
consistency, traceability activities, and test activities. Also, the main impacts
include system capability, reliability, maintainability, and documentation
quality. However, the key conclusion is that a large number of issues could
not be classified due to unfit taxonomy of defect types, triggers and impacts,
causing many doubts in the classifications (more that 30% of the cases).

In order to enhance ODC for better applicability to CSs, thus covering
all ISVV defects and easing the classification for industry, as in Silva and
Vieira [13, 29], we proposed specific adaptations of the taxonomies of three
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classification attributes: Type, Trigger, and Impact. The enhanced classifi-
cation enabled the full coverage of the defects in the dataset, providing
more precision and a sounder root cause analysis support. The adaptation
has been defined after conducting the classification of the 1070 defects
with the original ODC (presented in Silva and Vieira [12]) and by carefully
analysing the classification gaps. To validate the modifications, this enhanced
version of ODC was used to reclassify the entire dataset, allowing its full
classification. However, the work presented in Silva and Vieira [13] does not
concretely contribute to understanding the problems that lead to the defects,
which motivates the root cause analysis and the suggestions for improvements
performed in the present work. The work described in this chapter represents
the definition of a defects assessment process and the results of the application
of this process to a space systems defects dataset.

This chapter presents an analysis on trends, common (and uncommon)
problems and their causes, and look at the general picture of critical defects
within the software development lifecycle of space systems, considering
our dataset of 1070 defects. The results are intended to help engineers
in tackling the problems starting from the most frequent ones, instead of
dealing with them one by one, as is traditionally done in industry nowadays.
In practice, this work brings to light the main root causes of issues in
space projects, which were identified, based on the defects classification and
on relevant expert knowledge about those defects and about the software
development process, contributing toward proposing improvements to the
processes, methodologies, tools, standards, and industry culture.

The ultimate objective of this work is to enable, through a proposed
assessment process, a detailed analysis of the defects and identification of
their sources (common root causes) in order to: (i) avoid their introduction
(by tackling the main deficiencies in software engineering); and (ii) allow a
more efficient detection of the remaining defects during the software deve-
lopment lifecycle (by identifying appropriate V&V methods and techniques).
To support our work, the results of the enhanced ODC taxonomy proposed in
Silva and Vieira [13] are used as input and analysed in detail to support the
root cause analysis.

4.2 Background

This section presents some background concepts, namely in what concerns
the Orthogonal Defect Classification (ODC), ISVV, and previous relevant
works.
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4.2.1 Orthogonal Defect Classification

The ODC, originally proposed by IBM (Chillarege et al. [11]), is one of
the most used defects classification approaches. It is intended to be generic
and applicable to different technology domains, but it is mostly oriented to
design, code and testing defects. ODC defines eight attributes for defects
classification, divided into two main groups: (i) opener, and (ii) closer. Three
attributes (Activity, Trigger, and Impact) classify the defect when it has
been discovered and so they are part of the opener group. The other five
attributes (Target, Type, Qualifier, Age, and Source) are used when the defect
is resolved, being thus part of the closer group. The full taxonomies for
each attribute can be obtained from the ODC v5.2 specification and are not
included here for brevity. Nevertheless, a description of ODC attributes is
summarized in Table 4.1.

In addition to ODC, several other classification taxonomies exist,
including Beizer’s [14], and IEEE Standard Classification for Software
Anomalies [15]. Although ODC comprises some questionable attributes
(8 dimensions), making it also somehow complex to classify, we have
selected this taxonomy due to its generic nature, its orthogonality, its com-
prehensiveness and the level of usage in industry that seemed higher than for
all the others. Also, it is important to emphasize that ODC has been used in
the past as a starting point for developing new and focused defect taxonomies

Table 4.1 Orthogonal defect classification attributes description
ODC Attribute Description
Activity The actual activity that was being performed at the time the defect

was discovered. The main activities applicable to this work are:
Requirements verification, design verification, code verification, test
verification and test execution.

Trigger A trigger represents the environment or condition that had to exist
for the defect to surface.

