
3
Data Acquisition

This chapter describes the data acquisition framework of the GAMBAS
middleware. The description includes discussions on the framework archi-
tecture, including the component system for developing context recognition
applications and the activation system for enabling automatic, state-based
activation of different configurations. The chapter also provides insight
into the design rationale for the system. This includes a discussion of the
motivation behind the component-based approach for context recognition,
the chosen component model, energy-efficient techniques to perform con-
text recognition on resource-constrained mobile devices, etc. Furthermore,
rationale behind the state machine abstraction for the activation system and
how energy optimization techniques used in the component system are fully
utilized by the activation system is given. Before we discuss the framework,
however, we first outline related work and clarify the innovations and research
gaps closed by the data acquisition framework.

3.1 Focus and Contribution

Data acquisition is an essential part of any context recognition system. For
such systems, data acquisition normally involves acquiring raw data from
different types of sensors such as accelerometers, microphones, gyroscopes,
proximity sensors, Wi-Fi, GPS, etc. The sensors can be embedded into a
single device or alternatively, they can be embedded in different devices that
are distributed in the environment. The data acquisition system acquires data
from these sensors and pre-processes it before forwarding it to more complex
recognition logic. Existing data acquisition systems differ depending on the
leveraged resources and on the target application requirements. An efficient
data acquisition system should be generic enough to be executable in different
settings (different hardware and different application requirements) with little

59



60 Data Acquisition

or no tuning. In the following, we briefly review the state of the art for
data acquisition systems mainly focusing personal mobile devices like smart
mobile phones, PDAs, etc. Thereafter, we identify the gaps in the existing
solutions and from these gaps, we derive a list of innovations realized by the
data acquisition framework of the GAMBAS middleware.

3.1.1 Data Acquisition Frameworks

There exist a number of context data acquisition systems and frameworks
for personal mobile devices [CK00]. These frameworks vary in their char-
acteristics depending on their target applications and operating environ-
ments. Examples include [HH10], [DHH07], [BM10], [YTN05], [KZX+11],
[LYL+10], [GJAS06], [RMM+10] and [CBSG12]. [HH10] describes a data
acquisition framework for on-body sensor networks which runs on resource-
constrained embedded systems and is used for human activity recognition.
[DHH07] describes a context acquisition framework which allows the col-
lection of raw sensor data from different sensing sources. The framework
provides programming abstractions for developers to fetch data from different
sensor implementation programs without developing the underlying commu-
nication mechanisms for the target platforms. [BM10] describes a service-
oriented architecture based data acquisition framework. It allows sensor data
fusion with local and external sources to build and manage context-aware
services for personal mobile devices in a transparent manner. The framework
protects the user’s private data by using suitable privacy-preserving policies to
handle information in P2P networks. [YTN05] describes a context acquisition
framework based on a customized sensing platform named Muffin. Muffin
supports a variety of sensors to help detect different types of contexts. The
Citron framework running on Muffin uses a black box architecture for context
processing and provides parallel processing of different sensor data streams
(audio, accelerometer, etc.) to identify the user’s context. [KZX+11] com-
bines both on-body sensors and mobile phones for joint context recognition.
The main contribution of this work is the provisioning of a framework
to support the collaboration of TinyOS-based sensor modes and Android-
based smart phones. This work also makes use of online training to improve
the accuracy of the classifiers and it can automatically turn off redundant
sensing sources to save energy. [LYL+10] describes a continuous sensing
engine for context recognition applications. It uses the concept of pipes for
different sensing sources (microphone, accelerometer, GPS) to balance out



3.1 Focus and Contribution 61

the application requirements and the available resources. [GJAS06] outlines
a software architecture and a service for on-body sensors as part of the
user’s attire. The system is realized using MicaZ motes. Challenges addressed
in this work include storage of data, uploading of data, synchronization
of data, power management of motes, reconstruction of activity logs, user
interfaces, etc. The presented architecture is aimed at the future development
of smart attire systems. [RMM+10] is a data acquisition framework for
detecting user’s social and physiological patterns using smart mobile phones.
The system can be programmed using a declarative language to describe
user behavior models, action base and knowledge base. The system can
be adapted at runtime to activate and deactivate sensors. The recognition
is based on GMMs (Gaussian mixture models). The system is aimed at
helping social scientist to understand the correlation of user emotions with
the places, groups and their activities. [CBSG12] is a collaborative context
recognition system for smart mobile phones. The system execution is a
two-stage process consisting of stages, namely grouping stage and context
recognition stage. In the grouping stage, devices are clustered based on their
proximity. Once devices are clustered, they scan the environment and send
the raw data for subsequent context recognition to a backend server. In the
context recognition stage, the system uses coupled hidden Markov models to
model activity and location sequences. The system is aimed at advertisement
systems where advertisements are shown based on mutual context and interest
of user groups.

3.1.2 Rapid Prototyping Tools

There also exist a number of rapid prototyping tools for expeditious
development of context recognition applications. Commonly known tools
include [SDA99], [BAL08] and [TRL+09]. [SDA99] is targeted at context
recognition with pre-deployed sensors and provides a uniform abstraction
for applications to access and use context information by hiding the actual
context sensing and interpretation from applications. [BAL08] is targeted
towards activity recognition for wearable systems. This toolkit provides
functionalities to develop distributed context recognition systems as well
as reusable components, parametrizable algorithms, filters and classifiers.
[TRL+09] is a data gathering and processing open-source platform targeted
towards mobile phones with varying hardware capabilities. It consists of a
minimal core that can be extended by plug-ins.



