
4
Data Processing

This chapter describes the data processing supported by the GAMBAS
middleware. Towards this end, the chapter first describes the formalisms and
ontologies for the data and query models. The formalisms and ontologies
provide a unified view of the heterogeneous data produced by the different
players in the targeted applications. Such a unified view, based on semantic
descriptions of the data and the data sources, is in line with the linked data
paradigm, and it not only facilitates data understanding, but also improves
data discovery and integration between both objects and persons, and other
sources of data that follows the same paradigm, such as the Web of Data.
Based on the data and query models, the chapter introduces the general data
discovery mechanisms that are used to make data available to others. Finally,
the chapter describes the architecture and implementation of the distributed
data storage and processing system that allows devices to cooperate with each
other in a seamless and interoperable way.

4.1 Focus and Contribution

The data representation and the associated query processing infrastructure
are key to allow data interoperability between the devices and services
targeted by the GAMBAS middleware. This is particularly important given
that behavior-driven services often base their decision on data coming from
multiple sources. Descriptions of the data and the data sources should be
available to all devices. Such descriptions can include the features of interest,
accuracy, measuring condition, time point, location, etc., and they are essen-
tial for search and discovery when an Internet-connected object is confronted
with a large number of data sources. The query processing needs to account
for the dynamic nature of some of the generated data, and it should be done
in a distributed fashion, whenever possible, to improve scalability and also to
increase privacy-level of data processing.

89

90 Data Processing

4.1.1 Data Representation

There have been a lot of efforts in employing Semantic Web technology to
semantically enrich sensor data [WZL06], [BFL+07], [SHS08], [RMLM09],
[PHS10]. In order to allow easy integration with other data sources avail-
able in a Linked Open Data (LOD) cloud, [Lin12] suggests that sensor
data sources should be published following the Linked Data principles
[BHBL09] – a concept that is known as Linked Stream Data [SC09]. The
advantages of such an approach are manifold. Not only would it support the
direct integration of sensor data with the large amounts of already available
web and enterprise data, but it can also benefit from a large body of work and
infrastructure from existing research areas such as LOD, Web and Data Base
Management Systems (DBMS). One example scenario is the case where GPS
locations streamed as Linked Data are combined in real time with a Cocitation
Collection Service available in the LOD cloud. The service can then notify an
author if there is any other author in the same location whose papers he cites.
However, the state of the art in Semantic Web technologies is inadequate
for sensor-generated data, due to the highly dynamic and temporal aspects
of this data. Moreover, the data representation suggested by Semantic Web
technologies typically are not suitable for devices with limited data storage.

Stream elements of Linked Stream Data are usually represented as RDF
triples with temporal annotations. A temporal annotation of an RDF triple can
be an interval-based [LPSZ10] or point-based [GHV07] label. An interval-
based label is a pair of timestamps, which commonly are natural numbers
representing logical time. The pair of timestamps, [start, end], is used to
specify the interval that the RDF triple is valid. The point-based label is a
single natural number representing the time point that the triple was recorded
or received. Both approaches have their advantages and disadvantages. The
point-based label looks redundant and less efficient in comparison to the
interval-based one. Furthermore, the interval-based label is more expressive
than the point-based label because the latter is a special case of the former, i.e.
when start = end. However, a point-based label is more practical for streaming
data sources where triples are generated unexpectedly and instantaneously.

4.1.2 Query Processing

The state of the art in query processing of Semantic Web data can also
not be directly applied to the context of data generated by smart mobile
devices. There has been work on extending Semantic Web technologies for
stream data. StreamingSPARQL [BGJ08] has rules for translating continuous

4.1 Focus and Contribution 91

queries, common in stream processing scenarios, to SPARQL algebra, the
standard query processing language for Linked Data. Streaming SPARQL
extends the SPARQL 1.1 query language for representing continuous queries
on RDF Streams.

CSPARQL [BBCG10] combines triple stores with data stream man-
agement systems (DSMS). When a continuous query arrives, it is first
split into static and dynamic parts, and both parts are executed inde-
pendently and results are combined at the end. EP-SPARQL [AFRS11]
translates the processing into logic programs. The execution mechanism
of EP-SPARQL is based on event-driven backward chaining (EDBC) rules.
EP-SPARQL queries are compiled into EDBC rules, which enable timely,
event-driven and incremental detection of complex events (i.e., answers to
EP-SPARQL queries). EDBC rules are logic rules and hence can be mixed
with other background knowledge (i.e. domain knowledge that is used for
reasoning).

CQELS (Continuous Query Evaluation over Linked Streams) provides
a native and adaptive query processor for unified query processing over
Linked Stream Data and Linked Data [LPDTXPH11]. The query executor is
able to switch between equivalent physical query plans during the lifetime
of the query. The CQELS engine employs both efficient data structures
for sliding windows and triple storages, to provide high-throughput native
access methods on RDF datasets and RDF data streams. Similar to other
systems, the CQELS engine extends SPARQL 1.1 for continuous queries.
However, it also supports updates in RDF datasets as well as variables
for stream identifiers, allowing queries that continuously discover streams
that contain a certain property. Despite the progress in Linked Stream Data
processing, currently none of the approaches consider a distributed solution
for resource-constrained devices.

