
2
Architecture

This chapter describes the high-level architecture of the GAMBAS middle-
ware. To clarify the architecture, the chapter first presents a static perspective
that focuses on the identification and definition of entities that are operating
different parts of the architecture (operational view), building blocks that
constitute the architecture (component view) as well as types of information
that are handled by the architecture (data view). After presenting the static
perspective on the architecture, the chapter introduces a dynamic perspective
that focuses on a description of the interaction of architectural components.
To do this, the dynamic perspective provides details on the acquisition of
data (acquisition view), the discovery of data and the respective processing
of queries (processing view) and the usage of data for inferences (inference
view). Finally, to clarify the interactions, the chapter discusses the interfaces
between the different components.

2.1 Static Perspective

The static perspective introduces the entities that interact with each other
in order to produce and consume services. Furthermore, it introduces a
functional breakdown into a number of core building blocks. Finally, it
discusses different characteristics of the data that shall be handled by these
building blocks in order to facilitate the envisioned creation and usage of
behavior-based autonomous services. The dynamic perspective, which is
discussed later on, ties these entities and building blocks together by describ-
ing how the different types of data are exchanged among the building blocks
in order to achieve different goals of entities.

2.1.1 Operational View

As basis for the further discussion of the functional building blocks, it is
important to clarify the roles of different parties that may be involved in the
operation of various parts of the architecture. It is worth mentioning that a

23



24 Architecture

single entity may exhibit a number of roles simultaneously and the roles that
it adopts may also depend on the specific type of data that might be processed
by a service. Furthermore, it is also possible to look at the infrastructure from
different angles. For example, we might take a data-oriented view and classify
the entities as either data acquirers or data aggregators. In the following,
however, we look at the operation of the infrastructure from a service-centric
perspective, as this clarifies the entities and also highlights the innovative
features that are targeted by the project.

As depicted in Figure 2.1, from a high-level service-centric perspective,
the entities involved in the GAMBAS architecture can exhibit one of more of
the following three roles:

• Service operators: A service operator is responsible for executing and
maintaining a part of the software and hardware infrastructure that
is required for a particular service or a set of services. The opera-
tor provides computing resources such as processing capabilities and
storage capacities in such a way that they can be accessed remotely

Figure 2.1 Roles of Entities.



2.1 Static Perspective 25

via the network. The operator is not responsible for the actual func-
tionality provided by the service. Instead, the service operator simply
provides the basic infrastructure, possibly with service-level agreements
on the performance of the system. To protect the privacy of sensitive
data, we envision that some generic services such as the distributed
stream processing between employees of the same enterprise or between
groups of friends might be operated by an enterprise or by one or more
citizens. To ease the provisioning of such generic services, we envision
that service operators might offer them as pre-installed and managed
bundles, similar to existing website or cloud computing offerings. Alter-
natively, technically advanced users might run the necessary software
components on their own Internet-connected home server or wireless
home router.

• Service providers: While a service operator is solely providing
thetechnical basis for the execution of a particular service, the service
provider is the actual responsible entity that offers the service to dif-
ferent users. In many cases, the service provider will be interested
in offering a particular set of data to the consumers of the service.
Furthermore, the service provider might also be interested in collecting
some information from the service consumers which can then be used,
for example, to improve the quality of the service. In this case, the ser-
vice provider actually becomes the consumer (of parts) of the provided
service. Besides service providers that want to share a particular data
set, we also envision service providers that simply combine existing
data sets (possibly offered by different service providers) in order to
add value. For example, one service provider might combine the social
graph of a set of persons with their travel behavior in order to provide
recommendations for trip routes. To do this, the service provider might
have to access the social graph and the trip routes from two services that
are controlled by another provider. To enable such service mashups, the
GAMBAS middleware uses an interoperable data representation that is
based on linked open data principles.

• Service consumers: The last role foreseen by the architecture is the
actual consumer of a service. The service consumer accesses the data
and functionality offered by a service provider using the infrastructure
of the service operator in order to ease their everyday tasks. In many
cases, the consumer will be an end user that is accessing a particular
service from a mobile Internet-connected device. Thereby, the end user
might not have to initiate the interaction. Instead, the intent-aware user



26 Architecture

interface might initiate interactions via the middleware at the right point
in time without manual intervention. In order to improve the service
quality available to them, the end users might be willing to opt-in to
collect additional data that can help the service provider to improve
the service. This mutually beneficial data collection and sharing forms
the basis for the second group of service consumers. In addition to the
end users, we envision that service providers can become the consumers
of their own services. As a simple example, consider that a city might
offer a service that enables users to share and report air quality measure-
ments. The end users, i.e., the citizens, might then use the resulting air
quality map to avoid polluted parts of the city. In addition to this, the
service provider, i.e. the municipality, might use the service in order to
dynamically adjust the road toll on different streets of the city in order
to improve the minimum air quality.

Although these three roles are not new and are at the core of most service-
oriented infrastructures, their interpretation in the context of the GAMBAS
project is more dynamic. The basis for this is formed by the two key
characteristics of the overall vision, namely the adaptive data acquisition and
presentation as well as the dynamic and distributed data processing. Due to
the former, the service consumers may also contribute to the provisioning of
a service by collecting and sharing some data using their Internet-connected
mobile devices. This, in turn, can result in mutual benefits for the service
providers and the consumers. For some services, the providers may become
the consumers of their own services. Due to the latter, new types of service
providers may emerge in the network. Instead of providing their own data
sets, they may simply link the existing data sets in novel ways – possibly
enriching them with additional data. This will allow more tailored and spe-
cialized services and it should lead to a more thorough support for various
types of service consumers that may exhibit different behaviors.

2.1.2 Component View

Intuitively, as a service-oriented architecture that is supposed to be capturing
and delivering data, we can identify three main building blocks which provide
data acquisition, data storage and distributed data processing. On top of that,
in order to enable the limited sharing of data, we can furthermore identify a
building block that is responsible for managing the data access. Finally, in
order to remotely retrieve the necessary data in an automatic fashion, we can
identify a building block that takes care of data presentation. In the following,
we describe these building blocks in more detail:



2.1 Static Perspective 27

• Data Acquisition Framework (DQF): A primary capability of the
GAMBAS middleware is its ability to automatically capture data on
behalf of the end user or a service provider. For this, the middleware
encompasses a data acquisition framework that is capable of running
on different types of devices. Based on the four device classes intro-
duced in Section 1.5.1.4, the data acquisition framework primarily
targets Constrained Computer Systems (CCS). In addition to that, the
data acquisition framework provides support for Embedded Computer
Systems (ECS) by means of connecting the embedded systems to a
constrained system. The data acquisition framework provides generic
and extensible support for virtual and physical sensors, and it optimizes
the data acquisition with respect to energy consumption. Furthermore,
in order to support applications, the data acquisition framework provides
a number of example activities and intent recognition components that
primarily deal with location information, movement modalities, bus
routes and environmental information. The data that is captured using
the acquisition framework can either be stored locally on the device or it
can be forwarded automatically to a particular service that is connected
to the Internet. The former approach can be taken in order to protect
the user’s privacy when dealing with privacy sensitive data, whereas the
later approach can be taken with data that does not impact the user’s
privacy or which is explicitly shared on behalf of the user.

• Semantic Data Storage (SDS): To store the data of the user on a local
device or at a particular service, the architecture introduces a semantic
data storage component. Similar to the data acquisition framework, the
semantic data storage is primarily targeted at device classes with more
resources, such as Constrained (CCS), Traditional (TCS) and Backend
Computer Systems (BCS). The data that is stored in a semantic data
storage component follows the linked open data principles and uses
the interoperable data representations that have been developed as part
of the GAMBAS middleware. Furthermore, the data storage is able to
interface with different types of query processors, depending on the
resources available on the device. This implies that there may be differ-
ent implementations of this component that are optimized for different
device classes.