62 Data Acquisition

3.1.3 Application-Specific Acquisition

The systems mentioned above are generally used for dealing with
heterogeneous sensing sources and providing flexibility for application devel-
opers to customize applications in a certain way. However, there exist a
number of fine-tuned data acquisition and context recognition systems that
can only be used in a narrow set of situations. Examples include [BC09],
[MLEC07], [LLEC08], [LPL+09] and [EML+07]. These and many alike
systems are manually fine-tuned for particular applications and therefore
are able to detect only the fixed set of characteristics. As a result, these
systems cannot be adapted to dynamic environments which a user might
experience in a daily routine. They use built-in sensors in mobile phones to
recognize the required context. For instance, [MLEC07] uses microphones
and accelerometers to determine user context which is then injected into
social networking websites. [LLEC08] uses accelerometers and microphones
to detect road conditions. [TRL+09] uses location sensors to identify road
traffic congestions. Sound Sense [LPL+09] uses a microphone to classify
different types of sounds in the surrounding. [BC09] is a system aimed at
video recording of social events in a distributed manner using mobile phones.
The phones are grouped based on the social activity in which their users are
involved. For detection of a social activity, a phone at the appropriate location
is chosen to record events. At the end of the social activity, all recordings from
different phones are combined into one video by a backend server to create a
video highlighting important events of the social gathering.

Data acquisition and retrieval of contextual information is a resource
consuming process which can have a significant effect on overall system
performance for resource constrained personal mobile devices. Over the
last years, there has been some work towards devising mechanisms for
achieving energy-efficient data acquisition and processing. Examples include
[KLJ+08], [WLA+09], [RH10] and [RMJ+11]. [KLJ+08] detects changes
in the context data at an early stage. For instance, rather than waiting for
the results from the classifier, the system detects changes in sample values at
the sensor level. Thereafter, only those samples are further processed which
can lead in a context change, whereas [WLA+09] uses hierarchical sensor
management strategy to detect user states and state transitions and only fires
a transition when a particular transition probability is met. As a result, this
reduces the unnecessary execution of unwanted sensors. [RMJ+11] is aimed
at computing multiple contexts from multiple sensing sources. The authors
have proposed a theoretical model that shows the inaccuracy of estimating



3.1 Focus and Contribution 63

multiple contexts from multiple sensing sources. The work also presents a
heuristic algorithm for searching the set of sensors to recognize the required
multiple contexts.

3.1.4 Contribution

Designing a context data acquisition system is usually driven by the target
applications and operating environments. Therefore, such systems are opti-
mized with considerations to their requirements. The above-mentioned
systems are similarly aimed at optimizing a particular characteristic, which
could be the efficient utilization of available resources or the highly accurate
recognition of a particular context or the efficient prototyping of context
recognition applications. Looking at the description of these systems reveals
a need for a generic yet efficient system that in essence should be a complete
framework, which, on the one hand, allows efficient usage of available
resource and, on the other hand, supports rapid development of specialized
recognition applications with high accuracy. The data acquisition framework
in GAMBAS middleware bridges these gaps. It aims at providing a complete
solution that meets all the aforementioned objectives. Specifically, the data
acquisition framework of the GAMBAS middleware adopts a component-
based approach allowing multi-modal context data acquisition. The frame-
work provides an extensive component toolkit for rapid development of new
context recognition tasks. Using a component-based solution, the data acqui-
sition framework applies resource-efficient techniques (memory, energy, etc.)
with no or little impact on the recognition accuracy. Moreover, the data
acquisition framework is executable in distributed settings to enhance the
quality of desired context and helps in providing relevant services to different
groups of users (depending on their location, interests, etc.). Finally, the
framework provides a number of basic components that can be used to build
applications. These components cover activity and intent recognition as well
as sound and speech recogntion.

The activity recognition components in the data acquisition framework
focus on computing various user activities or user contexts. Due to the
application scenarios targeted by the GAMBAS middleware, the primary
focus lies on location-based activities, e.g. shopping in a supermarket, waiting
for the bus at the stop, traveling in a bus (standing or sitting), sightseeing in
a new city, etc. The data acquisition components rely on a variety of means
(motion sensor, Wi-Fi, GPS, on-line calendars) to recognize these and similar
activities. Similarly, the data acquisition framework encompasses necessary



64 Data Acquisition

components to estimate the user’s intents. By this, we mean the user’s likely
location or activity in the future, e.g. knowing that a user is traveling on a
bus to his destination, it might be useful or interesting to notify him about
the possibility of meeting a friend. If he is willing to change his route,
then prompt him of new shopping facilities near the destination. The intent
recognition components support computing such user intents based on user’s
activity patterns or interests.

The sound and speech recognition components focus on interpreting
acoustic signals in the environment of the user. A primary focus lies on the
recognition of environmental sounds, like engine sounds, traffic noise, talking
people, etc. to determine the means of transportation. The goal is to identify
delays in public transportation to adjust the predictions of personal intentions.
The so acquired data can be distributed in accordance with the privacy setting
to optimize travel plans of other users who rely on the same means of
transportation. The components use historic data and compare it to live data to
identify differences in schedule or behavior patterns. The speech recognition
components are designed to allow the integration into other applications on
the device. This allows developers to create new applications that offer voice
control via speech recognition.

3.2 Data Acquisition Framework

The data acquisition framework (DQF) is one of the fundamental building
blocks of the GAMBAS middleware. Conceptually, the DQF is respon-
sible for context recognition on personal mobile devices including smart
phones, PDAs and laptops. The DQF supports various platforms including
Android, Windows and Linux. It is realized as a multi-stage system. At
lower stages, it allows developing reusable components and component com-
positions for context recognition applications. At higher stages, it enables
application developers to automatically activate compositions when needed.
To do this, the DQF is split into two parts as shown in Figure 3.1, a component
system and an activation system.