Impact The impact is the effect that the team who is classifying the defect
thinks it would have on the system if not corrected.

Target Represents the high level identity of the entity that was fixed.
Type The defect type is defined according to the fix that is necessary to

remove it from the system. For that reason, it is best classified by a
team/person who applied the fix to the defect.

Qualifier Captures the element of a non-existent, wrong or irrelevant
implementation.

Age Categorizes the age of the defect, whether if it is new or surfaced
from a previous defect.

Source Describes the source of the defect in terms of its developmental
history.



4.2 Background 85

for different domains. A few examples were presented by Leszak et al. [16]
and Lopes Margarido et al. [17], which used ODC for studying, building and
validating defect categorization schemes. In practice, the focus of ODC is to
support the analysis and feedback of defect data targeting quality issues from
different phases of the engineering lifecycle.

4.2.2 Independent Software Verification and Validation (ISVV)

Independent Software Verification and Validation is a set of structured engi-
neering activities and tools that allow independent analysts to evaluate the
quality of the software engineering artifacts produced at each phase of the
development lifecycle. ISVV is performed on mature artifacts, which follow
a strict engineering standard and that have been previously verified and
validated as part of the development process. It provides an additional layer
of confidence and is not expected to find a large number of severe defects.

Independent Software Verification and Validation produces evidences that
support measuring the quality of the software and related processes and
is referenced in several international standards: (i) ISVV guide from the
European Space Agency (ESA) [18]; (ii) ISO Software Lifecycle Processes
(ISO/IEC 12207) [19]; and (iii) IEEE Software V&V (IEEE 1012) [20].

Independent Software Verification and Validation includes six phases
(Figure 4.1) that can be executed sequentially or selected/adapted as the result
of a tailoring process based on a criticality analysis [18].

Figure 4.1 ISVV phases.
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According to the ESA ISVV Guide [18], ISVV engineers classify defects
considering three severity levels: (i) Major (defect with a significant impact
in the system dependability, quality or safety); (ii) Minor (defect with
a minimum impact on the artifacts quality but not in the end system);
and (iii) Comment (an improvement suggestion). Each ISVV defect is also
classified according to an ISVV defect type (e.g., External Consistency,
Internal Consistency, Correctness, Technical Feasibility, Completeness,
Readability, and Maintainability).

4.2.3 Related Work

Some studies in the literature have analysed metrics, efficiency and efficacy
of the techniques used within ISVV to identify the defects in critical projects
[5–8]. However, none of these studies considered their observations and
results to classify the defects and improve the development processes, tech-
niques, tools, or standards. Furthermore, we could not find in the research
literature any complete study focused on defects in mission- and safety-
critical systems, nor an extensive and complete classification or root cause
analysis that relates the results of ISVV with the development lifecycle
parameters of the systems under study. For space systems, Jones [21] has
provided a small study about space failures in the frame of the European
Space Agency missions, but simply concluded that the main cause for all the
accidents was lack of testing. A more in-depth analysis is necessary as testing
is not the cause but one of the detection methods.

Several researchers have looked into the analysis of failures in safety-
critical systems during different life-cycle phases (from requirements to
operations) and performed empirical studies and root cause analysis [22–24].
For example, Seaman et al. [25] used historical datasets with defects data
from reviews and inspections and applied different categorization schemes
to the defects. However, none of the mentioned studies covers all the life-
cycle phases for the used defects dataset, nor bases the root cause analysis
and the defects avoidance measures in a sound orthogonal classification of
the defects.

Regarding the root cause analysis topic, it is worth mentioning some
works that relate and somehow present results that are connected to the work
presented in this chapter. Neufelder [26] collects data from field defects since
1993 and correlates that data to find the process properties that generate more
defects; however, she is not focusing on CSs or systems developed under
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strict requirements and standards. Rao [27] has made an industry study about
root cause defect classification for documentation defects, analysing only a
few dozen defects on a monthly basis. Kumaresh et al. [28] conducted a study
with data from a few hundreds of collected defects, where these defects have
been classified and the corresponding root causes have been proposed to the
learning of the projects as preventive ideas. No work has been performed for
CSs nor with such a complete assessment and coverage of so many defect
types (as shown by the ODC defect type results), as we did in our work.