4.1.3 Contribution

Data representation and query processing of Linked Stream Data is an
active research area with many open challenges. The GAMBAS middleware
addresses the problem of data interoperability among dynamic heterogeneous
data sources, where data storage is limited. It provides an infrastructure sup-
porting the discovery of dynamic linked data sources that runs on resource-
constrained devices. Thereby, it provides solutions for important aspects of
continuous query processing over heterogeneous Internet-connected objects
to create a scalable system that can react to changes in the network and in the
data being produced.

92 Data Processing

Data interoperability is achieved by means of a unified representation
of the heterogeneous data and their data sources, following the Linked
Open Data principles. The unified view consists of basic vocabularies and
ontologies that cover all aspects of the data required to realize the application
scenarios. Special care is taken to represent dynamic and temporal aspects.
The goal is to enable the devices themselves to store their generated data
locally in the form of Linked Data, by using the vocabularies and ontologies
provided as part of the middleware. Therefore, special care is taken to limit
the amount of data that needs to be stored, since storage in connected objects
is limited. To do this, the descriptions applied by GAMBAS are complete,
yet compact.

To allow data discovery, the infrastructure constructs and maintains a
directory of descriptions, which are accessible to every device and are con-
stantly updated to incorporate changes in the network, whilst respecting the
communication cost for each device. The directory complies with the privacy
rules, by having the devices to publish only information they wish to make it
public and by supporting the encryption of metadata.

To support both data interoperability and discovery, the data processing
framework of GAMBAS provides Linked Data storage capabilities for all
connected objects. This improves scalability and also privacy, since each
device can take on the responsibility of storing its own data and it can there-
fore decide which data can be disclosed to which devices. There are many
Linked Data storage frameworks available but none of them are designed
for resource-constrained devices. The GAMBAS middleware encompasses
a data storage framework based on the state of the art approaches that also
complies with limitations imposed in terms of memory, processing power,
battery life, etc. On top of the data storages, a query processing framework is
offered that follows the same guidelines. Even though the query processing
capability at each device is limited, distributed query processing techniques
are integrated in order to provide a more powerful processing framework
among the devices.

4.2 Data Model

As basis for interoperable distributed data processing, this section introduces
the data definitions and query specifications integrated into the GAMBAS
middleware. The data definition is based on an ontology that has been devel-
oped with the goal of supporting the internal mechanisms of the middleware
as well as the application scenarios targeted by the middleware. The ontology
and query examples are described using free text descriptions and UML-like

4.2 Data Model 93

diagrams to clarify ontological relationships among concepts and groups of
concepts. These diagrams are used to facilitate the comprehension of onto-
logical concepts and their relationships. Along with that, example instances
are used to illustrate how to populate ontology instances in RDF/Turtle
[W3C12d]. For the description of the example queries, GAMBAS uses a
subset of SPARQL query semantics and syntaxes rather than creating a
new query language. In order to enable the processing of streams of data,
GAMBAS leverages the CQELS query language.

4.2.1 Data Definition

Figure 4.1 shows the GAMBAS ontologies, its classes, the dependencies
among the classes as well as the external ontologies from which the ontol-
ogy extends concepts and properties. The external ontologies include PIMO
[Sem12], SPT [SPI12], GoodRelations[Goo12] , Ordered List[Ord12] and
Vehicle Sales [Mar12]. The PIMO Ontology provides a vocabulary for
describing calendaring data (events, tasks, meetings). The SPITFIRE Ontol-
ogy (SPT), developed within the SPITFIRE project, aligns already existing
vocabularies – such as DOLCE [CNR12], WGS84 [W3C12f] and FOAF
[FOA12] – to enable the semantic description of not only sensor mea-
surements and sensor metadata, but also the context surrounding them. In
particular, the activities sensed by sensors are modeled and related with social
domain vocabularies and complex event descriptions. The GoodRelations
ontology is widely used to describe business and product offerings. We take
advantage of the Ordered List Ontology to represent a sequence of steps. An
OrderedList is a list of slots with indexes to each slot and pointers to the
next and the previous slot. The Vehicle Sales ontology is a web vocabulary
for describing cars, boats, bikes and other vehicles for e-commerce, and it
is useful in the context of GAMBAS to generalize the means of transport of
a user.

The GAMBAS ontology consists of a number of sub-classes, the generic
classes being User, Place and Activity. In addition, the ontology contains
the classes Journey, TravelMode and Bus that are motivated by the mobility
scenario as well as Jogging and Shopping that are motivated by the envi-
ronmental application scenario. In the following, we describe these classes in
more detail.

4.2.1.1 User Class
The User class is used to describe users of the GAMBAS middleware. In
GAMBAS, users play the roles of both data consumer and provider. As a

94 Data Processing

Figure 4.1 The GAMBAS Ontologies.

consumer, a user is accessing services provided through some user interface
such as suggestions of bus routes or jogging areas. As a data provider, users
allow GAMBAS to acquire personal data such as location and activities (e.g.
traveling in a public transport, jogging, shopping, etc).