The component system uses a component abstraction to enable the
composition of different context recognition stacks that are executed con-
tinuously. A context recognition stack or simply a configuration refers to a
set of sampling, preprocessing and classification components wired together
to detect a specific context. Examples of such contexts include the physical
activity of a person, the location of a person, etc. The configurations can be
used to detect context for a multitude of purposes and have applications in



3.2 Data Acquisition Framework 65

Figure 3.1 Data Acquisition Framework Overview.

areas of smart home environments, assisted living for elderly, proactive route
planning, shopping, etc.

The activation system uses a state machine abstraction to determine the
point in time when a certain configuration or a set of configurations should
be enabled. The activation system enables the required configurations in an
automatic manner based on the conditions associated with the state transi-
tions. An example of a simple (coarsely granular) state machine associated
with an employee could consist of two states, “Working” and “Relaxing”.
State “Working” may consist of configurations “Meeting”, “Cafeteria”, etc.
and state “Relaxing” may consist of configurations “Living Room” and
“Gardening”. Based on the transition values, the activation system will dis-
able the configurations associated with one and enable the ones associated
with the other. In addition, the state machines can also have more fine granular



66 Data Acquisition

states representing stages specific to a single task, e.g. a state can represent
the sampling of an accelerometer with lower or higher rate. In such a case, a
state change may occur when the device screen turns on, for instance. In the
following, we describe both systems in detail.

3.2.1 Component System

At the lower level of the data acquisition framework, context and activity
recognition is done using a component-based approach which promotes
reusability and rapid prototyping. In addition, this approach also enables
the automated analysis of application structures in order to optimize their
execution with respect to energy efficiency.

From the perspective of the component system, each application consists
of two parts: the part containing the recognition logic and the part containing
the remaining application logic. The part that contains the recognition logic
usually consists of sampling, preprocessing and classification components
that are connected in a specific manner as shown in Figure 3.2. The part that
contains the remaining application logic can be structured arbitrarily. Upon
start up, a context recognition application passes the required configuration to
the component system, which then instantiates the specified components and
executes them. Upon closing, the configuration is removed by the component
system which eventually releases the components that are no longer required.
The component system is implemented in Java and supports various platforms

Figure 3.2 Component System Overview.



3.2 Data Acquisition Framework 67

including J2SE environments and Android. Using an Eclipse-based graphical
editor, application developers can visually create configurations by selecting
and parameterizing components and by wiring them as needed. In the follow-
ing, we first provide more details on the underlying component model, before
we discuss the runtime and development support.

3.2.1.1 Component Model
To structure the recognition logic, the component system realizes a
light-weight component model which introduces three abstractions. First,
components represent different operations at a developer-defined level of
granularity. Second, connectors are used to represent both the data and the
control flow between individual components. Third, configurations are used
to define a particular composition of components that recognizes one or more
context characteristics.

3.2.1.1.1 Components
Components are atomic, reusable building blocks that constitute the recog-
nition logic. Similar to other systems such as J2EE or OSGi, components
can be defined at arbitrary levels of granularity. Yet, in contrast, they can be
instantiated multiple times and they are parameterizable to support different
application requirements. Due to the support for parametrization, the compo-
nent model is more flexible than other models. In addition to parameters, all
components exhibit a simple life cycle that consists of a started and a stopped
state. To interact with other components, a component may declare a set of
typed input and output ports that can be connected to other components using
connectors.

As depicted in Figure 3.3, the recognition logic of a speech detection
application may, for example, consist of a number of components which can
be divided into three levels. At the lowest level, the sampling components
are used to gather raw data from an audio sensor. On top of the sampling
components, a set of preprocessing components take care of various transfor-
mations, noise removal and feature extraction. Finally, the extracted features
are fed into (a hierarchy of) classifier components that detect the desired
characteristics. Depending on the purpose and extent of the application logic,
it is usually possible to further subdivide the layers into smaller operators.
Although the component system does not enforce a particular granularity,
such operators should usually be implemented as individual components to
maximize the potential for reuse.



68 Data Acquisition

Audio Source

Short To Double

Low Energy 
Frame Rate

Zero Crossing
Rate

Fast Fourier
Transform

Spectral 
RolloffBandwidth Spectral 

Entropy

Speech
Classifier

Further Applica�on Logic

Classifier
Broadcaster

ApplicationApplication

ClassificationClassification

PreprocessingPreprocessing

SamplingSampling

Rate: 8000 Hz
Depth: 16 bit

Record: 2000 ms
Cycle: 10000 ms

Prec.: 1024 terms

OSOS
Microphone

Figure 3.3 Speech Detection Configuration Example.

3.2.1.1.2 Parameters
Parameterizations increase the reusability of a component implementation
across different applications. The component system allows components to
support a developer-defined set of parameters. Components expose these
parameters to adapt their internal behavior. As shown in Figure 3.3, at the
sampling layer, these parameters might be used to express different sampling
rates, sampling depths, frame sizes and duty cycles. At the preprocessing
layer, they might be used to configure different filters or the precision of
a transformation. In the component system, the parameters are not exposed
to other components. Instead, they can be accessed and manipulated by the
components.

3.2.1.1.3 Ports
In order to support application-independent composition, each component
may declare a number of strongly typed input and output ports. Input ports
are used to access results from other components. Output ports are used to



3.2 Data Acquisition Framework 69

transfer computed results to another component. Thus, ports enable compo-
nents to interact with each other in a controlled manner. The developer can
add multiple input and output ports of different types. The component system
takes care of the necessary memory allocation and de-allocation and performs
efficient buffer management for each of the ports in transparent manner.