• Legacy Data Wrapper (LDW): The semantic data storage compo-
nent is primarily targeted at the management of interoperable data that
is following the linked open data principles. However, in the short
term to mid-term, it is unrealistic to expect that all types of informa-
tion that are interesting for a service consumer are modeled with this



28 Architecture

approach. Consequently, it is necessary to integrate with data that is
stored in an existing “data silo” using a proprietary data representation.
In order to smoothen the transition from proprietary to interoperable
representations, the architecture explicitly foresees legacy data wrapper
components that transform the data and possible functionality provided
by legacy services into an interoperable data representation. Intuitively,
it is not possible to provide a generic legacy data wrapper that can
handle all possible data representations. Instead, the GAMBAS mid-
dleware encompasses basic software that eases the development of an
application-specific data wrapper. Thereby, the basic software primarily
targets Traditional (TCS) and Backend Computer Systems (BCS) as
these are commonly used to manage data and to provide services.

• Query Processors (xQP): In order to make the data stored in semantic
data storages available to services and applications, the architecture
introduces query processor components that are capable of executing
queries on top of the storages. As described in detail in Chapter 4, the
query language that is supported by the query processors is a subset of
the SPARQL language that considers the limited resources available on
Constrained Computer Systems (CCS). Due to the different dynamics of
different types of data that is handled by the GAMBAS middleware and
due to the different amounts of resources that are available on different
classes of devices, the architecture divides the query processors into the
following two components:

◦ One-time Query Processor (OQP): The one-time query proces-
sor is targeted at the execution of queries that evaluate the current
state of the data in the semantic data storages. It executes queries
that produce a single result based on the current information and
the specific query. Consequently, this query processor is targeted at
static information that does not change frequently or at applications
that only require a one-time view. From a resource perspective,
the one-time query processor is designed to support a broad range
of devices including Constrained (CCS), Traditional (TCS) and
Backend Computer Systems (BCS). Due to resource constrains,
one-time query processors in CCS are limited to process only data
stored in semantic data storages belonging to the same system.
OQPs in less constrained devices have access to remote seman-
tic data storages to allow the combination of data from multiple
sources. As explained later on, the provisioning remote access
respects the privacy constrains.



2.1 Static Perspective 29

◦ Continuous Query Processor (CQP): In contrast to the one-time
query processor, the continuous query processor is specifically
targeted at dynamic data. It executes queries that can produce
multiple results based on the changes to the underlying informa-
tion and the specific query. Consequently, this query processor
is suitable for services and applications that require continuous
monitoring of events that might be captured by multiple data
sources. However, in order to handle such queries, it is necessary to
introduce buffers that can easily exceed the resources available on
Constrained Computer Systems (CCS). Consequently, this type of
query processor will be targeted at Traditional Computer Systems
(TCS) and Backend Computer Systems (BCS). Yet, in order to
evaluate continuous queries, Constrained Computer Systems may
make use of continuous query processors that are provided as a
service that is operated by a third party. Towards this end, the
continuous query processor can be considered to be a generic
component that can be deployed by different entities, provided
that they have access to a suitable Internet-connected computer
system. Similar to OQPs, access to remote data is also enabled
in continuous query processors.

• Data Discovery Registry (DDR): To enable transparent distributed
query processing, the query processors must be able to discover the data
sources that are available on the network. To make the data discover-
able, a device may announce the data available in the semantic data
storage to the data discovery registry which in turn will typically use
a semantic data storage component to manage the announcements. In
case of personal mobile devices, the announcement may be limited or
modified depending on the privacy preferences of a particular end user.
To enable this, the semantic data storage and the data discovery registry
must interface with the privacy framework.

• Privacy Framework (PRF): Given the above components, it is possible
to acquire information using all types of systems. Furthermore, it is
possible to access dynamic as well as static information using one-
time and continuous queries. In principle, this is sufficient to enable
the acquisition and sharing of data. However, as some data such as the
end user location or the end user travel preferences might be sensitive
from a privacy perspective, it is necessary to limit the data acquisition
and in particular the data sharing such that it respects the privacy
preferences of different entities. Achieving this is the primary task of



30 Architecture

the privacy framework. Conceptually, the framework interacts with the
semantic data storage as well as the data acquisition framework that is
deployed on each personal device. In addition, the privacy framework
may also be used to limit the access to information that is provided by a
particular service. For this, it is integrated into the device that is offering
the service.
Using a privacy policy that can be generated automatically by means
of plug-ins that access proprietary data sources, the privacy framework
takes care of exporting sensitive data in such a way that it can only
be accessed by legitimate entities. Furthermore, depending on the user
preferences, it can apply obfuscation in order to limit the data precision
and it may anonymize the data in order to unlink the data from a par-
ticular user. Since the GAMBAS middleware targets the use of personal
mobile devices as primary sources of data, the privacy framework not
only supports Traditional Computer Systems (TCS) but also Constrained
Computer Systems (CCS) as its execution platform.

• Intent-aware User Interface (IUI): As the last building block of the
architecture, the intent-aware user interface is responsible for leveraging
the remaining components in such a way that the end user ideally
receives the right information at the right time. To do this, the intent-
aware user interface executes queries against different services based on
the behavior of the user and decides on how and when to present what
information to the user. Since the past behavior of the user might not be
sufficient to predict new user goals, the intent-aware user interface can
also provide ways of allowing the user to modify the predicted behavior.
Furthermore, as it is the primary component that is visible to the user,
it has to support manual customization by the user. This encompasses,
for example, the selection of layers that are interesting for a user or the
manual tweaking of a generated privacy policy in a user-friendly way.
Although we envision that the concepts behind the intent-aware user
interface are applicable to different types of devices, we assume that in
the short term and mid-term, they will be most useful for users when
they are presented on their personal mobile devices. Consequently, the
current implementation of the GAMBAS middleware focuses primarily
on Constrained Computer Systems (CCS).

2.1.3 Data View

The GAMBAS architecture aims at supporting a broad range of ser-
vices and applications whose data exhibits vastly different characteristics.



2.1 Static Perspective 31

Data 
Access

• Public Data
• Shared Data
• Private Data

Data 
Represen-

ta�on

• Legacy Data
• Linked Data

Data 
Dynamics

• Sta�c Data
• Dynamic Data

Data
Classes

Figure 2.2 Classes of Data.

Depending on the point of view, it is possible to classify these characteristics
along various orthogonal dimensions. As depicted in Figure 2.2, we focus on
the level of data access, the type of data representation and the dynamics of
the data. In the following, we take a closer look at these three dimensions
and describe how the different classes of data are handled by the GAMBAS
middleware architecture.

2.1.3.1 Data Access
Given the fact that GAMBAS aims at supporting the development of
behavior-driven services that adapt autonomously to the user, it is clear that
the GAMBAS architecture must be able to thoroughly support different levels
of access to data, especially in cases where the collected data may be sensitive
in terms of privacy. Based on the level of access, we can identify the following
categories:

• Public Data: Public data may belong to an individual or an organization
which makes the data available to third parties. Thereby, the entity
that owns the data grants free access to all data for all other entities.
Examples of such data could be stock prices, weather information, etc.
We can assume that many applications will require public data to provide
relevant and useful services. Although we can assume that most public
data will be provided by services that are executed on resource-rich



32 Architecture

devices connected continuously to the Internet, the GAMBAS architec-
ture also allows the provisioning of public data by means of Constrained
Computer Systems (CCS) such as a mobile phone. To enable seamless
discovery of public data, however, the device responsible for the data
must publish the metadata in the Data Discovery Registry (DDR).

• Private Data: In most cases, private data belongs to an individual
person and it could be the user’s personal data or data that the user
is not willing to share with everyone. Examples of such data could
be the user’s contact information or the user’s current location. In
addition, private data may also reflect the internal data of an enterprise
that is not supposed to be shared with other entities. For this type of
data, the GAMBAS consortium made the deliberate decision to limit
its distribution. Although it might be more practical to provide online
access to private data, the GAMBAS architecture foresees the storage
of private data exclusively on the devices that own it in order to prevent
illegitimate access and processing through third parties. Consequently,
the private data will remain on the devices that collected it unless the
responsible entity makes a deliberate decision to share (parts of) it.