Figure 4.2 shows the User class in the GAMBAS ontology. The user
class is a subclass of the spt:Agent class from the SPITFIRE ontology, which
allows us to describe the user’s profile such as name, email and addresses.
Privacy settings are crucial in GAMBAS. To model them, we rely on the Pri-
vacy Preference vocabulary given by the Privacy Preference Ontology (PPO)
[DER12]. However, during the implementation of the application prototype,
it became apparent that the PPO was not suitable to describe users’ shared
keys and permission settings, which are needed in the privacy-preserving

4.2 Data Model 95

Figure 4.2 User Class.

data exchange mechanism of GAMBAS. Therefore, we added privacy-related
properties to the user profile. More specifically, we extended the Profile class
to include the sharedKeys and certificates used by the mechanisms described
in Chapter 5.

The user’s calendar information, which is used as input for the user’s
intent analysis, is described by creating a PIMO (Personal Information
Model) instance. Users are connected to other users via the “foaf:knows”
property, which allows us to list the friends of a user. The location of a user
is also available and can be represented with the Place class.

Users in GAMBAS perform activities, for instance, commuting in a bus
or shopping. The GAMBAS ontology provides a vocabulary to represent the
user’s activities, including the past, future and current ones. Past and current
activities are used in combination to determine which are the user’s next
activities. This is done by the user’s intent analysis.

Listing 4.20 shows an example of how to use the above concepts to
describe a user within the GAMBAS scope, using the Turtle syntax. The
example shows, among other things, how users can set access levels to other
users. In this particular example, the user “John” is giving the user “Paul”
access to his location. Note that the access is restricted to read-only, therefore
Paul cannot modify or create instances of location for John.

To preserve the user’s privacy, instances of the User class are stored in
the mobile devices of the respective users. The user’s location, current and
next activities are dynamic properties. All remaining properties are expected
to change less often and are therefore considered to be mostly static.

96 Data Processing

Listing 4.1 User Instance Example
ex:john a gbs:User, pimo:Agent;
foaf:nickname ‘‘userid’’ˆˆxsd:string ;
ex:john gbs:current ex:activity1 ;
ex:john foaf:knows ex:paul ;
gbs:Profile ex:johnProfile ;
gbs:pastActs ex:archive1 ;
gbs:settings ex:ppoJohn ;
.
ex:archive1 a gbs:PastActivities ;
gbs:act ex:activity2 ;
gbs:act ex:activityn;
.
ex:activity2 a :Journey ;
prov:wasAssociatedWith ex:user ;
prov:startedAtTime ‘‘..’’ˆˆxsd:datetime ;
prov:endedAtTime ‘‘..’’ˆˆxsd:datetime ;
.
.
ex:johnProfile a gbs:Profile;
gbs:hasSharedKey ‘‘B8C382391061E449CE51B29C2549BB1F’’;
.
ex:ppoJohn a ppo:PrivacyPreference;
ppo:hasCondition[ppo:classAsObject gbs:Place];
ppo:hasAccess acl:Read;
ppo:hasAccessSpace[ppo:hasAccessAgent ex:Paul>;].
.
ex:activity23 a :Jogging ;
ao:mood ex:friendly ;
prov:wasAssociatedWith ex:john ;
gbs:runWith ex:paul ;
prov:startedAtTime ‘‘2012-04-03T10:00:00Z’’ˆˆxsd:
dateTime ;
prov:endedAtTime ‘‘2012-04-03T11:00:00Z’’ˆˆxsd:date
Time ;
gbs:path ex:runningLeg ;
.

4.2.1.2 Place Class
The location of a user in GAMBAS can be captured by different sensors (e.g.,
GPS, WIFI, GSM). The GAMBAS Place class, shown in Figure 4.3, provides
different properties for the different representations. The Place class is built
upon the spt:Place class, which already provides a vocabulary that includes

4.2 Data Model 97

Figure 4.3 Place Class.

concepts like, city, street and GPS coordinates. The Place class extends
spt:Place by enabling the representation of bus stops and cell location.

The CellReading class extends the spt:OV class, which provides the
vocabulary to describe sensor observations. A noise level can be associated
with every location, which can be used, in combination with the user’s
preferences, to suggest optimal travel routes. In addition, the place class adds
properties related to the environmental scenario, such has CO2 levels and
pollen count.

It is important to note that locations can be described by the set of
locations it contains. This allows us to aggregate information from smaller
areas, to generate a broader view. Lastly, as bus stops are a very relevant type
of place in the mobility application scenario of GAMBAS, we introduce a
subclass of Place, called BusStop, to specifically model them. In addition, we
can have a property associated with a bus stop that lists all the bus lines that
serve that stop.

A directory of locations is made available via external servers. For
privacy reasons, the users’ current location is dynamically stored on the
mobile device.

98 Data Processing

4.2.1.3 Activity Class
A user may perform different activities, e.g. visiting a location, shopping,
taking the bus or train, jogging, etc. The GAMBAS Activity class, shown
in Figure 4.4, provides the properties to describe an activity. Every activity
can have a start/end location and start/end time. Locations are represented
as instances of the Place class. For representing the time, we use the
xsd:datetime description from the OWL Time ontology [W3C12e]. Different
activities, such as traveling in a bus or jogging on a particular route, are
modeled as subclasses.

4.2.1.4 Journey Class
The journey class models special activities that represent general location
changes of the user. A journey can involve a trip by a bus or other modes of
transportations (e.g. walk between two bus stops to switch buses). A journey
consists of a series of segments, or steps, and these steps are described using
the class Step, which is also part of the GAMBAS ontology.