3.2.1.1.4 Connectors
In order to be reusable, components are isolated from each other by means
of ports. However, the recognition of a context feature often requires the
combination of multiple components in a specific way. Connectors express
such combinations by determining how the typed input and output ports of
different components are connected with each other. In order to minimize the
overhead of the component abstraction, connectors are implemented using an
observer pattern [GHJV95] in which the output ports are acting as subjects,
whereas the input ports are acting as observers. This enables modeling of 1:n
relationships between the components, which is required to avoid duplicate
computations. To avoid strong coupling between components, input ports do
not register themselves at the output ports, but the component system takes
care of managing all required connections. An example of connectors can
be seen in Figure 3.3, where the output port of the fast Fourier transform
component is connected to the input ports of the bandwidth, the spectral roll
off and the spectral entropy component.

3.2.1.1.5 Configurations
To recognize a particular piece of context, a context recognition application
must explicitly list all required components together with their connectors in
a so-called configuration. While this approach slightly increases the devel-
opment effort, it also increases the potential reuse of components that can
be applied on data coming from different sources. As an example of such
component, consider a Fast Fourier Transform (FFT) that converts a signal
from its time domain into the frequency domain. Clearly, such a component
can be applied to various types of signals such as acceleration measurements
or audio signals. Thus, by explicitly modeling the wiring of components as
part of a configuration, it is possible to reuse this component in different
application contexts. In addition to listing components together with their
connectors, the support for parameterizable components also requires the
developer to explicitly specify a complete set of parameter values that shall
be used by each component. As a result, every configuration consists of a



70 Data Acquisition

parameterization as well as associated connectors. An example of a speech
detection configuration is shown in Figure 3.3.

3.2.1.2 Runtime System
The main task of the runtime system of the component system is to sup-
port the execution of configurations defined by different context recognition
applications in an energy-efficient manner. This includes loading the config-
urations specified by the context recognition applications, instantiating the
components with right parameterizations and connecting them in the manner
specified by the application. In addition to that, the runtime system applies
energy optimization techniques if more than one application is executed
simultaneously. When the applications do not require the context information
anymore, the runtime system stops executing the associated configurations.
A detailed description of the component system structure and execution of
applications is given in the following sections.

3.2.1.2.1 System Structure
As shown in Figure 3.4, the main elements of the runtime system of the com-
ponent system are the configuration store, the configuration folding algorithm
[IHW+12] and the applications. The configuration store is used to cache the
configurations associated with applications that are active. It is also used to
store their folded configuration. The configuration folding algorithm provides
energy-efficient execution of context recognition applications, provided that
more than one application is executed simultaneously. The entity responsible
for managing the runtime system is called the component manager.

3.2.1.2.2 Configuration Execution
The component manager controls the execution of the componentized recog-
nition logic of all running applications. To manipulate the components
executed at any point in time, the component manager provides an API that
enables developers to add and remove configurations at runtime. When a new
configuration is added, the component manager first stores the configuration
internally. Then, it initiates a reconfiguration of the running recognition logic
that reflects the modified set of required configurations. To reduce the energy
requirements, the component manager does not directly start the components
contained in the configuration. Instead, it uses the set of active configurations
as an input for our configuration folding algorithm.

The goal of the configuration folding algorithm is to remove redundant
components that are present in different applications and perform the same



3.2 Data Acquisition Framework 71

sampling or compute redundant results. Using the set of configurations, the
configuration folding algorithm computes a single, folded configuration that
produces all results required by all running applications without duplicate
sampling or computation. Once the configuration has been folded, the com-
ponent manager forwards it to the delta configuration activator. By comparing
the running and the folded configuration, the activator determines and exe-
cutes the set of life cycle and connection management operations (starting,
stopping and rewiring of components) that must be applied to the running
configuration in order to transform it into the folded target configuration.
When executing the different operations, the delta activator takes care of
ensuring that their ordering adheres to the guarantees provided by the com-
ponent life cycle. To do this, it stops existing components before they are
manipulated. This procedure is illustrated in Figure 3.4.

3.2.1.2.3 Platform Support
The core abstractions of the component systems as well as the component
manager are implemented in Java 1.5. In order to support multiple platforms,
different wrappers have been implemented that simplify the usage of the
component system on platforms including Windows, Linux and Android.

3.2.1.3 Tool Support
The component system encompasses offline tools to support rapid proto-
typing. These tools include a visual editor which is used for creating and

Further Applica�on LogicFurther Applica�on Logic

Recogni�on Logic
Sampling

Preprocessing

Classifica�on

Component Manager

Configura�on Store

Configura�on Store

Co
nfi

g.

Co
nfi

g.

Co
nfi

g.

Configura�on Folding
Algorithm

Fo
ld

ed
Co

nfi
g.

Delta Configura�on
Ac�vator Component

Further Applica�on Logic

Component

Component

Add and remove 
configura�ons

Signal changes
In context

Adapt
components,
parameters,
and wiringRun folding 

algorithm

(1)(1)

Update 
configura�on

(2)(2)

(3)(3)

(4)(4)

Figure 3.4 Component System Structure.



72 Data Acquisition

Figure 3.5 Component System Tool Support.

updating configurations for the context recognition applications. The visual
editor provides a user-friendly interface, which allows developers to drag,
drop, parameterize and wire existing components to create new configura-
tions or update existing ones. The visual editor is implemented as a plug-in
for the Eclipse IDE (Version 3.7 and above). A screenshot of the visual editor
is shown in Figure 3.5.

In addition to the visual editor, the component system also provides a
large set of generic sampling, preprocessing and classification components
as part of the component toolkit. At the sampling level, the toolkit provides
components that access sensors available on most personal mobile devices.
This includes physical sensors such as accelerometers, microphones, mag-
netometers, GPS as well as Wi-Fi and Bluetooth scanning. In addition, the
toolkit encompasses components that provide access to virtual sensors, for
instance, personal calendars.

