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Abstract

The use of new soft robots in minimally invasive surgery offers exciting new
possibilities while it generates new challenges for the technical implemen-
tation. This chapter presents methods for the detection of the STIFF-FLOP
arm using visual sensing means. Based on the image information of an endo-
scopic camera, the visible sections are evaluated to determine the position
of the manipulator. A variety of algorithms for the detection of the STIFF-
FLOP arm as well as for the detection of its module connectors will be
described.

A stereo camera is used to register all components in a common frame.
A transformation tree is set up to refer the position of the STIFF-FLOP arm
in the endoscopic camera image to the base of the STIFF-FLOP arm.

All methods have been integrated and tested in the newly developed
system.

8.1 Introduction

To monitor and to control the STIFF-FLOP arm, the video data of the
surgeon’s endoscope is processed and evaluated. The biggest challenge lies
in the reliable detection of the STIFF-FLOP arm. The nature of the object
itself and the conditions in the workspace as well as the equipment available
for minimally invasive surgery (MIS) leads to several restrictions in the
implementation strategies.

129



130 The STIFF-FLOP Vision System

Established methods are not applicable in the examined scenario, as these
are generally either based on the detection of a known and trained outline,
a clear, well-known texture or on the pronounced differences in contrast of
foreground and background. None of these conditions are given here: The
manipulator is flexible throughout and can change its shape and length. In
addition, texture recognition is difficult to implement, since any fitted pattern
is distorted significantly with increasing curvature of the arm.

The challenge here is in the detection of a flexible arm, capable of
changing its shape and size during the movement, as well as the fact that
the visible section of the arm can vary in the endoscope image. With the aim
to develop a high-performance automated learning and recognition method, a
two-step algorithm has been designed. On the one hand a texture-based pat-
tern recognition and classification method based on Support Vector Machines
(SVMs) [1–3] has been implemented [4]. The second step is the detection of
optical circular markers with a modified circle detection algorithm.

8.2 Optical Tracking of the STIFF-FLOP Arm

The vision system for the tracking of the STIFF-FLOP arm consists of
a 3D-tracking system (Axios, Cambar B2, Germany) and two endoscopic
camera systems (Richard Wolf, Endocam 5509 and Richard Wolf, Endocam
Performance HD, Germany).

In order to process the image data of the endoscopic camera, the video
is streamed to ROS using a frame grabber (Intensity Pro, Blackmagic,
Australia).

In the first step the endoscopic cameras will monitor and detect the
STIFF-FLOP arm. In the second step the 3D-tracking system will track
locators mounted on the endoscopic camera systems. Based on this data a
transformation tree is set up which allows registering the position of the
endoscopic camera to the base of the STIFF-FLOP arm. Figure 8.1 shows
the setup for the operating room.

8.2.1 Axios Measurement System Cambar B2

The tracking system Cambar B2 is a stereo imaging system for highly accu-
rate measurement of 3D coordinates of signalized points within a specified
measurement volume. It consists of hardware components as well as software
parts controlling the system.
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Figure 8.1 The endoscopic camera is used to detect the STIFF-FLOP arm at its destination
while it is monitored by the stereo camera.

Figure 8.2 Stereo camera Axios Cambar B2, Axios 3D, Oldenburg, Germany.

The Cambar imaging system, which is shown in Figure 8.2, detects
and measures passive, i.e., retroreflective points. These markers are either
measured as single points or – if they fulfill a pre-defined marker geome-
try – as locators or rigid bodies. Measured points are classified according
to their image characteristics and geometry. Afterwards, they are assigned
to accuracy classes to describe and evaluate their influence on the maxi-
mum achievable measurement accuracy. The locators should meet several
requirements that are summarized in Table 8.1.
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Table 8.1 Specifications for the locator design
Minimum Requirements Recommended Specifications

Minimum number of
markers

3 ≥4

Marker shape and marker
surface

Sphere, dot (flat circle)
(retro-reflective)

Sphere (retro-reflective)

Marker diameter 10–12 mm (depends on
distance from camera to
measured object)

10 mm

Minimum distance
between marker centers

Twice the minimum marker
diameter

Twice the actual marker
diameter

Distance of segments
between markers to other
segments within a locator.

> Minimum diameter > Marker diameter

Requirements regarding
rigid body geometry

Points must not be aligned
in a straight line.

Points should be spread-out
in space (in x-, y-, and z-
direction), not be on the same
plane.

Figure 8.3 Pre-defined measurement volume of the Axios camera Cambar B2 [5].