In each Step, we can specify a number of properties, such as arrival/de-
parture times (both scheduled and estimated), duration, distance covered and
start/end locations. Moreover, we can specify the travel mode used in each
instance of Step, which will be described later on.

In some cases, we are interested in recording every segment between two
consecutive bus stops, i.e. to check whether a user might meet a friend or not.
By using the gbs:singleSteps property, we can model this case, and each Step
will correspond to two consecutive points in the journey. However, we might
also be interested in a more compact version of the journey, where steps in

Figure 4.4 Activity Class.

4.2 Data Model 99

Figure 4.5 Journey Class.

which the travel model has not changed can be represented by one single
step. This provides a shortcut to determine when a user entered or left a bus,
for instance. For this, we have created a gbs:compactSteps property. Note
that this compact version can be created at any time from the list of single
steps. While it provides some redundant information, it greatly improves the
performance of some queries. In addition, we also introduce a mechanism
to keep track of the order in which the steps were performed during the
journey. We take advantage of the Ordered List Ontology [Ord12] to represent
a sequence of instances of the Step class. An OrderedList is a list of slots with
indexes to each slot and pointers to the next and the previous slot. In our case,
each slot contains an item of type Step. Figure 4.5 illustrates the Journey
class, and an example is given in Listing 4.2.

The instances of the Journey class can be stored in the user’s mobile
device or a trusted external server. Information regarding the schedules
is static, while the estimated departure/arrival times are usually updated
dynamically.

4.2.1.5 TravelMode Class
As we mentioned in the previous section, a journey is composed of multiple
steps, and each step can be performed by a different travel mode. To model
this, we introduce an abstract class that represents the different travel modes.
At the moment, there are two possible subclasses: BusRide and Walk, but it is
straight forward to extend this by adding other means of transport, e.g. car or
subway. Figure 4.6 illustrates the TravelMode class, as well as its subclasses.

For steps where a bus ride was used, we can specify further properties,
like the bus used and the crowd level of the vehicle. We can also attach the

100 Data Processing

Listing 4.2 Journey Instance Example
ex:itinerary1 a gbs:Journey
gbs:orderedSteps ex:list1 ;
gbs:singleStep ex:step1 ;
gbs:singleStep ex:step2 ;
.

ex:list1 a olo:OrderedList ;
olo:slot ex:slot1 ;
.
ex:slot1 a :Slot
olo:item ex:step1 ;
olo:next ex:slot2 ;
.

ex:slot2 a :Slot
olo:item ex:step2 ;
.

ex:step1 a gbs:Step ;
gbs:startLocation ex:PlazaMayor ;
gbs:endLocation ex:stop2 ;
gbs:distance ‘‘10’’ ; #distance between the two
stops.
gbs:scheduleArrival ‘‘21:13:54Z’’ˆˆxsd:time ;
gbs:scheduleDeparture ‘‘21:23:00Z’’ˆˆxsd:time ;.
gbs:travelmode ex:walk ;
gbs:instructions ‘‘walk from Plaza Mayor to stop2’’ ;
.
ex:step2 a :Step ;
gbs:startLocation ex:stop2 ;
gbs:endLocation ex:stop3 ;
gbs:distance ‘‘15’’ ; #distance between the two
stops.
gbs:scheduleArrival ‘‘21:30:00Z’’ˆˆxsd:time ;
gbs:scheduleDeparture ‘‘21:35:00Z’’ˆˆxsd:time ;.
gbs:travelmodel ex:busride ;

information about the user performing the bus ride directly to this class, which
can be beneficial for some types of queries.

4.2.1.6 Bus Class
A bus ride is performed by a bus, and this is also represented in the GAMBAS
ontology. Figure 4.7 shows the Bus class. A bus can be associated with a
stream of crowd levels to describe the number of passengers that are traveling

4.2 Data Model 101

Figure 4.6 TravelMode Class.

Figure 4.7 Bus Class.

on the bus. Aggregated values can be recorded and stored in instances of the
BusRide class, to compute statistics of the crowd levels in the different bus
routes. In addition, we can represent the route of a bus line by reusing our
Journey class. Other properties include the bus line name, the bus status (in
service or not) and the bus’ current location.

The information about buses is provided by the transport layer and it is
usually stored in an external semantic data storage. The bus location, crowd
levels and its status are constantly updated.

4.2.1.7 Jogging Class
The Jogging class is a subclass of the Activity class, and it can record the path
followed during the jog, the distance covered, the aggregated CO2 and pollen

102 Data Processing

Figure 4.8 Jogging Class.

levels and the friends met during jogging. Since we do not expect changes
regarding transportation mode during a Jogging activity, we can model the
path taken as one single instance of the Step class, which already provides
all the required properties (start/end location, polyline, duration). Figure 4.8
shows the Jogging Class.

The jogging activities are recorded in the mobile device of the user that
performed the activity. However, in order to support coordination, they may
be shared explicitly, e.g. with friends.