For preprocessing, the toolkit contains various components for signal
processing and statistical analysis. This includes simple components that
compute averages, percentiles, variances, entropies, etc. over data frames as
well as more complicated components such as finite impulse response filters,
fast Fourier transformations, gates, etc. Furthermore, the toolkit also contains



3.2 Data Acquisition Framework 73

a number of specialized feature extraction components that compute features
for different types of sensors such as the spectral rolloff and entropy or zero
crossing rate, which are used in audio recognition applications [LPL+09] or
Wi-Fi fingerprints, which can be used for indoor localization.

At the classification layer, the toolkit contains a number of trained
classifiers, which we created as part of the audio and motion recognition
applications. Finally, there are a number of platform-specific components
which are used to forward context to an application which enables the
development of platform-independent classifiers. On Android, for example,
a developer can attach the output of a classifier to a broadcast component
which sends results to interested applications using broadcast intents. We
have also developed a number of components that are useful for application
development and performance evaluation. These includes components that
record raw data streams coming from sensors as well as pseudo sensors that
generate readings using pre-recorded data streams. Together, these compo-
nents can greatly simplify the application development process on mobile
devices as they enable the emulation of sensors that might not be available on
a development machine.

3.2.2 Activation System

To fully understand the context of a person, it is usually necessary to recog-
nize more than one context characteristic. As an example, consider that to
know if a person is working in his office, context characteristics such as his
location, pattern of movement, types of meetings and classification of ambi-
ent sounds are required. As described earlier, such context characteristics
can be detected using the component system by developing configurations
with the appropriate components, parameterizations and connections. Fur-
thermore, in order to fully identify a particular context, more than one
configuration would be needed at a particular time. In real life, however, the
context of an entity does not remain static and over the period of time, it
requires detection of different context characteristics.

Moreover, the context of a person depends on the task that the person is
involved in. In other words, to know the context of a person, it is essential to
know the current task. Furthermore, these tasks often follow certain patterns,
e.g. tasks that a working person usually has consist of waking up in the
morning, dressing up according to the weather, traveling to the work place,
sitting in the office, holding meetings and discussions, going for lunch and
coffee breaks, working on a computer, going for shopping, going home,



74 Data Acquisition

relaxing, having dinner, sleeping, etc. Thus, the resulting routine is often
predictable, at least partially.

Given the presence of such regular patterns of reoccurring tasks, the goal
of the activation system is to exploit the knowledge about their existence
in order to minimize the amount of sampling and processing that is needed
to detect the user’s context. To do this, the activation system enables the
developer to model individual tasks as a set of states that occur sequentially.
For each of the states, the developer may specify a set of configurations
that describe the context that shall be recognized. In addition, the developer
specifies a set of transitions between the states that define possible sequences.
Using this model, the activation system takes care of executing the right
configurations at the right time as shown in Figure 3.6. In the following, we
describe this basic idea in more detail.

3.2.2.1 Activation Model
In the GAMBAS data acquisition framework, the modeling of the routines of
a task is supported by the activation system, which uses a state machine as
its primary model. Specifically, the activation system enables the automatic,
state-based activation of different configurations associated with developer-
defined tasks. Hence, in the activation system, the entity’s context is modeled
as a state with different configurations associated with it, irrespective of its
granularity. The transitions between the states are modeled using context-
dependent rules. In the following, we discuss these concepts in more detail.

Figure 3.6 Activation System Overview.



3.2 Data Acquisition Framework 75

3.2.2.1.1 States
A state refers to a particular decision point during the execution of a larger
task. It entails a set of configurations that individually detect different context
characteristics but collectively identify one of the possible decisions taken by
the user.

For this purpose, states may be used to model decision points at different
levels of granularity. An example of a coarse-grained state is shown in
Figure 3.7(a). In this example, a high-level “working” state may encompass
configurations that detect whether the person is in a meeting, working in his
office or having lunch at the canteen. An example for a fine-grained use
of state is shown in Figure 3.7(b). Here, the state “Fast Sampling” may be
used in conjunction with a “Slow Sampling” state in order to control the
precision of a certain set of configurations such as a movement detector or
a sound classifier.

3.2.2.1.2 Transitions
Transitions are defined by the conditional changes in the configurations
associated with a state. When the changes suggest that a certain condition
holds, the activation systems disables the current state and its associated

State “Working”

� � �

…

C1

P1 P2

S1 S2

C1

P1

S1

P2

C1

P1

S1

Office detection 
configuration

Meeting detection 
configuration

Canteen detection 
configuration

(a) (b)

State “Fast Sampling”

�

C1

P1 P2

S1 S2

Movement detection 
configuration

�

C1

P1

S1

P2

Sound detection 
configuration

Figure 3.7 Examples of Activation System States. (a) Coarse-grained Usage and (b) Fine-
grained Usage.



76 Data Acquisition

configurations and enables the ones associated with the new state. The
activation system uses rules to model the conditions. Internally, each rule
is represented by an abstract syntax tree, in which expressions for each
configuration are defined. Depending on the evaluation of the expressions,
the activation system decides whether a state must be changed.

Figure 3.8(a) shows two example states. State 1 has two configurations,
Configuration A and Configuration B. State 2 also has two configurations,
Configuration C and Configuration D. The transition from State 1 to State 2
is labeled as Transition 1 → 2, and the transition from State 2 to State 1 is
labeled as Transition 2→ 1.