It is advisable to use markers of the recommended specifications in
order to achieve maximum accuracy. The system is capable of tracking and
measuring points in a pre-defined measurement volume, which is displayed
in Figure 8.3.

8.2.2 The Endoscopic Camera System

In order to find and to prove the pose and orientation of the developed
STIFF-FLOP manipulator, two endoscopic cameras were ordered as shown
in Figure 8.4. Each camera system consists of a light module with a xenon
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Figure 8.4 The endoscopic camera system.

light source (Light Projector 5124 and 5132, Richard Wolf, Germany) and a
camera module (HD Endocam 5509 and Endocam performance HD, Richard
Wolf, Germany), which is the interface to the camera on the laparoscope. The
laparoscope connects the lens and the camera as well as the fiber of the light
source.

The aim is to observe the STIFF-FLOP arm while it is operated by
the surgeon. The laparoscopic cameras provide a video stream in full HD
resolution (1920*1080, @50 Hz), in medical HD resolution (1280*1024,
@50 Hz) or in HD ready resolution (1280*720, @50 Hz). To enable clinical
use, all parts of the system are autoclavable (except the disposable reflectors).
The video streams will be analyzed using image processing algorithms in
order to detect the STIFF-FLOP arm.

8.2.3 Image Processing on Endoscopic Camera Images

The video stream of the endoscopic camera is captured with a frame grab-
ber and streamed to ROS afterwards. Here the integrated image processing
functions can be used to calibrate the camera and correct the image distortion
which is displayed in Figure 8.5.
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Figure 8.5 The left image shows the original image, the right shows the undistorted image.

8.2.3.1 Removal of specular reflections
Specular reflections occur if light shines on a surface. According to the laws
of reflection, the reflected light beam has the same angle as the incident light
beam relative to the normal of the surface. Based on the physical structure
of the endoscopic cameras it is nearly impossible to get an image without
specularities. These areas of overexposure lead to a corrupted filter mask, so
that the algorithm could not detect the observed structure reliably. In order
to remove these highlights and to reconstruct the original color, different
methods were compared.

Shen and Cai [6] introduced an effective method to separate specu-
lar reflections and diffuse reflection components in multi-colored textured
surfaces using a single image.

The first procedure in this method includes scanning the image to deter-
mine the minimum value of RGB components of each pixel. Each minimum
value is subtracted from all three RGB components in the corresponding pixel
to produce the specular-free image. After that, a threshold is added to each
pixel to compensate the loss of the chromaticity that occurred because of
the subtraction performed earlier to produce what Shen and Cai called the
Modified Specular Free Image.

Another promising method was described by Miyazaki et al. [7], which
is applied on single images. It does not apply any region segmentation or
consider any relations between the neighbor pixels. This makes the execution
time dependent only on the size of the image. The geometry of textures in the
image is maintained and it does not affect the execution time either. The hue
and saturation of the image do not change after the process, but the intensity
does. The color changes slightly as well, but it remains similar to the color in
the original image.
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The method obtains the specular-free image by transforming the orig-
inal image from its RGB color space into another customized color space
introduced by Miayazki et al. In that color space, a filter is applied on the
image data to eliminate the specular reflection components. The image is
then transferred back into the RGB color space.

Both methods were implemented and tested. A comparison between the
images with highlights and the result after applying both methods are shown
in Figures 8.6 to 8.8.

In different tests, the method described by Miyazaki performed about
20% faster than the method described by Shen and Cai. By applying these
methods on the video stream, large specular reflections were removed com-
pletely in almost all procedures. Restoring the original surface color behind
large specular reflections is still problematic and as a result, those areas
appear grey after the specular reflection removal was applied.

Figure 8.6 (a) Sphere with four different colors and a spot of highlights almost in the middle;
(b) the result image after applying Shen and Cai’s method; and (c) the result image after
applying Miyazaki’s method.

Figure 8.7 (a) Highlights on a fish; (b) the result image after applying Shen and Cai’s
method, and (c) the result image after applying Miyazaki’s method.
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Figure 8.8 (a) Highlights on various toys; (b) the result image after applying Shen and Cai’s
method, and (c) the result image after applying Miyazaki’s method.

8.2.3.2 Improvement of the dynamic range
Another approach that became popular in the last years is to extend the
dynamic range of images. Typically this procedure requires a huge number
of computations, so it is not applicable for real-time applications.

Inspired by this approach, a light-weight high dynamic range method
was implemented. Hereby, one image taken with a long exposure time is
combined with an image taken with a short exposure time (Figure 8.9).