4.2.1.8 Shopping Class
In addition, the ontology includes a Shopping class, which is also a subclass
of the Activity class, to describe the user’s shopping. Instead of proposing
a new class to model stores and their products, we use the GoodRelations
ontology [Goo12], which is well known and widely used. The Shopping class
allows us to enlist the products bought by the user during this activity as well
as shops visited. Figure 4.9 shows the Shopping Class that are typically stored
on the user’s mobile device.

4.2.2 Query Specification

The data instantiated from the GAMBAS ontology is represented as RDF
[W3C12a]. SPARQL [W3C12b] is the most widely used RDF query lan-
guage, and therefore it has been chosen as a query language in the GAMBAS
context. However, some of the data in GAMBAS is available as a stream of
RDF data, or RDF streams. This is the case for the dynamic information,
like the location of a user. For handling RDF streams, GAMBAS relies on an
extension of the SPARQL query language, called the CQELS query language

4.2 Data Model 103

Figure 4.9 Shopping Class.

[LPDTXPH11]. The full specification of the SPARQL query semantics and
syntaxes are defined by the W3C and can be found in [W3C12b]. In the RDF
data model, each instance must have a globally unique URI. An RDF instance
has properties that have values as literals or other instances. A literal can have
text or numeric value.

In the context of GAMBAS, the SPARQL-SELECT and CQELS-
SELECT queries are sufficient for all realized applications. The output of
these queries is results sets in tabular form of literal and URI. Query results
can be easily serialized, for example, in XML [W3C12c] or JSON [W3C13a]
format. In the following, we present a number of examples for queries against
the data definitions contained in the GAMBAS ontology. The main purpose
of these examples is to clarify how the ontology and the definitions can be
accessed using SPARQL and CQELS, respectively.

4.2.2.1 Queries on Users
For retrieving the list of all users registered at the system, we can use the
query shown in Listing 4.3.

Listing 4.3 Query All Users
PREFIX : http://www.gambas-ict.eu/ont/
SELECT *
WHERE ?x a :User.

To determine the current activity of the user with a specific user identifier,
we could use the query shown in Listing 4.4. Similarly, we could retrieve the
user’s calendar entries or friends.

For analyzing the users’ intent, we can access information like the activi-
ties where a bus ride on a particular bus line was involved. Especially for the
case where we want to discover whether two users have been on the same
bus, we can ask for activities with a particular bus line and via a certain step.

104 Data Processing

Listing 4.4 Query Current Activity
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?activity
WHERE ?x foaf:nick ‘‘userid’’ .

?activity :current ?x .
FILTER (?endtime > NOW) .

A step, in this case, corresponds to the route between two consecutive bus
stops given by the URIs of the start and end locations. In both cases, we can
narrow the search to a time interval. Listing 4.5 shows an example for this.

Listing 4.5 Query Bus Rides of a Line for a Segment within an Interval
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?busride
WHERE ?x foaf:nick ‘‘userid’’ .

?activity a :Journey ;
prov:wasAssociatedWith ?x ;

:singleStep ?step. ?step :startLocation
<startLocURI>;
:endLocation <endLocURI> ;
:travelMode ?busride.
?busride a :BusRide ;
:serviceBus ?bus .
?bus gbs:busLine <buslineURI> .
?activity prov:startedAtTime ?starttime ;
prov:endedAtTime ?endtime .

FILTER (?endtime < ‘‘2012-04-03T00:00:00Z’’ˆˆxsd:date
Time) .
FILTER (?starttime > ‘‘2012-04-02T00:00:00Z’’ˆˆxsd:
dateTime) .

The examples show that the GAMBAS ontology is flexible whether you
are looking for a journey specified by start and location or other properties,
such as the bus line taken. The travelMode property allows us to filter out
activities where a bus was not involved.

For the user intention mining, it is important to analyze the historical
information associated with buses. The query shown in Listing 4.6 retrieves
all recorded bus traces of a user in a given bus.

Note that we can use the compact representation of the journey to retrieve
the full segment of the user in a bus, rather than the individual steps.

4.2 Data Model 105

Listing 4.6 Query Ride History of a User
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?step
WHERE ?x foaf:nick ‘‘userid’’ ;

:pastActs ?acts. ?acts :act ?journey ;
:compactStep ?step. ?step
:travelMode a :BusRide .

In the environmental domain, we can look for journeys in which some
of the steps had a CO2 level above a given threshold. This is shown in
Listing 4.7.

Listing 4.7 Journeys with CO2 Level above Threshold
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?journey
WHERE ?x foaf:nick ‘‘userid’’ . ?activity a :Journey ;

prov:wasAssociatedWith ?x ; :singleStep ?step.
?step :startLocation ?startLoc ;
:endLocation ?endLoc.
?startLoc gbs:co2Level ?startco2.
?endLoc gbs:co2Level ?endco2
OR{?startco2 > <threshold>. ?endco2 >
<threshold>} .

For the above query, we need to retrieve all the start and end locations and
check for their CO2 levels. We iterate over every single step on the journey
to make sure we retrieve all locations visited in that journey.

Another interested query is to retrieve a list of users who had gone jogging
with a particular user shown in Listing 4.8. This could be used, for instance,
to indicate a stronger friendship level between the two users.

Listing 4.8 Query Users Jogging with a User
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?user
WHERE ?x foaf:nick ‘‘userid’’ .

?activity a :Jogging ;
prov:wasAssociatedWith ?x ;
:runWith ?user.