4.3 Defects Assessment Process

Based on the analysis that we conducted and the lessons learned, we propose
a general approach for root cause analysis of critical software, enabling the
continuous improvement of implementation and V&V at all levels (pro-
cesses, techniques, tools, personnel, application of standards, organization,
and so on). Although our dataset and our experience are mainly from space
software, we believe that this generalization is able to support the evalua-
tion and root cause analysis of any critical system, independently from the
domain. Figure 4.2 shows the general approach of a defects assessment pro-
cedure, which includes a root-cause analysis and a continuous improvement
procedure, described hereafter.

Figure 4.2 Generalized defect assessment procedure.
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4.3.1 Procedure Prerequisites

The approach is based on data analysis and software engineering knowledge
that require some prerequisites to be fulfilled for the correct application of the
process:

0. Start:
In order to successfully perform the defects analysis, it is necessary that
the collected data (A. Defects Data and B. Other Project Data) contain
the necessary information. This includes basic requirements such as: (i)
detailed information about each defect and its fix; (ii) knowledge of defect
environment conditions, such as tools, personnel and constraints; (iii) engi-
neers’ assessment of the defect causes; and (iv) phase when the defect was
introduced and when it was detected.

Some prerequisites are necessary to successfully apply the process. The
first one includes training on the involved techniques, such as defects classi-
fication (e.g. ODC) and root cause analysis. The second includes rules and
guidelines (or a template) for defects description or defect data collection.

1. Data preparation and clean-up:
Once we have the necessary data it is important to organize it and perform
some anonymization if required. Data organization is essential for the next
steps, since it is important to have the data in a searchable and manageable
manner.

4.3.2 Defects Classification

In order to efficiently and concretely tackle the important problems of critical
software engineering, the first set of activities shall focus on an orthogonal
classification of the sets of defects:

2. ODC:
Perform the ODC classification on the organized dataset. Enhancements and
adaptations to the ODC taxonomy can be useful depending on the nature of
the defects and the domain; however, these enhancements should be quite
precise. For examples, see Silva and Vieira [12, 13].

3. ODC Analysis:
Provide a summary of the ODC analysis. This information gives the first hints
about the quality of the dataset, which can provide some feedback to the
implementation and V&V teams. For examples, Silva and Vieira [12, 13].
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4.3.3 Defects Root Cause Analysis

The root cause analysis is composed by several steps that include analysis of
the defects types, the triggers allowing defect detection, the defects that could
have been detected earlier, and then prioritization and consolidation of these
root causes leading to concrete proposed improvements:

4. Defect Type RCA:
Based on the different defect types, identify the possible generic root causes.
This list of causes shall come from experience and expert judgement or a
dedicated database where defect types are mapped to root causes. The list of
root causes might be reduced or harmonized in step (8) below.

5. Defect Trigger RCA:
Based on the classified defect triggers identify the causes and V&V tech-
niques (or triggers) that allowed the defects detection at the current defect
detection stage. This list of causes shall come from experience and expert
judgement or a dedicated database where defect triggers are mapped to root
causes. The list of root causes might be reduced or harmonized in step (8)
below.

6. Late Detection RCA:
With the list of defects that have slipped more than one lifecycle phase
milestone identify the causes of the failures in the V&V and ISVV techniques
that allowed the defects to propagate until a later stage in the development
lifecycle. This list of causes shall be added/harmonized with the list from
step (5) Defect trigger RCA.

7. Defects prioritization:
If required (for example to tackle the defects with high impact on the system,
or due to the large amount of defects and respective causes) list of defect types
and triggers can be prioritized according to a defined severity (for example,
based on the main impact of those defects) and the respective root causes can
be filtered according to the prioritized type and trigger.