After converting both images to an HSV (hue, saturation, value) color
space, white areas of the lighter image are detected. These areas are also
identified in the darker image, where the brightness value of the darkest pixel
is subtracted from all pixels of the image. In a second step, the brightness
channel of both images is added up to a new image. This newly gener-
ated image unfortunately exceeds the limits of HSV specifications, so the
brightness layer has to be shrunk back into valid borders.

Figure 8.9 (a) Image taken with long exposure time, (b) image taken with short exposure
time, and (c) the combined image with an improved dynamic range.
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The resulting data works quite well as an input stream for the object-
detection algorithms. Unfortunately switching from one aperture to another
causes an unexpected delay, so the resulting frame rate is not satisfying.

8.2.4 Detection of the STIFF-FLOP Arm in the Camera Image
using Machine Learning Algorithms

In this section, the detection of the STIFF-FLOP arm in the endoscopic
camera image is described. In the first approach, it was assumed to color-
code the STIFF-FLOP manipulator in an equal color and apply a color filter
to detect it. Following this approach it was possible to detect the colored
arm. But as soon as the color on the STIFF-FLOP arm would become
contaminated the detection would fail. In the second approach, a machine
learning algorithm was used to detect the STIFF-FLOP arm.

The methodology which provided the most reliable results is based on
the usage of SVMs. For the use of those, a set of training samples is
needed, where the searched object (i.e., the STIFF-FLOP arm), as well as
the background are labeled correspondingly. The model of SVM represents
the samples as points in space. They are mapped in a way that the categories
are separated by a gap. For the largest gap, the recognition will provide the
most stable results. This idea of data classification can be applied to images.
By analyzing images, they can be classified into categories.

For this application the idea is to divide the camera image into small
squares, sized about 25 × 25 pixels, which are analyzed and classified as
background or as object (i.e., the STIFF-FLOP manipulator), labeled with
the variable yi ∈ {−1, 1}.

D = {(xi, yi) |xi ∈ <p, yi ∈ {−1, 1}}ni=1 (8.1)

where D represents the number n of quadratic parts xi of the initial image.
In Figure 8.10 a simplified visualization of the previous equation is shown,
whereby the red squares represent one classification and the blue circles
represent the other classification (i.e., background and object).

Assuming a dataset as observed in Figure 8.10, a hyperplane can be
defined which separates both classes. The green line in Figure 8.10 represents
an optimal hyperplane, which separates both classes with the maximum
margin. This hyperplane will act as a classifier to recognize the object in
the camera image.
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Figure 8.10 Here the different parts of the image are visualized according to their char-
acteristics, whereby the red squares represent the first class and the blue circles the second
class.

Following the procedure described by [8] and [4], a hyperplane can be
constructed as the set of points x satisfying the equation:

w′ · x+ b = 0 (8.2)

Where w is the normal vector of the hyperplane and b is the bias. The sample
points can be either found above the upper or below the lower side of the
hyperplane:

w′ · x+ b ≥ 1 for yi = +1

w′ · x+ b ≤ 1 for yi = −1 (8.3)

The samples on the upper and lower margin are the support vectors.
Considering yi they are defined as:

yi(w
′ · x+ b)− 1 = 0 (8.4)

In order to find the maximum margin, the distance between the support
vectors on the upper and lower border has to be calculated.

The points on the border are defined as:

x+ =
1− b
w

for yi = +1

x− =
1− b
w

for yi = −1
(8.5)
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Figure 8.11 The distance between the point x− on the lower margin and the point x+ on
the upper border is visualized.

Considering the geometry, the width is calculated by subtracting the points
on the border, as displayed in Figure 8.11.

width = (x+ − x−) ·
w

‖w‖
=

2

‖w‖
(8.6)

In order to maximize the margin, the minimum of w has to be determined.
Therefore, the minimum of w can be substituted:

substitute : min ‖w‖ by min 1
2 ‖w‖

2 (8.7)

In order to minimize w the argument is extended with the support vectors
yi(w

′ · x+ b)− 1 = 0 multiplied by the Lagrangian α:

L = argmin
w,b

max
α≥0

{
1

2
‖w‖2 −

n∑
i=1

αi
[
yi(w

′ · x+ b)− 1
]}

(8.8)

The minimum is found by setting the first derivative to zero. The resulting
w is found as a linear combination of the samples with xi as support vector.

w =
n∑
i=1

αiyixi
n∑
i=1

αiyi = 0
(8.9)

If the classes cannot be separated linearly, the argument can be extended
by a polynomial or a radial basis function, allowing a more complex
separation [2]. For this application, the best results were obtained with a
polynomial approach of third order.
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Figure 8.12 (a) Detected parts of the STIFF-FLOP arm using the prior calculated hyperplane
(b) corresponding camera image with the highlighted centerline (red) and perpendicular to it
the diameter is calculated (violet).