106 Data Processing

As we mentioned earlier, GAMBAS extends the query set by supporting
queries that involve dynamic information. For this, it uses the CQLES query
language that resembles SPARQL. The main difference is the introduction of
the STREAM command that allows us to specify a window of data within
the stream. The query shown in Listing 4.9 retrieves the current location of
a user.

Listing 4.9 Continuously Query the Latest User Location
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?location
WHERE ?x foaf:nick ‘‘userid’’ .
STREAM <streamURI> [NOW] {?x :location ?location}.

In this query example, <streamURI> refers to the URI from where the
stream with the data in question can be accessed. The parameter [NOW]
extracts the latest location streamed. CQELS is a very flexible language,
allowing an easy integration of static and dynamic data. For example,
for suggesting bus stops near the user, we can write the query shown in
Listing 4.10.

Listing 4.10 Continuously Query Near by Bus Stops
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX prov: http://www.w3.org/ns/prov#
PREFIX spt: http:// spitfire-project.eu/ontology/ns/
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?nearby
WHERE ?x foaf:nick ‘‘userid’’ .
STREAM <streamURI> [NOW] {?x :location ?location}.
?nearby a :BusStop ; spt:nearby ?location.

It is noteworthy to highlight that CQELS queries are continuous queries,
which means they are registered in the system and whenever new data is
generated in the stream, the query is evaluated and results are pushed to the
output. For example, we can imagine a scenario of a user walking around and
getting notifications of nearby bus stops as he changes location.

4.2.2.2 Queries on Buses
This section presents a subset of queries about buses, bus stops and bus lines.
For instance, to get bus stops near a particular GPS location, we can query as
shown in Listing 4.11.

4.2 Data Model 107

Listing 4.11 Query Bus Stops at GPS Location
PREFIX : http://www.gambas-ict.eu/ont/
PREFIX g: http://www.w3.org/2003/01/geo/wgs84_pos#
PREFIX spt: http:// spitfire-project.eu/ontology/
ns/
SELECT ?place
WHERE ?place a :BusStop ; spt:nearby ?location.

?location a :Place ; g:Lat ‘‘50.0’’ ; g:long
‘‘3.0’’.

Similarly, we can also retrieve the bus route for a particular bus line. The
corresponding query is shown in Listing 4.12.

Listing 4.12 Query Bus Stops of a Bus Line
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?busroute
WHERE ? busline a :BusLine ; :route ?busRoute

To retrieve the list of stops covered by a bus line in the correct sequence,
we can use the ordered list to iterate over the different steps as shown in
Listing 4.13. Note that the query might return duplicates if start/end loca-
tions overlap. However, this can be easily fixed by a simple scan over the
results list.

Listing 4.13 Query Bus Stop Sequence of a Bus Line
PREFIX : http://www.gambas-ict.eu/ont/
PREFIX olo: http://purl.org/ontology/olo/core#
SELECT ?start ?stop
WHERE { ?busline a :BusLine ; :route ?busRoute.

?busRoute :orderedSteps ?list.
?list olo:slot ?slot .
?slot olo:item ?step ; olo:index ?index .
?step :startLoc ?start ; :endLoc ?end

}
ORDER BY ASC(?index).

With the Place ontology, we can easily query for all bus lines that run on
a stop. Moreover, we can also query for bus lines that run on a given date on
that stop as shown in Listing 4.14. To do this, the query looks at the routes of
the bus lines and filters them by the date.

For a user waiting at a bus stop, we want to send notifications of possible
delays. We can first retrieve all the bus lines that run on the stop and check
their timetables against the stream of estimated times. In the query shown in
Listing 4.15, we can specify a threshold (e.g., 5 minutes), and if the current

108 Data Processing

Listing 4.14 Query Bus Stop Sequence of a Bus Line
PREFIX : http://www.gambas-ict.eu/ont/
PREFIX prov: http://www.w3.org/ns/prov#
SELECT ?busline
WHERE <busstopURI> :busLine ?busline .

?busline :route ?route .
?route prov:startedAtTime ?start ; prov:
endedAtTime ?end.

FILTER(?start ><date>). FILTER (?end <<date>).

Listing 4.15 Query Delayed Buses
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?estimateddeparture
WHERE ?x foaf:nick ‘‘userid’’ ; :location ?stop.

?stop :busline ?line .
?line :route ?route .
?route :singleStep ?step .
?step :startLocation ?stop ;
:scheduleDeparture ?scheduleDeparture

STREAM <streamURI> [NOW]
{ ?step :estimatedDeparture ?estimated
Departure }.

FILTER (?estimateddeparture >
?scheduleDeparturel +threshold).

live departure time estimation is over the threshold, then the system will
notify the user.

The last query examples are related to the crowd-level information avail-
able for different public transit vehicles. To access the latest status and
crowd-level information of a particular bus, we can use the query depicted
in Listing 4.16.

Listing 4.16 Query Latest Crowd Level of Bus
PREFIX : http://www.gambas-ict.eu/ont/
SELECT ?crowdLevel ?status
WHERE ?bus a:Bus
STREAM <streamURI> [NOW] {?bus :crowdLevel ?
crowdLevel}.
STREAM <streamURI> [NOW] {?bus :status ?status}.