8. RCA consolidation:
The list of root causes obtained in the previous steps (4–6) is consolidated
according to the prioritization done in step (7). This consolidation can also
contribute to reduce to an essential and more concrete list of causes.
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9. Improvements Suggestions:
For all the root causes, define solutions or modifications to the processes,
techniques, tools, training, resources, environment or application of stan-
dards. The solutions must cover the development activities to avoid the
creation of defects and also the defect detection activities in order to identify
the defects as soon as possible.

4.3.4 Improvements and Validation

The suggested improvements might be difficult to implement, and their
effectiveness can vary from team to team. They shall contribute to improve
the software quality and reduce the amount of defects, different defects can
then surface, and this is why this process shall have a consistent process
improvement in place:

10. Improvements Implementation:
The development and V&V teams must be informed about the required
changes or adjustments (9. Improvements Suggestions), and the organiza-
tion, management and quality planning shall decide on the improvements to
implement for future projects.

11. Process Validation and Improvements:
At every step, it is possible to derive improvements to the process. Such
improvements can be set to adjust to the company culture, to the project envi-
ronment, to the customer requirements, etc. However, it is essential to mea-
sure the effectiveness of the implementation of the results (9. Improvements
Suggestions and 10. Improvements Implementation) once the suggestions
have been implemented and new defects (or no defects) have been collected.
Note that Improvement can and shall also be about the current process, the
defects classification scheme, the root cause analysis techniques and so on.
The presented process shall be able to adapt and help in improving itself and
the related techniques that compose it.

4.4 Results

This section presents the dataset case studies description and the results of
application of the process described in the Section 4.3.
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4.4.1 Characterization of the Systems

Our analysis is based on a set of real defects from ISVV activities in space
projects. The projects include subsystems that compose satellite systems for
three different domains (i) scientific exploration; (ii) earth observation; and
(iii) telecommunications; covering different types of software, such as start-
up or boot software, on-board application software, command and control
units, payload software, and attitude and orbit control units. The engineering
processes used in the selected missions were driven by the ECSS standards,
namely the space engineering standard E-ST-40 [3] and the quality standard
Q-ST-80 [4] which has a comparable lifecycle and similar strict requirements
imposed by the European Space Agency.

The subsystems were developed according to functional and non-
functional requirements mandated from ECSS and mission specifics. They
were characterized by the following needs/objectives, which are common
to space CSs, that were collected from the ECCS standards [3, 4] and
the corresponding engineering interpretations of the specification documents
from several missions:

• No crash or hang shall happen at any time;
• No dynamic memory allocation is allowed;
• Communication – Telemetry (TM)/Telecommands (TC) – must always

be possible between ground control and the satellite;
• The system must implement a Safe Mode (with basic communications,

patch and dump functionalities);
• Most systems shall have a very simple and stable start-up software (also

called boot software);
• There must be a watchdog (Hardware and/or Software) or an alive

signal;
• Systems are built with redundancy (at least Hardware);
• Most systems must include FDIR (Fault Detection Isolation and Reco-

very) functionalities to account for the environment and external faults;
• The systems must have high autonomy and some self-correction proce-

dures;
• Systems are categorized with a criticality level related to the impact or

consequences of system failures (in this case, the ECSS defined levels
are: Catastrophic, Critical, Major and Minor or Negligible).
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The projects are also characterized by:

• Requirements written in natural language (structured), highly based on
documentation and non-formal processes and languages;

• Documentation in UML/SysML and PDF, with limited possibilities of
automated verification and formal analysis;

• Programming languages such as C, Ada and Assembly, that are quite
mature and low level languages;

• Unit tests performed in commercial tools (e.g. Cantata++, VectorCast,
LDRA), commonly developed and adapted for the specific projects
embedded systems and environments;

• Integration and system testing performed in specific validation environ-
ment (Software Validation Facility – SVF) developed for this purpose
on a case by case situation, with HW emulation and HW in-the-loop,
simulated instruments, etc.