The abstract syntax tree of the rule for Transition 1 → 2 and Tran-
sition 2 → 1 is shown in Figure 3.8(b) and Figure 3.8(c), respectively.
Assuming that State 1 is currently the active state, the activation system
continuously evaluates the rules defined by the expression of Transition
1 → 2 and when the outcome of the expression, here represented by an
AND operator, is true, it will disable Configuration A and Configuration B
and enable Configuration C and Configuration D. Similarly, when State 2 is
the current state, the activation system evaluates the rules associated with

Figure 3.8 Examples of Activation System Transitions. (a) Activation System Transition
Example, (b) Transition from 1 to 2 and (c) Transition from 2 to 1.



3.2 Data Acquisition Framework 77

Transition 2→ 1 and it will execute the associated state change whenever
this is implied by the outcome.

3.2.2.2 Runtime System
The main task of the runtime system is to load and execute the state machines
defined by different applications. For this, the system instantiates the con-
figurations associated with states, identifies the current state, instantiates
rules for different transitions and evaluates the expressions associated with
the respective transitions. Thereby, the activation system executes the state
machines in an energy-efficient manner by applying configuration folding
among all configurations across all the different states. The outcome of such a
“folded” state machine is a single-folded configuration. Clearly, it is possible
that in such a folded configuration, different configurations share the same
graph structure, at least to a certain level. Therefore, the activation system
provides logic for evaluating transition between the states.

3.2.2.2.1 System Structure
The main structural elements of the activation system are shown in Figure 3.9.
These include a state machine store, the configuration folding algorithm, a
rule engine and the state machine manager. The state machine store is used to

Figure 3.9 Activation System Structure.



78 Data Acquisition

cache the state machines associated with the applications. The configuration
folding algorithm is used to compute an energy-efficient configuration for an
entire state machine. To do this, the activation system applies configuration
folding on the configurations of the currently executed state machines. The
transitions between the states are modeled as if-else conditions and are man-
aged by the rule engine. Once the folded configuration of the state machine
and the rules for the state transitions are loaded, the state machine manager
attaches the rules in the folded configuration, instantiates it and executes it.
Similar to the component system, when the application logic indicates that no
further context information is needed, the activation system stops executing
the state machine.

3.2.2.2.2 Configuration Mapping
To provide a better understanding of the integration between the component
system and the activation system, we describe how the configurations related
to different states are folded and how the rule engine applies rules repre-
senting transitions between the states. To understand the mapping, consider
an example of a state machine with two states as shown in Figure 3.10(a).
Each state has two configurations attached to it. When the activation system
loads the state machine, it applies the configuration folding algorithm on
all configurations associated with both states, and the result is shown in
Figure 3.10(b).

Let us assume that the rules for the two transitions are defined as follows:

• 1→ 2: IF Config. A OR Config. B EQUALS false THEN State 2
• 2→ 1: IF Config. C OR Config. D EQUALS false THEN State 1

The resulting mapping for the states, transitions and the folded configurations
of State 1 and State 2 are shown in Figure 3.11(a) and Figure 3.11(b),
respectively. If the state machine is residing in State 1 (c.f. Figure 3.11(a)),
the configurations that must be evaluated according to the definition are Con-
figuration A and Configuration B. Since folding has already taken place for
all configurations of the state machine, the required graph structure for Con-
figurations A and B is distributed across in two different graphs. However,
these graph structures also share configurations from other states. Therefore,
in order to evaluate the relevant configurations only, the activation system
enables only the components that are required to compute Configuration A
and Configuration B as shown in Figure 3.11(a). The remaining components
are disabled. During the execution of the components required for State 1,



3.2 Data Acquisition Framework 79

Figure 3.10 Configuration Mapping Example. (a) States, Transitions and Configurations and
(b) Resulting Folded Configurations.

the activation system continuously evaluates the rule for the transition from
State 1 to State 2 using the rule’s syntax tree.

When the conditions defined by one of the active rules hold, the activation
system initiates the state transition. Thereby, it stops the configurations of
the previous state that are no longer needed and it starts the configurations
required by the new state. In addition, the system stops the evaluation of the
rules associated with the previous state and begins with the evaluation of the



80 Data Acquisition

S 1

P 1

C1 C2

S 3

P 3

C3 C4

Folded configura�on

=

Config. A FALSE

=

OR

Config. B FALSE

=

Config. C FALSE

=

OR

Config. D FALSE

Ac�ve graph 
structures

Transi�on 1� 2

Rules for Transi�on

(a)

S 1

P 1

C1 C2

S 3

P 3

C3 C4

=

Config. A FALSE

=

OR

Config. B FALSE

=

Config. C FALSE

=

OR

Config. D FALSE

Ac�ve graph 
structures

Transi�on 2� 1

Folded configura�on

Rules for Transi�on

(b)

Figure 3.11 Executed Configurations and Transitions. (a) State 1 and (b) State 2.

rules for the new state. The result after transitioning from State 1 to State 2 is
shown in Figure 3.11(b). Once State 2 becomes active, the system activates
the Configurations C and D which are associated with State 2 and it begins
the evaluation of the transition rule from State 2 to State 1.



3.3 Data Acquisition Components 81

3.2.2.2.3 Platform Support
Similar to the component system described previously, the core abstractions
of the activation systems have been implemented using Java 1.5. In order to
support multiple platforms, different wrappers have been implemented that
simplify the usage of the activation system on platforms including Windows,
Linux and Android.

3.2.2.2.4 Tool Support
Just like the component system, the activation system also provides a suite of
offline tools to support rapid prototyping. These tools include a visual editor
which simplifies the definition of states and transitions. The visual editor
provides a user-friendly interface which allows developers to drag, drop,
parameterize and wire existing configurations to create new state machines or
to update existing ones. Similar to the visual editor of the component system,
the visual editor for the activation system is also implemented as a plug-in for
the widely used Eclipse IDE.