Using the GAMBAS ontology, we can store an aggregated value of crowd
levels recorded for a particular step of a journey. This value can be, for
instance, the maximum crowd level at any stage of that step or the average

4.3 Data Discovery 109

value. In the query depicted in Listing 4.17, we show how to extract the
maximum crowd level of a step.

Listing 4.17 Query Latest Crowd Level of Bus
PREFIX : http://www.gambas-ict.eu/ont/
SELECT MAX (?crowdLevel)
WHERE ?step a :Step ; :estimatedDeparture ?start ;

:estimatedArrival ?end ; :travelMode ?busride .
?busride :serviceBus ?bus .

STREAM <streamURI> [RANGE 30min]
{?bus:crowdLevel ?crowdLevel[timeStamp]}.

FILTER (?start < timeStamp < ?end).

When processing data streams, we can extract windows of data, by
specifying the window parameters. In the previous queries, we used [NOW]
to extract the latest value. Here, we select all the data of the last 30 minutes.
Note that it is not possible to specify a start/end time interval for the window
operators. Nevertheless, we can take advantage of the fact that every stream
data can have a timestamp associated with it. In the case of this query, we
assume that the start time did not occur before 30 minutes ago, and we select
the valid crowd levels during the step in the filter condition.

4.3 Data Discovery

To enable the distributed execution of queries across multiple data stores,
the query processors must be able to discover the available data stores. The
GAMBAS dynamic data discovery system is responsible for providing this
functionality. From an architectural perspective, it is realized as a central
registry service that offers two distinct interfaces: (1) a GAMBAS-based
registration interface to export metadata and search for data sources and
(2) a web-based administration interface that allows to configure the discov-
ery system, check its state and browse current registrations. The discovery
system is developed using the Google Web Toolkit (GWT), a toolkit for the
development of web-based client/server applications, and deployed in a Java
servlet container such as Apache Tomcat. Figure 4.10 shows a screenshot of
the administration interface of the discovery registry.

Besides a central registry instance for normal system operation, applica-
tion developers can run their own private instances of the discovery system
in their local networks. This allows using separate discovery systems for
development work or prototyping and isolates the development systems from
each other and the central discovery system used for normal system operation.

110 Data Processing

Figure 4.10 Dynamic Data Discovery Registry Administration Interface.

4.3.1 Architecture

The architecture of the GAMBAS dynamic data discovery is shown in
Figure 4.11. The system is deployed as a servlet in a regular servlet container.
It builds upon the GAMBAS communication system to realize remote com-
munication and lease management as described later. The data registration
is co-located with a communication gateway component that is used by
the communication system to enable multi hop routing and connectivity in
peer-to-peer environments with firewalls or networks with native address
translation (NAT).

The co-location of the registry with the gateway allows to easily locate the
registry and thus simplifies the bootstrapping of the system. The dynamic data
registration contains all functionalities needed to publish metadata describing
data sources, to update this information and ensure its freshness. The web-
based administration interface depicted in Figure 4.10 allows to configure
the discovery system (as well as the communication gateway) and to browse
current metadata as well as exchanged messages.

4.3.2 Metadata Management

Metadata is used to describe data sources such that clients can easily select
semantic data stores that contain data that is relevant for their queries.

4.3 Data Discovery 111

Figure 4.11 Dynamic Data Discovery Registry Architecture.

The metadata published in the registry follows the linked data paradigm
to describe the data provided by devices. Listing 4.18 and Listing 4.19
show different examples of metadata information for a service providing
environmental information about places and a service providing information
about bus schedules, respectively.

Listing 4.18 Register a Service for Environmental Information
<place1> a gbs:Place ;

gbs:noiseLevel ‘‘-1’’ ;
gbs:co2level ‘‘-1’’ ;
gbs:pollenCount ‘‘-1’’ .

Listing 4.19 Register a Service for Bus Schedules
<line1> a gbs:BusLine ; gbs:route <route1> ;

dc:title ‘‘some_line’’ .
<route1> a gbs:Journey ; gbs:singleStep <step1> .
<step1> a gbs:Step ; gbs:startLocation <p1>;

gbs:endLocation <p2> ;
gbs:scheduleArrival ‘‘00:00:00Z’’ˆˆxsd:time ;
gbs:scheduleDeparture ‘‘00:00:00Z’’ˆˆxsd:time .

It is important to note that the registry only keeps the data structure
(ontologies classes and properties), but not the actual instances and property
values. As the purpose of the directory is to allow discovery, it only needs
to store the shape of the RDF graph, which are then used to match against
user queries. An example query looking for providers of GPS coordinates is
shown in Listing 4.20.

112 Data Processing

Listing 4.20 Finding Services Providing GPS Coordinates
SELECT distinct ?g
WHERE { GRAPH ?g

{ ?p geo:lat ?lat ; geo:lon ?lon . }
}

4.3.2.1 Publishing Metadata
To make a data source available, the discovery service offers remote methods
using the underlying communication system to register a new data source,
to update a registration and to remove a registration. To do so, data sources
send their metadata description to the registry. This metadata is then stored at
the registry and made available for clients to find suitable data sources. The
signature of the registration method is:

• DeviceRegistration register(DeviceDescriptor)

The method takes a device description that specifies the metadata to
describe a data source and returns a new registration object that can be used
to maintain the registration. In case a description changes, data sources can
update a registration by calling the update method:

• Boolean update(DeviceDescriptor, DeviceRegistration)

This method takes a new descriptor as well as an existing registration
(obtained by an earlier call to register) and returns a Boolean specifying if the
update was successful. If the registration cannot be found in the registry, the
update will fail.