4.4.2 Defects in the Dataset

Table 4.2 summarizes the 1070 defects in the dataset, divided by severity
(having a major or minor impact in the system, or just being comments to
improve the engineering) and considering the ISVV activities in which they
were found. The defects have been originated from the analysis of more than
10,000 software requirements, more than 1 million lines of code (mostly C,
Ada95 and some Assembly), and over 3,000 tests1 (some unit tests, some
integration tests). In practice, the objective of ISVV was to find issues in the
project artifacts, report and classify them in a clear and consistent way for the
customer to act upon.

4.4.3 Enhanced ODC Results

The results of the application of the enhanced ODC for space defects are
summarized in Table 4.2 showing the five top types, triggers and impacts
cover about 90% of the issues analysed. This observation suggests that actions
can be taken to quickly improve the quality of systems, by tackling a limited
amount of properties.

1The 3,000 tests correspond to only part of the requirements and code referred, as not all
ISVV activities cover the full set of artifacts, e.g., for some projects only source code analysis
was performed, no tests related to that specific codehave been assessed.
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The ‘Documentation’ defect type represents almost half of the defects
and ‘Function/Class/Object’ represents almost 20% of the defects. This can
be justified by the fact that CSs highly depend on documentation and docu-
mented evidences to prove the accomplishment of requirements and standards
and to ensure qualification/certification of the systems by external entities.
‘Function/Class/Object’ identifies functionality implementation deficiencies,
especially at implementation level.

‘Traceability/Compatibility’ is the most frequent trigger, although ‘Test
Coverage’ and ‘Consistency/Completeness’ are quite frequent. This suggests
that the most efficient defect triggers are the simplest and most logical
ones, namely those related to traceability, reviews and testing activities. This
is due to the nature of the artifacts under analysis that require extensive
documentation and creation of evidences that are developed over lifecycle
phases depending on the previous phases artifacts.

In terms of the impacts, four of them are very important, namely: ‘Capa-
bility’, ‘Maintenance’, ‘Reliability’ and ‘Documentation’ (in this order). It is
normal that Capability (i.e. functionality) is the most affected property but,
in such space CSs, maintenance has a significant importance as well as the
reliability requirements (see Section 4.4.1 regarding the needs/objectives of
the target systems).

4.4.4 Enhanced ODC Defect Impact Analysis

The ODC Impact analysis can be used to prioritize the defect types/triggers
to identify the development and V&V activities that might conduct to the
defects with a high impact in the system. As “high impact”, we consider
equally the impacts in Capability, Reliability, and Maintenance, as they are
the most severe since they represent three essential requirements of critical
space systems: functional quality, non-functional reliability assurance, and
maintainability. Though, for the purpose of this work, we have considered
the importance of impact as the frequency that the defects affect system
capability, reliability, or maintenance.

The following graphs in this section represent the defect impacts as they
have been originated by specific defect types, and also as they have been
uncovered by specific defect triggers. The graphs provide an idea of the
importance of defect types (related to root causes) and how defects that lead
to specific impacts have been detected with specific triggers.
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4.4.4.1 Type vs. Impact
Figure 4.3 shows the defect types that have a high impact in the system
(affecting Capability, Reliability and Maintenance). Defects with impact in
Capability (blue dashed line) are mainly related with Function/Class/Object,
Documentation and Algorithm/Method types, confirming that the function-
ality specification/implementation, the documented artifacts and the design
decision in what concerns algorithms and methods to apply are the main
contributors to defects that influence the system capability.

Defects with impact in Reliability (orange dotted line) are originated
from Documentation, Checking, Function/Class/Object and also Algorithm/
Method defect types. In this case, there is a new defect type that contributes
significantly to reliability issues: Checking. It is clear that reliability (includ-
ing redundancy, fault detection/monitoring, isolation and recovery) is often
implemented with checks and verifications and so the importance of avoiding
this type of defects to guarantee higher reliability.

Defects with impact in Maintenance (gray line) originate essentially
from Documentation defect type. This is an expected result due to the fact
that maintenance depends on documented artifacts that include installation
and download instructions, user and developer manuals, and maintenance
procedures.