In addition to the visual editor, the activation system provides a set of
configurations as part of the configuration toolkit for detecting different
context such as location, speech, motion, etc. With the availability of the
toolkit, developers do not have to create configurations from scratch. Instead,
they can reuse existing configurations with trained classifiers, which can
significantly reduce the application development time. A screenshot of the
tool support for component system is shown in Figure 3.12.

Figure 3.12 Activation System Tool Support.



82 Data Acquisition

3.3 Data Acquisition Components

As indicated by the previous discussions, the data acquisition framework of
the GAMBAS middleware is highly configurable and extensible to support
the acquisition and processing of arbitrary data from different sources. Using
component compositions and state-machine definitions, even complex con-
text recognition tasks can be supported in a highly structured manner. In order
to speed up the development of applications, the data acquisition framework
contains a set of basic recognition stacks including (trained) classifiers that
support a broad variety of low-level and high-level context acquisition tasks.
Using these building blocks, we have realized a broad number of applications
described in more detail in Chapter 6. However, since they are usable beyond
the scope of these applications, we briefly describe them in the following.

3.3.1 Context Recognition

The context recognition components are the basic building blocks of a
context recognition application. The component toolkit provided with the
component system consists of a large number of sampling, preprocessing
and classification components. These components can be used to create new
applications. Moreover, with the help of the toolkit, developers can imple-
ment their own components with little effort. Due to the targeted application
scenarios described in Section 1.3, the components that we developed with
the GAMBAS middlware are primarily focusing on location recognition, trip
recognition and sound recognition.

3.3.1.1 Location Recognition
In order to determine the location of the user, the location recognition
components integrate GPS information with RF signals that are present in
the user’s environment. Specifically, the components combine information
from GPS, GSM and Wi-Fi sensors of the user’s phone. Each of them has its
own advantages and limitations but their collective use can provide efficient
and accurate location recognition. With the widespread use of Wi-Fi, a user
can typically see multiple Wi-Fi access points in the surroundings. With the
limited range or signal strength of a typical Wi-Fi signal, a user can see
different set of access points as he moves from one location to another. Thus,
capturing this information alone can provide the user with a good view of
his location. However, in places where Wi-Fi signals are not available or are
very weak, GSM signals can be used instead. Typically a mobile phone can



3.3 Data Acquisition Components 83

report up to 6 neighboring cell towers. Though the range of a GSM cell tower
is usually large and same locations may exhibit identical cell information,
together with Wi-Fi, GSM can provide accurate location information as well.
Lastly, GPS signals are used to identify outdoor locations where Wi-Fi and
GSM signals are not present or unique. Since each of these technologies
have different energy requirements, they are used in a staged fashion that
allows a user to run the location recognition continuously without draining
the phone’s battery.

3.3.1.2 Trip Recognition
The location of a user is an important piece of information for both users
and service providers. Similarly, having information about the mode of
locomotion between two locations can be beneficial for service providers.
Knowing how trip was done – i.e. whether the user went on foot, took a
car or a bus, stood in the bus or was able to find a seat – can help public
transit providers to offer better services. In order to determine the mode of
locomotion, the GAMBAS middleware encompasses multistage classifiers
which integrate different sensors including accelerometers, Wi-Fi scans and
GSM cell-IDs. Thereby, the classifiers use accelerometer samples to identify
the general motion of the user. This allows them to determine if the user is
walking, running, climbing stairs, etc. If a continuous detection of walking or
running is detected between the locations, they can derive that the user was
traveling on foot. If the user is not walking, the trip recognition components
are using Wi-Fi and GSM cell information to estimate the movement speed
of the user, which can then be used to narrow down the remaining modes
(e.g. driving in a car, riding a bus, etc.).

Given a suitable infrastructure, such as the one deployed in the city of
Madrid, it is even possible to identify the actual vehicle type (e.g. a specific
public bus running on a particular bus line). However, even if this infrastruc-
ture is not available, it is still possible to derive the movement modality with
high accuracy. In order to measure the accuracy of configuration for the trip
recognition, we performed a number of validation tests over the data gathered
from different modes of transportation. The final classifier with the overall of
accuracy of 91.4% and the confusion matrix are shown in Figure 3.13 and
Figure 3.14, respectively.

These results have been gathered by capturing training data from
4 persons in Duisburg and Bonn over the course of multiple days. Conse-
quently, there might be a bias regarding the fit for this particular area and
overall the results may be worse when applied to different areas or users.



84 Data Acquisition

Figure 3.13 Trip Recognition Classifier.

Figure 3.14 Trip Recognition Confusion Matrix.

However, given the high accuracy of the results, it is conceivable that this
approach is broadly applicable in general.

3.3.1.3 Sound Recognition
The sound recognition components make use of audio-data collected on the
mobile device and combine it with location data. They can be used for two
major purposes. First, they can be used to identify features of the user’s
environment as done with noise recognition. Second, they can be used in



3.3 Data Acquisition Components 85

Figure 3.15 Average Frequency Vectors (Train Station, Restaurant, Rock Concert, Sport
Arena, Subway, Train).

order to provide a natural way of performing user inputs as done with Voice
Tagging or Voice Control.

3.3.1.3.1 Noise Recognition
There are several user contexts that come along with a characteristic sound
environment. Being on a crowded bus, for example, a person is surrounded
by a constant bus engine sound as well as human voices and other noises
created by a crowd of people. This can be exploited to extract information
about the user context from audio collected on the mobile device as well as
to gather information about the public transport traffic situation in the whole
city. To do this, we collected data sets using mobile devices carried around
the city by test users. The devices are used to record several distinct audio
environments like crowded bus stations and traffic jams. The collected data
is then used to create sound profiles of different environments, e.g. crowded,
not crowded, rush hour, etc. To do this, we compute an average frequency
vector from individual samples. As shown in Figure 3.15, the average fre-
quency vectors are different depending on the characteristic sounds present
in an environment.