• Shared Data: In many cases, limiting the types of data to only private
and public can be overly constraining. Depending on the user’s pref-
erences or on the business model of an enterprise, it might be more
beneficial to share (parts of) the private information in order to get
better services or to increase the revenue. For both cases, the GAMBAS
architecture foresees support for shared data. In essence, shared data
is a particular view on the private data. This view can be accessed by
other entities that are authorized. In order to safely support shared data,
it is necessary to enable trustworthy authentication among the different
entities and there needs to be a policy that details who will gain access
to which view on the data. Managing this process and the associated
policies is done by means of the privacy framework that is an integral
part of the architecture. The privacy framework thereby ensures that only
legitimate entities will be able to access a shared view.

2.1.3.2 Data Representation
As hinted in the component view, in the short term and mid-term, we cannot
assume that all types of data will be represented using the models and
approaches developed by the GAMBAS project. Instead, we must ease the
integration of existing data that may be represented using proprietary formats



2.1 Static Perspective 33

by means of legacy data wrappers. Consequently, based on the level of
integration, we can identify the following two classes of data:

• Linked Data: Linked data represents data that follows the linked open
data principles that are the basis for the interoperable data representation
used by the GAMBAS middleware. Using the semantic data storage
component, it is possible to store linked data on any supported device.
Furthermore, using the one-time and the continuous query processor,
it is possible to query the static and dynamic data stored in one or
more semantic data storage components. To implement interoperable
services and to ensure that it is possible to easily create composed
services, it is necessary that the information is represented using this
data representation.

• Legacy Data: Although there are good reasons for picking up the inter-
perable data representations promoted by the GAMBAS middleware, it
is clearly unreasonable to assume that all data providers will immedi-
ately switch their data format. Consequently, the GAMBAS middleware
provides ways to integrate legacy data that does not follow the linked
open data principles. To do this, the GAMBAS middleware pursues a
dual strategy. For frequently used personal data coming from different
existing services such as Google calendar or Facebook, the GAMBAS
middleware provides fully functional wrappers that allow the use of the
stored information in order to compute privacy policies or to use them
as sensor inputs. For public data coming from existing services such as
the route information and time tables of public buses, the GAMBAS
middleware provides support by simplifying the development of legacy
data wrappers. Together, this allows the immediate use of frequently
used data and it fosters extensibility with respect to more specialized
existing services.

2.1.3.3 Data Dynamics
Finally, the last dimension categorizes the data on the basis of its dynamics.
Intuitively, the dynamics of the underlying data can have a significant impact
on the way it needs to be handled by the architecture. Clearly, there is a broad
spectrum of possible dynamics and even data such as street names, which can
be considered to be static, is subject to change. However, at both ends of the
spectrum, we can identify the following categories:

• Static Data: Static data is data that never changes or changes rather
infrequently. Examples for static data are geographic information such



34 Architecture

as a map of a city or the route information of a public bus. Clearly, both
examples can change over time. However, considering their update rate
of months or years, it is usually possible to query the information once
and then cache the results of the query for a significant amount of time.
Aside from caching intermediate results, it is also possible to replicate
the complete set of static data that is offered by one service at another
service in order to trade-off storage for network bandwidth and latency.
Given this optimization potential, the handling of static data is often less
demanding than the processing of dynamic data.

• Dynamic Data: Dynamic data is data that changes frequently. Examples
for dynamic data are the location of a particular user or a bus in the city.
Although there might be periods in which updates are less frequent, like
at night when the user is sleeping or the bus is parked at the depot, in
many cases, it is not possible to apply similar optimizations as with static
data. For example, the application of replication will require frequent
synchronization and the introduction of caches for intermediate results
may lead to significant imprecisions. Consequently, in many cases,
dynamic data requires the execution of continuous queries, which are
more resource-intensive to evaluate.

2.2 Dynamic Perspective

Given the introduction of the entities, building blocks and data types in the
static perspective of the architecture, the dynamic perspective describes how
they interact in order to achieve the different goals. Due to the technical
objectives of the GAMBAS middleware, the dynamic perspective focuses on
three main parts, namely the acquisition view, the processing view and the
inference view. The acquisition view describes how different types of data
are collected. The processing view describes how different types of data can
be queried. The inference view describes how different data inferences can
be drawn using the architecture.

2.2.1 Acquisition View

From the point of view of data acquisition, the GAMBAS middleware sup-
ports two different scenarios. The first scenario is targeting the personal
acquisition of data that is used to capture the user’s behavior on behalf of
the user. The second scenario is targeting the collaborative acquisition of data
from a large number of users that is used to improve or provide a particular
service upon request of a service provider.



2.2 Dynamic Perspective 35

For the first scenario, the identity of the user is important to ensure
that the resulting profile can be associated with the right user. Consequently,
the acquired data may be highly sensitive from a privacy perspective. For
the second scenario, the identity of the user is often not important but the
service provider is rather interested in an aggregated view of the data. Con-
sequently, by ensuring that the acquired data cannot be associated directly
with a particular user, the resulting privacy issues of data collection can
be minimized.

Independent of the type of acquisition, we assume that the user must be
able to give an explicit consent to the data acquisition at least once in order
to ensure that only the desired data types are acquired. To do this, the user
must interact with the privacy framework by means of the intent-aware user
interface to set the associated preferences. In the following, we outline how
both scenarios are handled from an architectural perspective.

2.2.1.1 Personal Data Acquisition
A primary objective of the GAMBAS middleware is to enable the
development of behavior-driven services. Intuitively, the realization of a
behavior-driven service requires knowledge about the behavior of the service
consumers. A key feature of the GAMBAS middleware is to provide support
for the gathering of such knowledge automatically in the background.

In contrast to other approaches, the middleware focuses on the use of
personal mobile Internet-connected objects such as tablets or smartphones
as primary platforms for data acquisition. The reasons for this are manifold.
First and foremost, many Internet-connected objects are self-contained and do
not require additional infrastructure support. Secondly, the objects are often
not utilized to their fullest capacity, leaving enough resources to perform
context recognition. Thirdly, many Internet-connected objects have access
to both physical and virtual data sources, which allows multi-modal context
recognition with high precision. Lastly, the object’s context is usually tightly
correlated to the user’s context and the recognition alone (i.e. without sharing)
does not invade privacy.

While the former points are primarily underlining the technical suitability
of personal mobile Internet-connected objects as acquisition platforms, the
last point highlights a key feature of the approach taken by GAMBAS that is
the explicit decision to focus on privacy. Given the possibly privacy-sensitive
nature of a behavior profile, the data contained in it must be considered private
unless a user actively shares it, e.g., in order to enable service adaptation.
Consequently, the data should not be accessible directly by other parties



36 Architecture

Personal Mobile
Internet-connected Object

Personal Mobile
Internet-connected Object

External Services
(Facebook, Google, etc.)

External Services
(Facebook, Google, etc.)

1. Retrieve policy-related
data

5. Collect data and store it
locally

2. Generate personalized
privacy policy

4. Limit data acquisi�on
based on privacy policy

3. Configure generated
privacy policy

Personal Privacy
Policy

Personal Privacy
Policy

IUI

PRF

SDS

DQF

Figure 2.3 Personal Data Acquisition.

rather than the user. In order to achieve this, all personal data collected by
the system is stored locally on the devices of the respective users.

The resulting component interaction for personal data acquisition is
depicted in Figure 2.3. To reduce the configuration effort for the user, the
privacy framework retrieves policy-related data from third-party services
such as Facebook or Google, for example. Using this data, it computes an
initial privacy policy. This policy can then be refined through the intent-
aware user interface in order to enable manual control over all aspects of
data acquisition and sharing. The resulting personal privacy policy is then
used by the data acquisition framework, which limits the acquisition to those
data types that are allowed by the user. In order to limit the access, the
acquired data is stored locally in the semantic data storage of the mobile
Internet-connected object.

2.2.1.2 Collaborative Data Acquisition
In addition to personal data acquisition, the GAMBAS middleware also
supports the collaborative collection of data, for example, to enable the opti-
mization of services based on aggregated usage information. Intuitively, this
requires an alternative to the previously described personal data acquisition,
since the local storage of data is not suitable for aggregating remote data.
To support this, the GAMBAS architecture introduces the ability to remotely
store information. Intuitively, this remote storage raises additional privacy
concerns since a service provider might be able to associate the reported data
with a particular user.