The prioritization related with the three impacts is presented in the
Section 4.4.5, namely in Table 4.3.

Figure 4.3 Defect type vs. defect impact.
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Table 4.3 Summary of root causes for main defect types
Root Cause Defect Types
Inefficient/insufficient reviews Documentation;

Function/Class/Object;
Algorithm/Method;
Checking; Interface

Ambiguous/missing/incorrect artifacts
(documentation, requirements, design, tests)

Function/Class/Object;
Algorithm/Method;
Checking; Interface

Insufficient/Wrong tests (unit, integration, system,
fault injection)

Function/Class/Object;
Algorithm/Method;
Checking; Interface

Limitations of the tools or toolsets that deal with
documentation

Documentation

Lack of Completeness and consistency of system
level (or previous phases) documentation

Documentation;
Function/Class/Object;
Algorithm/Method

Oversimplified documentation planning procedures
Lack of time to produce, review and accept
documentation artifacts
Lack of importance given to some documentation
artifacts
Simplification of the product assurance processes
related to documentation artifacts

Documentation

Limited engineers domain knowledge – lack of
appropriate skills

Function/Class/Object;
Algorithm/Method

Incomplete specifications in what concerns FDIR
and erroneous situations

Checking

Lack of reliability and safety culture Checking
Incomplete specifications in what concerns
interfaces, environment and communications

Interface

Limited definition of the operation, usability,
maintainability requirements

Interface

Lack of tools knowledge, programming languages,
design languages

Function/Class/Object;
Algorithm/Method

Version and configuration management procedures
inappropriately implemented

Build/Package/Environment

4.4.4.2 Trigger vs. Impact
Figure 4.4 shows the defect triggers that allow detection of the defects
with a high impact. The graph reinforces the importance of the 3 main
triggers: a) Consistency/Completeness, b) Test Coverage, and c) Traceability/
Compatibility as the most important (frequent) triggers (overall they allowed
the detection of 77.0% of the issues). For this particular case, Reliability can
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Figure 4.4 Defect trigger vs. defect impact.

be ensured with better Traceability/Compatibility analysis, Test Coverage and
Logic/Flow analysis. Capability shall be assessed more efficiently with Test
Coverage, Traceability/Compatibility assessment and Design Conformance
Analysis. Maintenance defect impact can be mitigated with Traceability/
Compatibility and Consistency/Completeness analysis.

The results of the prioritization related with these three impacts are
presented in Section 4.4.5, Table 4.4.

4.4.5 Consolidation of the Root Cause Analysis
and Proposed Improvements

The defects with impact on capability, reliability, and maintenance, identified
in Section 4.4, represent 77% of the total dataset. From these, we considered
the top 6 defect types and the top 5 defect triggers (Table 4.2) because they
account for more than 90% of the defects with high impact. Then we were
able to identify the main root causes for the most important defect types
(Table 4.3) and the most important defect triggers (Table 4.4).

This analysis results on a list of the most important causes of the defects
identified during ISVV, and for the most important causes of failure in the
verification and validation activities during the development lifecycle. For
high defects with impact, the listed causes show that software engineering
processes, methods and tools require some adjustments in order to become
more efficient to produce more dependable and safe systems. The identi-
fied root causes are all related to existing development and V&V activities
that require more careful application, especially in what concerns schedule
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Table 4.4 Summary of root causes for main defect triggers
Root Cause Defect Trigger
Lack of traceability verification culture Traceability/Compatibility
Lack or inefficient usage of tools that support
traceability across lifecycle phases
Lack of appropriate test planning and test strategy
definition

Test Coverage

Lack or inefficient testing tool and testing
environment support
Incomplete tests specification and execution
Review process related root causes Document Consistency/

Completeness (Internal
Document)

Documentation related root causes Document Consistency/
Completeness (Internal
Document)

Deficient usage of tools and applicable processes Document Consistency/
Completeness (Internal
Document)

Unclear or missing/incomplete specifications Document Consistency/
Completeness (Internal
Document); Logic/Flow

Ambiguous or unclear architecture definition Logic/Flow
Lack of usage of tools that support data and control
flow analysis

Logic/Flow

Inappropriate architecture support tools or tool
usage

Design Conformance

Deficient specification or design artifacts Design Conformance

and planning pressures (or we can call it strategies as well), rigor and caution
on the application of engineering processes, and V&V activities importance.
The quality/product assurance strategies and the guidance from applicable
processes and required standards are essential to ensure that these root causes
are minimized.