After the hyperplane is identified, it can be used for a real-time application
providing the possibility to process the acquired camera images directly.
During the real-time application, the same idea is pursued. The camera
image is grained into small parts with the same size that was used dur-
ing the learning process. Afterwards these small parts are classified using
the calculated hyperplane. As result, the detected contour is visualized in
Figure 8.12.

The next step is to calculate the spatial position of the manipulator in the
camera coordinates. Therefore, the center line of the detected STIFF-FLOP
arm is determined and the diameter is calculated accordingly. Based on the
information, the planar coordinates (i.e., x and y) can be extracted from the
pixel coordinates and the distance of the STIFF-FLOP arm to the camera’s
optical center is calculated based on the determined diameter.

In Figure 8.12, the usage of the implemented machine learning STIFF-
FLOP arm detection algorithm is demonstrated, allowing an estimation of
the position of the STIFF-FLOP arm in camera coordinates.
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8.2.5 Detection of the Module Connection Points of the
STIFF-FLOP Arm

To achieve a reliable and robust tracking result, in particular when the
STIFF-FLOP arm is being maneuvered in front of unknown and challenging
backgrounds inside the abdominal area, unambiguous green ring markers are
placed on the STIFF-FLOP manipulator at distinct locations as shown in
Figure 8.13.

The color is chosen due to the high contrast with respect to the expected
color scheme (mainly in the red spectrum) during surgical interventions
inside the abdomen. The ring markers are fixed on the force/torque sen-
sor structures that are placed between segments and at the end of the
STIFF-FLOP manipulator.

The detection of these circular markers has several advantages. Firstly,
the figure remains almost distortion-free with sufficiently narrow markings.
On the other hand, a possibly occurring system-related radial extension of
the arm solely affects the accuracy of the distance measurement between the
camera plane and the central axis of the manipulator. The presented method
is also robust against noise or smaller highlights, as long as the contour of the
ring is not interrupted over larger sections.

Figure 8.13 Two-segment STIFF-FLOP manipulator with green marker rings placed at the
base of the STIFF-FLOP arm and at the module connectors.
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Reproducible results were achieved by the application of green ring
markers as displayed in Figure 8.13. The idea is based on an algorithm for
camera calibration with two arbitrary coplanar circles [9].

The detection process is visualized in Figure 8.14. As a first step, a mask
containing all the green colored areas of the video image is generated (2).
This mask is the source for a standard contour detection algorithm. The
detected contours are filtered based on a set of rules eliminating noise and
other unsuitable objects so that only sections of ring-like objects of a suitable
size should reach the next step (3).

The remaining contours are split into a concave (4, blue curve) and a
convex (4, red curve) part. Each of them is now treated like the visible part

Figure 8.14 Ring marker detection sequence, (1) shows the camera image of the ring marker
on the module connector, (2) visualizes the detected mask of the ring marker, (3) highlights
the contour of the mask, in (4) this contour is divided into a concave (blue) and in a convex
(red) part of an ellipse. In (5) the RANSAC approach to fit an ellipse into the detected shape
is demonstrated, while (6) shows the finally determined ellipses with their center positions.
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of a closed elliptical shape. Unfortunately, these contours cannot be used
directly to determine the parameters of an ellipse, because they contain too
much noise and therefore the ellipse parameters are oscillating in a wide
range.

A RANSAC [10] approach seems suitable to improve the results, where
10% of each contour’s points are selected and fed into a least-square-error
algorithm to define the ellipse’s parameters. The resulting ellipse is compared
with the contour as a whole and the average error is evaluated. If the ellipse
fits well, the parameters are stored. If not, another set of points is generated
as a basis for the parameter calculation. The results can be seen in (5).

The determined ellipses can be seen as projections of circles. Knowing the
circles’ diameters, the calculation of those circles’ poses in space is possible
(6). As an ellipse is effectively a projection of a circle, the position of the
midpoint can be determined which is equivalent with the center position of
the force/torque sensor. The green ring markers are detected in the camera’s
coordinate system and are transformed in the manipulator’s base system.