To mitigate this, the GAMBAS middleware enables fine-grained control
over the collection process using the same procedure that has been introduced



2.2 Dynamic Perspective 37

for personal data acquisition. This enables a user to control the data that
will be acquired on behalf of a service provider. In addition, the architecture
also enables modifications to the data that is reported to a service. As a
simple example, the middleware could refrain from sending unique identifiers
or could replace them with (randomly) generated pseudonyms that change
over time. In more complicated scenarios, the middleware might also apply
obfuscation to reduce the data quality or it might refrain from reporting
certain pieces of information at all. For this, the data acquisition framework
provides a user with control over the data that is reported. This control can
then be exercised to limit the sharing of data in such a way that it does not
conflict with the users privacy requirements.

The resulting component interaction for collaborative data acquisition is
depicted in Figure 2.4. Like in the personal data acquisition case, the privacy
framework retrieves policy-related data from third-party services, which is
used to compute an initial privacy policy. This policy can then be refined
through the intent-aware user interface in order to enable manual control.
The data acquisition framework uses the resulting privacy policy to limit the
data acquisition to those data types that are allowed by the user and to modify
the data accordingly before transmission. As a last step, the data acquired by
the adaptive data acquisition framework is then sent to a remote device where
it is stored or further processed.

2.2.2 Processing View

To describe the processing of queries, it is necessary to consider the different
classes of data depending on the possible level of access. Intuitively, since

Personal Mobile
Internet-connected Object

Personal Mobile
Internet-connected Object

External Services
(Facebook, Google, etc.)

External Services
(Facebook, Google, etc.)

1. Retrieve policy-related
data

5. Report (desired) data
and store it remotely

2. Generate personalized
privacy policy

4. Limit data acquisi�on
based on privacy policy

3. Configure generated
privacy policy

Personal Privacy
Policy

Personal Privacy
Policy

GAMBAS ServiceGAMBAS Service

IUI

PRF

DQF

SDS

Figure 2.4 Collaborative Data Acquisition.



38 Architecture

private data is only available to the device that collected it, distributed
processing is not possible with private data. Instead, only local queries can
be executed on it. However, as described previously, a user may share (parts
of) his/her private data with other users or their devices. In order to ensure
that shared data can only be accessed by legitimate entities, an associated
access control mechanism is required. Furthermore, it is necessary to encrypt
the underlying communication in order to avoid the overhearing of data over
insecure network connections. For public data, access control and encryption
are not necessary since the data is freely shared with everyone. Due to these
differences, the GAMBAS architecture supports two possible data discovery
and access mechanisms that are used depending on the level of access granted
to the data. In the following, we describe both of them individually. Intu-
itively, it is possible to create queries that involve public as well as shared data
by combining both approaches. Similarly, local queries follow the same idea
but since they are targeting only data that is available locally, the associated
discovery procedures are omitted.

2.2.2.1 Processing of Public Data
Overall, the processing of public data relies on the following generic three-
step procedure that is frequently used in service-oriented architectures:

• Export (Announcement, Publication): In the first step, the availability
of the data is indicated to other devices by means of exporting meta-
data (which describes the available data) to the data discovery registry.
Depending on the architecture, this step is often referred to as export,
announcement or publication. If the underlying data changes in such a
way that the metadata is no longer valid, the changes must be reflected
by an update to the exported metadata to avoid stale references.

• Search (Lookup, Binding): In the second step, which takes place before
query execution, the data discovery registry is used by the query proces-
sor to find the relevant data sources. To do this, the query processor
executes a query on the metadata that is stored in the data discovery
registry. The query that must be executed on the metadata typically
depends on the query that has been posted to the query processor from an
application. Based on the result of the query against the data discovery
registry, the query processor continues with the execution of the actual
query against some of the retrieved data sources.

• Execution (Usage, Invocation): In the third step, the actual query is
executed against the data sources. Depending on the capabilities of the



2.2 Dynamic Perspective 39

query processor, the query execution might be decomposed in further
phases such as query planning and query execution. In the query plan-
ning phase, the query processor will typically select one of multiple
possible query execution strategies in order to optimize certain goals
such as decreasing the network load or decreasing the resource usage on
certain types of devices.

Figure 2.5 shows an example for the execution of a query on two public data
sources. Intuitively, steps one, two and three are decoupled in time, i.e. they
must happen sequentially but the time period between them may vary.

As a first step, the public data sources announce their data by exporting
associated metadata to the data discovery registry. Typically, this is done
once the device starts up its semantic data storage and the announcement
might be updated in cases where the data storage holds dynamic data that
is reflected in the metadata. Intuitively, however, the update frequency of
the metadata should be lower than the update frequency of the actual data
in order to avoid scalability issues with the data discovery registry. Once
a query is issued, for example, through the intent-aware user interface, the
query processor receives it and interprets it. Based on its contents, it will then
create and execute queries on the data discovery registry, which results in a
set of possible data sources. Based on the strategy taken by the query engine,
an appropriate query plan is generated and executed. For the execution, the
query processor executes sub-queries against the necessary set of semantic
data storages – via their local query processors – and returns the result to the
intent-aware user interface.

Query IssuerQuery Issuer

4. Execute Query

Public Data SourcePublic Data Source

Public Data SourcePublic Data Source

Discovery ServiceDiscovery Service

4. Execute Query

1. Export Metadata

1. Export Metadata

3. Search Data Source

2. Ini�ate Query

OQP

IUI

SDS

SDS

DDR

Figure 2.5 One-time Processing of Public Data.



40 Architecture

Query IssuerQuery Issuer

4. Execute Query

Public Data SourcePublic Data Source

Public Data SourcePublic Data Source

Discovery ServiceDiscovery Service

4. Execute Query

1. Export Metadata

1. Export Metadata

2. Ini�ate Query

Processing ServiceProcessing Service

3. Search Data Source

CQPIUI

SDS

SDS

DDR

Figure 2.6 Continuous Processing of Public Data.

While the approach described above is sufficient to enable the processing
of one-time queries, the execution of continuous queries over dynamic data
raises additional issues. Due to the associated resource requirements, the
GAMBAS middleware does not encompass a continuous query processor for
all types of devices. Instead, the continuous query processor is only suitable
for Traditional Computer Systems (TCS) and Backend Computer Systems
(BCS). Consequently, it is necessary to handle continuous queries on other
systems by means of a third-party system. For public data, this third-party
system can be introduced easily. As depicted in Figure 2.6, the system simply
acts as a proxy for query processing and there is no need to change the
remaining interaction.

2.2.2.2 Processing of Shared Data
As indicated before, the processing of shared data cannot be handled in the
same manner as the processing of public data due to the additional require-
ments on access control and encryption. Consequently, we need to modify
and extend the previous interaction by introducing additional steps that take
care of both. For this, the architecture foresees the following general process:

• Export (Announcement, Publication): As with public data, the first
step is to announce the availability of data to other devices by means
of exporting metadata. However, in contrast to public data, only the
device identity will be exported in order to avoid privacy issues resulting
from the export of private metadata. In cases where no privacy issues



2.2 Dynamic Perspective 41

result, other metadata could be exported as well in order to improve
the performance of the query processor. Alternatively, it is possible to
encrypt the metadata as described in Chapter 4.

• Search (Lookup, Binding): In the second step, which takes place
before query execution, the data discovery registry is used by the query
processor to find the relevant data sources by means of querying their
identities.

• Preparation: The third step takes care of the creation of a view of the
remote data that shall be shared with the device that executes a query.
The view creation itself consists of a number of sub-steps. First, the
identity and data requirements are forwarded to the privacy framework
of the device issuing the query. Second, the privacy framework contacts
the privacy frameworks on the devices hosting the shared data. For
this purpose, the privacy framework performs a mutual authentication.
Furthermore, the privacy framework executing on the devices hosting
the shared data performs access control, which will eventually result in
the creation of a view that represents the data that shall be visible to
the requester. Thereby, it is noteworthy to mention that this view may
modify the original data based on the level of access. For example, the
device hosting the data might decide to generalize parts of the data or to
make parts of the data inaccessible. Once the view is created, a secure
token is generated, which can then be used to access the view. This token
is returned back to the query processor.

• Execution (Usage, Invocation): In the last step, the actual query is
executed against the view provided by the devices hosting the shared
data. In order to access the view, the query processor provides the token
to the shared data source and it uses an encrypted channel to transmit
both the query and the result.