The root causes presented (in Tables 4.3 and 4.4) have been ordered
according to expert knowledge and experience applicable to the high impact
defects, and intend to provide a preliminary ordering in what concerns their
contribution to the high defect impacts.

The identified root causes for defect triggers indicate that improvements
to the current processes, both development (to avoid the introduction of
defects) and V&V (to detect the defects within the phase they are introduced)
might be possible. At a higher level, the leading safety standards might
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require additional guidance to support development and V&V in order to
reinforce that the product/quality assurance (PA/QA), and safety and depend-
ability assessments should be properly realized, reducing the amount of
defects caught by ISVV. The proposed improvements are guidelines derived
directly from the root causes summarized in Tables 4.3 and 4.4 and from
domain and expert knowledge of the authors and industrial contributors to
this work. Their intent is to fulfil the needs of the development and V&V
processes in order to avoid the most important and more frequent defects as
those in our dataset.

From the development perspective, based on Table 4.3, the following
measures should be considered:

• Define/redefine appropriate review methods, processes and tools and
enforce their application at every stage of the SDP;

• Implement automated documentation generation processes and tools to
avoid inconsistencies between artifacts/lifecycle phases;

• Use tools that integrate and manage all the phases of the lifecycle, such
as concept specifications, requirements, architecture, source code, tests,
etc.;

• Introduce/use tools with automatic validations (documentation com-
pleteness, design consistency, code analysis, control and data flow
analysis);

• Provide training to the engineering teams, to improve the domain
knowledge, the system or interfacing systems knowledge, standards
knowledge and techniques and tools practice;

• Promote workshops or meetings to present the specifications/require-
ments, to discuss and clarify them before advancing to the following
phase;

• Introduce additional guidelines or even specific requirements (e.g., by
defining and specifying the reasoning behind the standards requirements
and how to achieve them in full conformance) in the applicable standards
(PA/QA, version and configuration control and development).

From the V&V perspective, based on the results in Table 4.4, the following
measures should be considered:

• Define appropriate test plans and strategies, especially unit and integra-
tion tests. The soundness of the test plans and strategies will reflect in
the success of the validation;

• Ensure appropriate (or automated) traceability analysis at every stage of
the development lifecycle;
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• Improve the testing completeness, coverage and reviews;
• Implement non-functional tests (fault detection, fault injection, redun-

dancy, etc.);
• Apply or develop tools to verify and validate the implementation and

design compliance.

4.5 Conclusions

This chapter presented a defects assessment process based on a field study on
root cause analysis of 1070 defects in space software projects.

We proposed a general procedure to derive improvement suggestions
for the systems and the analysis process itself applying an improved ODC
taxonomy and examining the defect types, triggers and impacts. We have
also prioritized the root causes based on their importance by considering
the impact of the defects on capability, reliability, and maintainability, and
proposed generic solutions to implementation (to prevent defects) and V&V
(to effectively detect defects) in order to avoid these defects in future
projects.

The outcomes of the field study show that, although CSs are already
guided by appropriate development and V&V techniques and processes, most
of the defects are caused by an inefficient usage or implementation of these
techniques and processes. Appropriate guidance, additional requirements
and constraints, better test strategies and tools that are able to help in the
application of the techniques and processes would be essential to obtain better
results (less defects). ISVV was originally able to detect the 1070 defects but
could still be enriched by applying the proposed V&V actions in order to
avoid defects slippage.
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