In order to classify recordings, the noise recognition components compute
the average frequency vectors of new samples and compare them with the
known profiles using the Euclidean distance between the new and all known



86 Data Acquisition

vectors. In order to minimize the number of comparisons, we use K-Means
clustering to reduce the candidates to one (good) representative for each
sound profile.

3.3.1.3.2 Voice Tagging
Every person typically has certain locations that he attends frequently, for
example, his home or his work place. To enable the user to enter these
locations as destinations in a more efficient way, the voice-tagging component
enables users to speed up repeated inputs. In a first step, it allows the user
to add a short audio tag to his current whereabouts. For this purpose, an
application typically offers a button saying “voice tagging”, which, when
pressed, starts a short audio recording. Typically the audio input will contain a
sequence of one to three words spoken by the user. This audio is then stored in
the database in a reduced form, together with the current geo data, provided
by the location recognition component. At any later point in time, the user
can refer to his audio tag by speaking the words used for the tag again.
So if he had tagged a place by saying “my favorite restaurant”, he would
just have to phrase these words again to select the tagged location. At first
sight, this component looks like a speech-recognition-application. However,
the required computations to perform the matching between the stored voice
tags and the user input are much simpler. In addition, the integration of voice
tags into an application is also easier, since it does not require the definition
of a grammar that defines the possible inputs. However, in contrast to voice
control, voice tagging requires more effort on the side of the user, since the
user has to set up tags in advance to be able to use his or her voice as an input.

3.3.1.3.3 Voice Control
The idea of the voice-control component is to enable the user to tell the
application where he wants to go next by simple speech input. Typically,
the component is activated via a voice-control button in the user interface.
Once the button is pressed, it will start to receive audio data and return the
recognized location. A typical speech input would be “I want to go to the main
station.” To enable voice control, we have integrated a customized version
of the Sphinx speech recognition engine for which we developed custom
models to support different target languages (including German, Spanish
and English). In addition, we have developed a custom grammar for the
applications described in Chapter 6. Due to the specific application scenario,
the grammar includes a general list of public transport stations in the city



3.3 Data Acquisition Components 87

of Madrid and it contains template sentences that are frequently used to
specify routing targets such as “how do I get to Moncloa” or “compute a
route to Atocha”.

3.3.2 Intent Recognition

The intent recognition components take the recognized locations and trips and
provide future predictions on them. Knowing the current location and mode
of user transport provides significant opportunities to the service providers
to improve their business, but the added ability to predict how long the user
will stay at a particular place and what would be his next destination could
help service providers to offer even more useful services. Apart from the
service providers, a user can have many personal applications that can take
advantage of this information. For instance, there can be a device charge
reminder application which can alert the user to charge the batteries, based on
the predicted duration of his stay at the current location and also his intended
next destination. With respect to intent recognition, the acquisition framework
provides duration prediction and destination prediction components.

3.3.2.1 Duration Prediction
Knowing how a long a user will stay in a particular place requires storing
user location and running an offline analysis to compute predictions for the
duration of user’s stay in the same place in the future. There can be different
options to store information about user’s stay in a particular location, e.g.
this information can be stored in users’ device, in the cloud and also at third-
party trusted servers. Clearly, storing such information elsewhere than on the
user’s device is prone to privacy issues and thus for the scope of GAMBAS,
this information is only stored on the user’s device. During the training
phase, whenever a user visits a new place or a place that he has visited
before, the duration prediction component stores how long the user stayed
there, at which day of the week and at, which time of the day. The system
then performs offline analysis on this data in addition to previously stored
data which includes the information about the frequency of the user’s visit to
that location and his usual next locations. The system then runs a prediction
algorithm to compute new predictions or update existing ones. In order to
minimize the impact on the battery of the user’s device, the offline analysis of
data is usually done whenever the device is plugged to a socket and charged
for a longer time, e.g. during the night.



88 Data Acquisition

3.3.2.2 Destination Prediction
In addition to knowing the current location and stay of a user in a particular
location, the ability to predict the next user destination is also very useful.
This information can be used to compute the transport routes proactively,
for example. Similar to the duration prediction, the destination prediction is
performed by analyzing the history of places visited by the user. This mainly
involves identifying some sequence in the places visited by the user, the time
of the day, the day of the week, frequency of visits, etc. For example, we
can predict that every Saturday the user first goes shopping, then goes to a
fitness club and afterwards meets friends and family. Similar to the duration
prediction, this information is stored on the device and offline analysis (when
the device is being charged) is performed to compute new predictions or
update the existing ones.

3.3.2.3 Prediction Algorithm
The prediction algorithm uses three prediction techniques, namely time series
prediction, least k history predictor and a location-dependent Markov model.
The time series prediction works by taking into account the history of visits by
a user to a particular location. Each visit to a particular location is saved and
marked by the starting time and the duration of stay at that location. In order
to predict the starting time when the user is likely to visit that location again,
we choose latest last m values of starting times from the history of visits. We
than identify subsets of m values of starting times in the history of visits and
identify sets that are close to the latest last m values. The predicted value for
next user visit to that location is obtained by averaging the next starting time
value following the sets of m values. At the end of this exercise, we have a set
of predicted starting time of all the locations that the user might visit. In order
to select a unique next location, we check whether the predicted starting time
of a location is under some time threshold T. If we can find such a starting
time, we select the associated location to be the next possible location. If more
than one predicted locations satisfy the criteria, we choose one randomly. A
similar approach is also used for determining the duration of stay. In our tests
with multiple users, the prediction techniques typically range around 20–40%
accuracy, depending on the regularity of the movement patterns of the user.