Figure 2.7 depicts this process with one device that is issuing a one-time
query on two sources providing shared data. As described previously, the time
between export and access of the device’s identify information in the data
discovery registry may be high since the device providing shared data will
usually export its identity as well as other public and optionally encrypted
metadata that does not raise privacy issues upon startup.

Following the general process described above, the devices hosting the
shared data export their identity and non-privacy-critical metadata in a similar
fashion, as public data sources will share their metadata. As depicted in
Figure 2.7, the processing is then initiated by means of a query issued by



42 Architecture

Query IssuerQuery Issuer

7. Execute Query on View
(Encrypt)

Shared Data SourceShared Data Source

Shared Data SourceShared Data Source

Discovery ServiceDiscovery Service

1. Export Iden�ty and
Public Metadata

1. Export Iden�ty and
Public Metadata

2. Ini�ate Query

3. Search Data Source 4. Request Access to
Remote Data

7. Execute Query on View
(Encrypt)

5. Request Access 
(Authen�cate & Authorize)

5. Request Access 
(Authen�cate & Authorize)

6. Create View

6. Create View

OQP

IUI

SDS

DDR
PRF

PRF

PRF

SDS

Figure 2.7 One-time Processing of Shared Data.

the intent-aware user interface. In order to access shared data, the query will
typically specify the identity of one or more data sources whose connectiv-
ity information must be retrieved by searching through the data discovery
registry in step two. Once the information is retrieved, the query processor
will request the creation of the view through the local privacy framework.
To prepare the view, the privacy framework on the query issuer contacts the
devices hosting the shared data. Thereby, the privacy framework components
on the devices will jointly perform request authentication and authorization. If
this is successfully completed, the devices hosting the shared data will create
the view on the data that shall be exposed to the query issuer. Thereby, they
may perform arbitrary operations on the data such as generalizing information
or removing information from the view on a per-request basis. Once the
view is prepared, the privacy framework on the query issuer device will
receive an access token enabling it to access the newly created view. This
token is then passed back to the query processor, which will then issue the
respective sub-queries to each of the data sources (again via the local query
processors). Thereby, the whole transaction is encrypted and authenticated
using the token. Once the sub-queries have been executed, the views on the
devices hosting the shared data will be disposed and the result will be returned
to the intent-aware user interface.

To enable stream processing on Constrained Computer Systems (CCS),
the architecture mimics the proxy-based approach taken for public data where
a remote processing service provides the hardware and software resources to
perform queries. As shown in Figure 2.8, the primary difference between



2.2 Dynamic Perspective 43

Processing ServiceProcessing Service

Query IssuerQuery Issuer

7. Execute Query on View
(Encrypt)

Shared Data SourceShared Data Source

Shared Data SourceShared Data Source

Discovery ServiceDiscovery Service

1. Export Iden�ty and
Public Metadata

1. Export Iden�ty and
Public Metadata

2. Ini�ate Query

3. Search Data Source 
4. Request Access to

Remote Data

7. Execute Query on View
(Encrypt)

5. Request Access 
(Authen�cate & Authorize)

5. Request Access 
(Authen�cate & Authorize)

6. Create View

6. Create View

IUI

PRF

CQP

SDS

PRF

DDR

PRF

SDS

Figure 2.8 Continuous Processing of Shared Data.

continuous and one-time processing originates from the fact that a third
party will be involved in data access. Consequently, this third party will
have to be trusted by the shared data sources or they have to deny the
request. In order to make the associated decision, the access request will
not only have to authenticate and authorize the query issuer but it also has
to decide upon the trust of the processing service. To do this, the request
must identify the processing service that will be used during the processing.
Furthermore, the remote communication between the actual query issuer
and the continuous query processor must be secured accordingly. However,
as described in Chapter 5, this can be done using regular cryptographic
methods.

2.2.3 Inference View

Another key usage scenario of the GAMBAS middleware is the gathering of
data from multiple sources in order to derive additional information. Based
on the scenarios described in Section 1.3 and considering the acquisition and
processing views described in the previous sections, we can identify two main
classes of inferences, namely local and distributed inferences.

Local inferences are primarily based on information that is available to a
single device. Thereby, the term local does not exclude the use of static public
or shared data. A device can opt for locally storing a view of the static remote
data to simplify the processing.



44 Architecture

For dynamic data, however, such an approach is usually ill-suited – at
least for devices that cannot host a continuous query processor – since the
remote data would have to be refreshed continuously. Consequently, from
an architectural perspective, the GAMBAS middleware realizes (simpler
forms of) distributed inferences by means of executing continuous queries.
Intuitively, the degree to which such inferences are possible depends on the
capabilities of the query language. In the following, we briefly outline the
approach taken to support local and distributed inferences.

2.2.3.1 Local Inferences
As indicated previously, local inferences encompass inferences on local data
that is held by a device as well as public or shared static data that is available
remotely and can be accessed by the device. Given the local availability
of data, it is then possible to derive additional data using custom software
that is executed by the device. Based on the application scenarios described
in Section 1.3, the GAMBAS middleware supports two types of such local
inferences which we outline in the following.

• Personal inferences: Personal inferences are inferences over the behav-
ior data collected using personal data acquisition. They may entail
the derivation of aggregated information from multiple sensors or the
prediction of future behavior based on traces of the past behavior. In
order to enable such an aggregation or prediction, the device itself
may require additional static information. For example, in order to
determine the typical bus stops that are used by a user, the personal
mobile object of the user may have to retrieve the GPS coordinates
of the bus stops. Similarly, in order to predict future trip destinations,
it may be necessary to retrieve the street address of previously visited
locations. From an architectural perspective, the GAMBAS middleware
provides support for such personal inferences mainly by means of the
adaptive data acquisition framework, which provides extensible support
for data aggregation, behavior tracking and prediction. In addition, it is
also possible to support this type of inferences at the user interface level
in cases where the required inferences are highly application-specific.

• Service inferences: In addition to personal inferences which affect
the data stored on the personal mobile objects, there is also a need
to support service-specific inferences, which may be a result of the
aggregation of data acquired collaboratively. As a simple example, it
may be necessary to aggregate collaborative sensor readings in order to



2.2 Dynamic Perspective 45

derive an environmental map. Similarly, it might be necessary to assign
the occupancy information collected by different users to different buses
on a route in order to predict their remaining capacity. Intuitively, such
aggregations should be handled by the service that collects the data since
they may require the combination of data reported by multiple sources.
However, since such aggregations are often highly application-specific,
the GAMBAS middleware primarily supports them by providing data
access by means of a generic query processor, which is detailed in
Chapter 4. For aggregations that exceed the capabilities of this query
processor, it is necessary to implement custom application logic.

2.2.3.2 Distributed Inferences
In contrast to local inferences which are limited to local data and static remote
data, distributed inferences combine the dynamic data of multiple remote
data sources. Considering the application scenarios targeted by the GAMBAS
middleware, such inferences are necessary, for example, in order to detect the
collocation of friends in the same public bus. Since we can assume that many
users are not willing to publicly share their current location, such information
is typically only shared among a specific and user-dependent set of people.
To protect the privacy of the users, the GAMBAS middleware only stores
this information on the personal mobile objects of the associated user. Thus,
given that the user is willing to share this information, it must be retrieved
from there.

As indicated previously, however, due to the resource constraints of many
personal mobile devices, the GAMBAS middleware does not encompass a
continuous query processor for these types of devices. Thus, there are only
two ways of supporting distributed inferences. The first and simplest way is
to perform the inference by means of a continuous query that is executed
on some third-party system that is jointly trusted by the group of users. The
second way to realize such inferences is to implement a custom service to
perform the inference.

Both approaches have different benefits and limitations. The former
approach does not require any custom implementation and thus, is easier
to realize. However, given that the query language applied in GAMBAS
may not support arbitrary application-specific functions, it is limited to the
set of operators supported by the language. The latter approach does not
suffer from this problem since arbitrary code can be used during the service
implementation. However, in contrast to the use of an existing middleware
component, it is much more complicated as it requires the development of



46 Architecture

custom software. To realize the applications described in Chapter 6, it was
sufficient to use a continuous query processor in order to perform the desired
distributed inference; however, in a broader context, it may be necessary to
provide additional custom services.