8.2.6 Registration of the Endoscopic Camera Image
to the STIFF-FLOP Arm

In order to connect the image plane of the endoscopic camera with the
world coordinates of the STIFF-FLOP arm, both the endoscopic camera
and the base of the STIFF-FLOP arm were equipped with infrared markers,
which are tracked by an optical 3D localization system (Axios 3D, Cambar
B2, Germany). Using this, a transformation tree was determined to register
the image plane of the endoscopic camera in the world coordinates of the
STIFF-FLOP arm.

The ring markers are detected in the camera’s coordinate system and have
to be transformed in the manipulator’s base system. Therefore the camera
coordinate system has to be integrated into the transformation tree of the
whole system by using the output of the Cambar B2 tracking system. An
overview of the complete transformation tree can be seen in Figure 8.15.

The transformation tree shows that the world coordinates of the STIFF-
FLOP arm are connected to the STIFF-FLOP base (SF BASE). Through
the stereo camera, the transformation of the endoscopic camera (ENDO) is
known and connected to the STIFF-FLOP base.

The position of the detected ring markers are known in the frame
of the endoscopic camera and are connected below in the transformation
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tree. Thereby the transformation of each detected position relative to the
STIFF-FLOP base is known.

8.3 Integration and Validation of the Implemented Methods

Both the calculated centerline and the identified module connection points
were determined in the image plane of the endoscopic camera. Using the
transformation tree, those positions were transferred to the world coordinate
frame of the STIFF-FLOP arm.

The vision system takes over the function of a second-level observation
system – therefore an independent ROS node with an alert function was
implemented. This node compares the connector’s frames sent by the control
algorithm with the detected frames published by the vision system and calcu-
lates a normalized warning level (0.0–1.0, the absolute value for inacceptable
displacements of the manipulator can be reconfigured dynamically). The
integration of the vision system into the open loop control is visualized in
Figure 8.16.

The position of the used coordinate systems is visualized in the 3D
visualization tool for ROS (rviz) (Figure 8.16). The vision system supplies
a second-level observation system and optimizes the position data obtained

Figure 8.16 Visualization of the transformation tree, showing the matching of the detected
positions of the ring markers (white bulbs) with the position provided by the control system
(green line connections between ring connections).
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Figure 8.17 Experimental setup, demonstrating the integration of the implemented method,
by detecting a deviation between the position detected by the vision system (real arm in the
center and the corresponding image on the left screen) and the position of the model of the
STIFF-FLOP arm (right screen) which is visualized using the ROS visualization tool (rviz).
The deviation is highlighted by coloring the arm in red (right screen).

from calculations using force/torque sensor data and bending sensor informa-
tion. Figure 8.17 shows the experimental setup: A 2-segment STIFF-FLOP
manipulator is mounted on a rack with three green ring markers attached to
the base of the robot arm and at the tip of each segment. On the left screen,
the video screen of the endoscopic camera is shown. The previously described
image processing algorithm detects the markers. A spline interpolation (red)
exposes the backbone of the manipulator. The right screen shows this data
within the 3D visualization tool.

Both algorithms have been verified in an experimental setup, which is
shown in Figure 8.17. The manipulator is located in the middle; the left
monitor shows the recorded video stream. The right monitor shows a sim-
ulation of the manipulator based upon the model that is used for controlling
the manipulator.

The detected position of the connectors is compared to the positions of the
control model. If a deviation – which might be caused by external forces – is
detected, the deformation is recognized by the optical tracking system and an
alarm signal is displayed by coloring the simulated arm in red.

A comparison of the detected positions of the STIFF-FLOP arm and the
location given by the control model is possible after transforming all data into
a common frame. Afterwards an evaluation of the detection error is possible
and the control parameters can be adjusted accordingly.
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8.4 Conclusion

The detection of these circular markers has several advantages. Firstly, the
figure remains almost distortion-free with sufficiently narrow markings; on
the other hand, a possibly occurring system-related radial extension of the
arm solely affects the accuracy of the distance measurement between the
camera plane and the central axis of the manipulator. The presented method
is also robust against noise or smaller highlights, as long as the contour of the
ring is not interrupted over larger sections.

The detection of the STIFF-FLOP arm with the implemented SVM
method allows a trainable approach to adapt the detection of the STIFF-FLOP
arm to the given scenario.

The redundancy of the two methods used (SVM and Ring Marker Detec-
tion) essentially offers two advantages: First, it allows a plausibility check
of the detected marker positions; on the other hand the calculation of a
continuous center line is possible. In addition, this center line can be used for
a simple collision detection, if 3D models of the working space are provided.
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