2.3 Interface Perspective

Given the static and dynamic perspective of the high-level architecture
described in the previous sections, it is possible to identify the interfaces
between the core building blocks that constitute the GAMBAS middleware.
To do this, we take the different building blocks detailed in the component
view of the static perspective, namely the data acquisition framework (DQF),
the semantic data storage (SDS), the one-time and the continuous query
processor (xQP), the data discovery registry (DDR), the privacy preservation
framework (PRF) and the intent-aware user interface (IUI). Using these
building blocks, we step through all interactions described in the dynamic per-
spective, namely the acquisition view, the processing view and the inference
view. Consequently, we get the following interactions:

• DQF–SDS: In order to store contextual information for personal as well
as collaborative data acquisition, the data acquisition framework needs
to interact with the semantic data storage.

• xQP–SDS: To execute one-time as well as continuous queries over
public or shared data, the one-time and continuous query processor
needs to interact with the semantic data storages hosting the data.

• xQP–xQP: To execute distributed queries, the query processor needs to
communicate with remote instances of itself to place subqueries there
and receive results back.

• xQP–DDR: In order to determine the appropriate data source before
executing a distributed query, the one-time as well as the continuous
query processor needs to interact with the data discovery registry.

• xQP–PRF: When executing a distributed query over shared data, the
one-time as well as the continuous query processor needs to interact
with the privacy framework in order to gain access to the shared data.

• PRF–DQF: To protect the user from unwanted data collection, the
access to the data acquisition framework is guarded by the privacy
preservation framework. Thus, performing data acquisition requires
interaction between these components.

• PRF–PRF: In order to gain access to shared data, the privacy framework
must be able to interact with other instances of the framework remotely



2.3 Interface Perspective 47

to negotiate the appropriate access levels and to prepare the necessary
views for querying.

• IUI–xQP: To retrieve data from the local storage or from remote
services, the intent-aware user interface must execute distributed one-
time or continuous queries over the associated data storages using the
one-time and the continuous query processor.

• IUI–PRF: Although, the privacy preservation framework is supposed
to enable the automated generation of a privacy policy, some users may
want to control their sharing more tightly. In order to enable this, the
intent-aware user interface enables manual configuration of the privacy
framework.

In the following subsections, we describe the required functionality and the
resulting interfaces in more detail. Thereby, we try to refrain from describing
low-level implementation details. Instead, we rather focus on an architectural
perspective by describing the types and flows of data that is interchanged
through the interfaces. However, where appropriate, we also give some initial
ideas on how this flow can be realized.

2.3.1 Storage Interfaces

DQF–SDS Interface: As detailed in the acquisition view, there are two
basic types of data acquisition foreseen in the GAMBAS architecture, namely
personal data acquisition (on behalf of the user) and collaborative data acqui-
sition (voluntary, on behalf of a service). For both types of data acquisition,
it is necessary to store the sensed data – either on the mobile device or
on a remote device hosting the service. To perform the data acquisition,
the GAMBAS architecture introduces the data acquisition framework (DQF)
which is responsible for recognizing different types of context in an energy-
efficient manner. To store data following the open linked data principles that
are forming the core of the interoperability mechanisms provided by the
GAMBAS, the architecture foresees a semantic data storage (SDS). In order
to enable the persistent storage and the later retrieval of recognized context,
it is necessary to introduce an interface between these two components.

Based on this rationale, it is necessary to support the insertion of data
into the semantic data storage. In addition, in order to support the storage of
transient states, it is also necessary to support the deletion of data from the
storage. This allows, for example, the removal of stale entries. As described in
detail in Chapter 4, the storages are using RDF as their internal data format.



48 Architecture

Thus, the insertion and deletion functions or the storage use this format as
well. As a result, the interface consists of the following two functions that
can be called either locally (to support personal data acquisition) or remotely
(to support collaborative data acquisition):

• Insert (RDF Triple) Success :: Local & Remote: Enables the insertion
of an RDF triple into the semantic data storage by placing either a local
or remote call and indicates whether the insertion has been completed
successfully.

• Delete (RDF Triple) Success :: Local & Remote: Enables the deletion
of an RDF triple from the semantic data storage by placing either a local
or a remote call and indicates whether the deletion has been completed
successfully.

As indicated previously, the architecture foresees the usage of the interface
through the data acquisition framework by means of a special storage compo-
nent that enables the application developer to define the data storage that will
receive the insertion (or deletion) as well as the graph (i.e. the set of triples)
that shall be generated (or updated). Once the data acquisition framework
generates a new result and transmits it to the storage component, the storage
component will perform a deletion of previously inserted triples (if desired)
and execute an insertion of the newly created graph. If the insertion or
deletion shall be executed on a remote system (to perform collaborative data
acquisition), the same set of procedures shall be executed. To improve the
overall performance of the interface, in particular, when executing insertions
and deletions remotely, it is beneficial to support batch insertions and dele-
tions. This can significantly reduce the latency of updates, especially when
multiple triples have to be removed and inserted into a remote storage over a
low-bandwidth connection (such as a GPRS link, for example).

2.3.2 Query Interfaces

xQP–SDS Interface: As explained in the components view, there are two
types of query processors. One-time query processors (OQP) aim at executing
one-time queries, i.e. queries that are evaluated against the current state of
the data. One-time query processors are focused on more static data. For the
dynamic data, continuous query processors (CQP) are in place. CQPs can
monitor the input data coming from streams, and as soon as a new data item
is generated, the CQP will evaluate the query and if new results are produced,
they are then forwarded to the query initiator. In both cases, the data is stored



2.3 Interface Perspective 49

in semantic data storages and the goal of the query processors is to make
the data from an SDS available to services and applications. Therefore, an
interface between xQP and SDS is needed. Query processors should be added
to retrieve data from an SDS that matches a query. Additionally, an xQP also
servers as an interface to add or delete data in an SDS, for example, the data
generated from the user intention interface.

For query optimization purposes, the query processor might make use
of what we call “temporary data”. Temporary data is used only during the
query execution and can be discarded afterwards. As an example, the query
processor might decide to temporarily store the public data in a local SDS
to avoid remote calls during the processing. To keep the storage costs low,
this data would be removed after the query is executed. For this, the query
processor need to provide functions to add, retrieve and delete temporary data
from an SDS.

Based on this rationale, it is necessary to support retrieving data from
a semantic data storage that matches a query, as well as data insertions
and deletions. This applies for both persistent data and temporary data. As
described in detail in Chapter 4, the data retrieval is done via SPARQL
queries. As a result, the interface consists of functions described below. Since
the query processing supports the aggregation of data from different sources,
the functions can be called either locally or remotely:

• Insert (RDF Triple) Success :: Local & Remote: Enables the insertion
of an RDF triple into the semantic data storage by placing either a local
or remote call and indicates whether the insertion has been completed
successfully.

• Delete (RDF Triple) Success :: Local & Remote: Enables the deletion
of an RDF triple from the semantic data storage by placing either a local
or a remote call and indicates whether the deletion has been completed
successfully.

• Insert Temporary (RDF Triple) Success :: Local: Enables the inser-
tion of an RDF triple into a temporary graph in the local semantic
data storage and indicates whether the insertion has been completed
successfully.

• Reset Temporary () Success :: Local: Deletes all entries in the
temporary graph.

• Retrieve (SPARQL Query) result set :: Local: Enables to query the
local SDS for data items that match a given search pattern. To specify
the search pattern, an SPARQL query can be used. Matching data items



50 Architecture

are returned as a result set, containing all suitable bindings for each
requested variable.

• Retrieve Temporary (SPARQL Query) result set :: Local: Enables to
query the temporary graph of the local SDS for data items that match a
given search pattern. To specify the search pattern, an SPARQL query
can be used. Matching data items are returned as a result set, containing
all suitable bindings for each requested variable.

The architecture foresees the usage of the interface as in most query pro-
cessing systems. Since the SDS uses a graph data structure to store the
RDF triples, the retrieval function works by finding sub-graphs on the SDS
that matches the input query. The query processor takes care of parsing the
input query to generate the execution plan. The processor also contains a
component that inserts and deletes data from a data storage. To improve the
overall performance of the interface, as in the case of the DQF–SDS interface,
batch insertions and deletions are a useful optimization, especially on remote
calls. Optimizations on the query execution plan, with the use of temporary
data are also possible.

xQP–xQP Interface: In the GAMBAS architecture, some queries can only
be answered by combining data from multiple sources. One solution would
be to gather all data from the relevant sources in a single device and execute
the query locally on that device. However, there are many problems with
this approach. For starters, it would create a lot of data traffic, since it is not
possible to know a priori which data is needed, therefore each source would
ship all its data to a single device. Scalability would also be an issue, since the
device executing the query would become a bottleneck. Finally, this approach
does not preserve privacy and therefore becomes unsuitable for the GAMBAS
framework.

Our solution is to equip each device hosting data with a query processor.
Each query processor can execute queries locally over the device’s data,
and it can also aggregate results from multiples sources. For executing a
distributed query among the devices, the query initiator first identifies the
relevant sources using the DDR. It then breaks the query into subqueries.
Each subquery is sent to the device that contains the data for it. The query
processor on each device will then execute the subquery locally and only
forward the relevant results to the query initiator (as opposed to all data).
The query initiator merges the results of all subqueries and creates the final
query result.



2.3 Interface Perspective 51

To execute distributed queries, the query processor needs to communicate
with remote instances of itself to place subqueries there and receive results
back. This is done by implementing an interface that allows query proces-
sors to post queries to remote query processors and retrieve the results, as
shown below.

• Retrieve (SPARQL Query) result set :: Remote: Enables to query a
remote xQP for data items that match a given search pattern. To specify
the search pattern, an SPARQL query can be used. Matching data items
are returned as a result set, containing all suitable bindings for each
requested variable. This is used to place subqueries that are part of a
distributed query.

The middleware architecture foresees the usage of the interface during the
execution of distributed queries. Since the local execution is done over RDF
triples, the interface between query processors is done using a language
suitable for RDF, in our case SPARQL.

xQP–DDR Interface: To answer queries which involve remote data, the
query processor must be able to discover the data sources that are available
on the network. Once a query is issued, the query processor receives and
interprets it. This allows the processor to identify which data is needed to
answer the query (for example, the location of friends of a user). The data
discovery registry contains the meta information about the data sources, not
the data itself. This is to preserve the privacy of shared data. By consulting
the registry, the query processor can obtain the list of sources that contain the
data in question. For instance, the registry can return the list of semantic data
storages from the friends’ devices.

Based on this rationale, an interface between query processors and reg-
istry is needed. The interface must allow the processor obtain a list of remote
SDSs (or endpoints) that contains a particular type of data. This interface
requires only one functionally, which is given below:

• Resolve (data source specification) endpoints :: Remote: Enables the
discovery of SDS endpoints that can be contacted for a specific kind of
data, e.g. whom to contact to get information about a user’s location. To
do so, a data source specification is given, e.g. specifying the user for
which data is searched (for instance, a friend). This request is sent to the
remote discovery server and a set of matching endpoints is returned.

The interface functionality detailed is used during the processing of queries
that involve remote data. The query processor identifies which data sources



52 Architecture

are needed (e.g. the sources containing the location of friends), and request
them to the registry. The registry then performs a lookup on the metadata
it stores and returns the list of remote storages that matches the request. To
improve the performance of the interface, and the performance of the query
processing in general, the metadata stored in the registry can be enhanced
in order to provide more accurate and results sets. However, storing more
metadata might lead to privacy issues, so this needs to be handled carefully.

2.3.3 Privacy Interfaces

xQP–PRF Interface: During the query execution, the query processor iden-
tifies the sources needed to answer the query and then sends a request to
the registry. The registry resolves the sources and sends the list of endpoints
(remote storages) that contain that data in need back to the processor. For
shared data however, before the query processor can access the data on the
remote source, a privacy control is performed to check if the query initiator
has the rights to access the data. A view of the data matching the privacy rules
in place is created and shared with the query processor. This is done in the
preparation phase explained in Section 2.2.2.2. The query processor forwards
the identity and data requirements to the privacy framework, which in turn
checks with the privacy framework of the device hosting the shared data. A
view of the data is created based on the access control. The view can reflect
the original data, or it can modify the original data according to the privacy in
place. For example, it can aggregate or hide parts of the original data. Once
the view is created, a secure access token is generated and sent to the query
processor. If a remote endpoint is trying to access the shared data, the secure
access token will allow transferring the shared data securely over the chosen
communication channel.

Based on this rationale, an interface between xQP and PRF is needed to
check whether the query initiator is allowed to access the data. Additionally,
if the xQP is executing a remote query, the communication must be properly
secured. For this, the user and data access credentials are sent over a secure
proxy that is part of the communication subsystem of the middleware to
provide a secure data connection between the two endpoints. As discussed in
Chapter 5, the secure proxy manages the secure communication transparently.
Thus, the interface does not include a method that enables the exchange of
security tokens or start the encryption. In contrast to that, the access to data
must be checked through an interface. The interface consists of one function
that checks if the query initiator (i.e. the user requesting the data) is allowed



2.3 Interface Perspective 53

to access the data. The data being requested also needs to be specified. The
PRF looks at these two input items and decides whether the query is allowed
or not. Each request is handled by the privacy framework of each semantic
data storage and therefore this function is performed locally. The function
supported by this interface is given below:

• Check (Set of Ontology Classes, Requester) allowance :: Local:
Enables to check with the PRF, if executing a received query is allowed
according to the currently active privacy policies. To do so, the query
processor hands the PRF (1) a set of classes in the GAMBAS ontology
that specify what data types the query will access and (2) the origin of
the query, e.g. if it was a local query or a query from a remote user. The
PRF returns whether this query is allowed or not.

The architecture foresees the usage of the interface described above in
the privacy-preserving query execution mechanism, when shared data is
involved. The query processor must first interact with the privacy framework,
which is responsible to allow or deny data access and responsible for data
encryption/decryption.

PRF–DQF Interface: The Adaptive Data Acquisition Framework (DQF)
enables the collection of data using various sensors built into the user’s mobile
device. The collected data can then be used personally (i.e. by the device,
in the case of personal data acquisition) or collaboratively (i.e. by a remote
service, in the case of collaborative data acquisition) to optimize services in
a behavior-driven manner. Clearly, the data acquired by means of sensors
built into the device of a user may raise privacy concerns. Furthermore,
the preferences with respect to privacy may vary drastically from user to
user. In order to empower users to exercise control over which data can be
collected, the access to the data acquisition framework is guarded by the
Privacy Preservation Framework (PRF). Thereby, all accesses made to the
data acquisition framework are checked against the user’s privacy preferences
with respect to data collection. This allows the user to limit the data types
that can be collected at all. In extreme cases, a user may limit the collection
of all data through the GAMBAS middleware. In less extreme cases, the user
may limit the collection of a particular type of context information, such as
location-related information or audio information.

The PRF–DQF interface enables the data acquisition framework to check
whether the user has given consent to the acquisition of a particular type of
contextual information. To do this, the DQF performs calls to the PRF in
order to verify that the data types that shall be captured are permissible under



54 Architecture

the user’s current preferences. Furthermore, since the user’s preferences may
change at any point in time, it is necessary that the PRF provides functionality
to signal a change to the DQF whenever the user’s preferences with respect to
a particular data type change. Consequently, the interface must be composed
of the following two functions:

• Check (Datatype) authorize :: Local: The PRF checks the data type
that is about to be captured against the preferences of the user and returns
a Boolean to indicate whether the user permits the acquisition of the
specified data type. If the access is denied, the acquisition is aborted. If
access is granted, the acquisition task can be started.

• Signal (Datatype) void :: Local: The PRF signals a change to the
preferences with respect to a particular data type such that the DQF can
check all currently executed data acquisition tasks against the updated
set of preferences. If a data acquisition task is no longer permitted by
the user, it must be aborted.

In order to guarantee that all data acquisition tasks continuously conform to
the user’s preferences, the architecture foresees the continuous and gapless
usage of this interface for all calls to the DQF. This means that all tasks
that are started within the DQF need to pass through the check method of
the PRF with the associated data types. In addition, as long as the DQF
is executing any tasks, it needs to react to changes indicated by the signal
method. If a signaled change affects a data type that is currently acquired,
the check for the associated (set of) task(s) needs to be reevaluated, possibly
aborting any conflicting tasks. The check of the DQF against the policy
managed by the PRF may entail some slight overhead, which may become
significant if data acquisition tasks are started and stopped very frequently. In
this case, it makes sense to cache the user’s preferences in memory to reduce
the associated overhead. However, in most usage scenarios, the overhead
can be neglected.

PRF–PRF Interface: The PRF allows the transfer of data between two
devices. The data that is transferred should be encrypted. The reason for this
is twofold. At first, the data might contain private information that should
not be shared with unauthorized users or devices. Additionally, the shared
data might be transferred over an insecure communication channel (e.g. the
Internet or an insecure WiFi network). To enable encrypted communication,
it is necessary for both communication endpoints to use a cryptographic key.
Using the efficient concept of symmetric encryption, the key must be identical



2.3 Interface Perspective 55

and exchanged before the secure communication can take place. During the
exchange of a cryptographic key, the communication endpoints show that
they are eligible to access the data that should be transferred by authorizing
themselves. After the authorization process, both endpoints possess a shared
cryptographic key that allows them to transfer data securely.

The PRF–PRF interface allows the authorization of communication end-
points. The successful authorization can be performed in two different ways.
The first way uses asymmetric cryptography and is based on certificates,
similar to the implementation of SSL in the Internet. This allows an ad-hoc
identification of devices that belong to a certain domain. If the domain root is
trusted, the authorization will be successful. Also, the access rights depend on
the trust in this root. For authentication, the device’s certificate is transferred
together with a challenge that proves that the device is in possession of the
certificate’s private key. Together this data forms the device’s credentials that
are checked at the other endpoint. The alternative of using compute intense
asymmetric cryptography is symmetric cryptography. Using symmetric cryp-
tography, a key can be attached to a connection between two endpoints. The
first half of this shared key allows the identification of the other endpoint.
The other half can be either directly used for the secure communication
or used to exchange a new session key securely. For efficiency reasons,
both of these checks (i.e. for asymmetric and symmetric cryptography) are
performed directly during the communication. The local interface is designed
as follows:

• Check (credentials, user pseudonym) authorize :: Local: The PRF
checks the security credentials of a user and returns a Boolean that shows
if the user was authorized successfully.

The middleware architecture foresees the usage of the interface described
above for every secure transmission of data. The communication endpoint
must first authorize each other at the remote privacy preservation framework,
before a key for the secure communication is computed. Intuitively, the
authorization that is performed by the privacy-preserving framework incurs
some overhead during the data transfer. However, without the authorization,
the communication partner is unknown to another device and this contradicts
the privacy of the transferred data. While the authorization therefore is a
crucial mechanism, it is may be possible to use more lightweight security
mechanism, resulting in a decrease of the security level, in application
scenarios that permit this.



56 Architecture

2.3.4 Control Interfaces

IUI–xQP Interface: The Intent-Aware User Interface (IUI) is connected
to the GAMBAS middleware through a query processing interface, which
provides access to local and remote data sources. Local data pertains, for
example, to personal travel information, which may include the user’s travel
history for making predictions to adapt the IUI to his future travel behavior.
Remote data could include transport information hosted by third-party ser-
vices such as a city’s local transport agency (e.g. estimated time of arrivals),
time tables and information about the travel habits from the user’s friends
in the social network as stored on their mobile devices. Since all this data
is represented based on linked data principles using RDF triples, it can be
queried in a uniform manner by means of a powerful graph-based query
language irrespective of what specific kind of data is requested and where
this data is located.

When the IUI needs to access data, it uses an interface from xQP to
connect to external services and read information objects. In particular, this
interface is a facade from xQP that calls methods and translate the received
data into an understandable format for IUI. As a result, the interface consists
of a single power query processor, which allows us the IUI to specify generic
queries over data stored on local and remote SDS:

• Select (SPARQL Query) result set :: Local & Remote: Enables the
retrieval of bindings for requested variables. To specify the variables as
well as conditions that bindings for them must match, an SPARQL select
query can be given. A query can be executed on a single data source or
multiple ones, allowing to query and integrate information from multiple
users at once. Matching data items are returned as a result set, containing
all suitable bindings for each specified variable.

Frequent data access may be a critical factor for the IUI, especially when the
queries need to be forwarded to remote data storage over cellular network
connections. The low bandwidth of these connections and high variance in
quality of service may slow down the query process and cause significant
delays in information delivery that can negatively affect the user’s experience.
In order to improve upon this, the design of IUI foresees a caching strategy,
where some static data (e.g. routing information, bus coordinates, time tables)
is kept on the mobile device so that no repeated updates are required. This
is especially useful for transport network data, which is not expected to
change very often. For dynamic data (e.g. arrival time or crowd level of
a vehicle), possible optimization strategies include primarily pre-fetching,



2.3 Interface Perspective 57

where the data is retrieved before it is requested by the user. As the data
is already available on the device prior to the access to the information, the
delay experienced by the user can be minimized.

IUI–PRF Interface: The goal of the privacy preservation framework (PRF)
is to protect the user’s privacy by providing security mechanisms that enable
the secure and authentic interaction between different devices. Thereby,
access to different types of data is controlled by the privacy preservation
framework on behalf of the user. To do this, the privacy framework relies on
a policy that defines the user’s preferences with respect to the sharing of data
with other users. Although the privacy framework attempts to minimize the
configuration effort for the user by deriving a suitable policy from the policies
that a user is already applying on different social services, there might be
cases where the user wants to exercise full control over the sharing of data. To
do this, the privacy preservation framework exposes a configuration interface
to the intent-aware user interface (IUI) that provides manual control over the
sharing.

To exercise manual control over the sharing of information, the privacy
preservation framework enables the intent-aware user interface to (re-) con-
figure the privacy policy. Given that the main entities contained in polices are
users and permissions on different data types that express that a particular user
may access a particular type of data, it makes sense to expose functionality
to manipulate these two entities. To enable the development of a visual
representation of the user’s current privacy policy, the functionality required
to manipulate the policy is additionally augmented with functionality to
simply retrieve the current policy. In summary, this results in the following
six functions that are available only locally and that are only accessible to the
intent-aware UI in order to avoid unwanted modifications.

• ListUsers() usernames :: Local: This function enables the intent-aware
user interface to list the names of users that have been configured on
a particular device. The resulting list of user names can be pruned or
extended using the following two functions.

• AddUser(username) void :: Local: This function enables the intent-
aware user interface to add another user to the list of users that have been
configured for a device. If the user is already configured, the method
simply returns. If the user does not yet exist, it will be added to the list.

• RemoveUser(username) void :: Local: This function enables the
intent-aware user interface to remove a previously configured user
from the list of configured users. If the user is not configured, the



58 Architecture

method simply returns. If the user was configured, the user and all its
permissions to access data on the device will be removed.

• ListPermissions(username) datatypes :: Local: This function enables
the intent-aware user interface to view all the permissions that have been
configured for a previously configured user. The list will include all data
types to which the specified user will have access. If the user has not
been configured, the list of data types will be empty.

• AddPermission(username, datatype) void :: Local: This function
enables the intent-aware user interface to add a permission for a previ-
ously configured user such that the specified user will be able to access
data of the specified type. If the user is currently not configured or the
user already exhibits a permission to access the data type, the method
simply returns. Otherwise, the permission will be added for the specified
user.

• RemovePermission(username, datatype) void :: Local: This function
enables the intent-aware user interface to remove a previously added
permission on a specified data type for a specified user. If the permission
or the user does not exist, this method simply returns. Otherwise, the
permission will be removed and the user will no longer be able to access
the specified data type.

The primary intended usage of this interface is the manual manipulation of
the privacy policy through a graphical user interface on the device of the user.
Thereby, it is important to mention that the access to this interface is intended
to be restricted to an intent-aware user interface component that ships together
with the GAMAS middleware and that it cannot be accessed through other
components in order to avoid unwanted manipulations. Consequently, we
envision the creation of one or more list views that show which user has
access to what type of data as well as controls that enable the injection of
changes to these lists.