4.3.2.2 Unpublishing Metadata
At some point of time, a data source might want to stop offering data or it
may become unavailable. To stop offering data, a data source can deregister
itself from the registry using the remove method:

• void remove(DeviceRegistration)

This method takes a registration and removes it from the registry. If the
registration cannot be found in the registry, the method fails silently, i.e.
no error notification is given. In any case, after the method finishes, the
registration is no longer available for clients.

In addition to this explicit removal, the discovery service also employs a
lease mechanism to ensure freshness of registrations in cases where a data
source becomes unavailable without being able to deregister. To do so, the
discovery service uses an existing component of the communication system.

4.3 Data Discovery 113

For every registration, it starts a lease process that checks the availability of
registered data sources periodically. In case a data source is not available
several times, a lease manager integrated into the communication system
notifies the discovery service, which eventually removes the registration.

4.3.3 Querying Data Sources

To find suitable data sources for a specific data need, clients can issue data
source queries at the discovery system. To do so, they can call the find-method
of the registry:

• DeviceResult find(DeviceQuery)

This method takes a query (implemented as an DeviceQuery) that spec-
ifies the intended data sources and returns a query result (implemented a
DeviceResult) possibly including a set of suitable data sources.

4.3.4 Security and Privacy

In addition to support for public services, a secure version of the Dynamic
Data Registry (DDR) provides privacy guarantees for users who may wish to
limit sharing of their data to specific users or groups of users. To do this,
the secure version of the registry integrates an encryption scheme known
as IPHVE. This scheme not only ensures that only users with access to a
particular data item are able to discover the location of the item in question,
but it also ensures that the registry itself cannot become a security or privacy
liability, since the registry itself also cannot read the stored metadata.

IPHVE is an attribute-based encryption scheme, which extends the
Hidden Vector Encryption scheme [IP08]. IPHVE uses the Dual Pairing
Vector Spaces (DPVS) framework [OT08]. Some of the main operations are:

• Setup – Generates a Secret Key (SK) and Public Key (PK).
• Encryption – Generates a Ciphertext (Ct) given a Message (M), PK

and a Vector of Attributes (Vx).
• Key Generation – A Decryption Token (DTk) is generated given SK

and another Vector of Attributes (Vy).
• Decryption – Given Ct and DTk, generates a Plain Text (Pt) if the PK

used to generate DTk corresponds to the SK used to generate Ct, if Vx
and Vy correspond to the HVE definition.

• Test or Verification – Returns true if, given Ct and DTk, Vx and Vy
correspond to the HVE definition.

114 Data Processing

As an extension to IPHVE, a Generic Decryption Token (GDTk) can be
generated, which allows users to set provider-defined attribute values. The
GDTk can then be modified by the users with a Random Session Key (RSK),
which prevents the registry to decrypt a message.

The resulting interaction with the secure DDR is shown in Figure 4.12.
The message exchange remains similar, i.e. data providers publish metadata
for users to discover. The novelty lies in the addition of a message from the
data provider to the user with a decryption token that enables discovery. This
token needs to be included in the message to the registry in order to get
the results.

4.3.5 Client-side Caching

Since discovery is a mandatory step in execution of remote queries, the
discovery process increases the latency experienced by applications. To
mitigate this, the GAMBAS middleware provides a client-side cache that
enables clients to store information about remote data providers to reuse
this information in case there is another request for the same data. This is
a standard approach for remote directory systems that is also used by DNS,
for example. When executing a query, the mechanism first checks if it already
has information about the requested data provider in a local cache. If that is
the case, then this information is returned. Otherwise, a standard discovery
request is issued. Freshness is provided by using standard techniques, i.e.
leases and data invalidation in case of unsuccessful communication requests.

Figure 4.12 Secure Data Discovery Registry.

4.4 Data Processing 115

4.4 Data Processing

Using the Dynamic Data Discovery Registry, it is possible to discover the
systems that are storing data that might be relevant for the execution of a
query. However, the Data Discovery Registry only stores metadata. In order to
provide security and privacy guarantees, the data itself is stored in a semantic
data storage that can be queried using a query processor. In the following, we
discuss the details of these two remaining components.

4.4.1 Data Storage

The semantic data storage (SDS) component provides the ability to store
and retrieve RDF [W3C12a] data on devices equipped with the GAMBAS
middleware. These devices range from constrained to back-end computer
systems. To cope with these different device classes, two different versions of
the SDS are provided: one for Android and one for J2SE environments. Both
versions rely on a common (i.e. platform independent) base implementation
as far as possible. To further reduce the development effort, both versions use
a basic triple store for actually storing data and extend this triple store with
GAMBAS-specific functionality, e.g. a remote storage interface or handling
of intermittent query results (used for distributed queries).

As no established triple store exists for both J2SE and Android, we
decided to use different triple stores for them and to provide a unified
interface on top of them through the GAMBAS middleware. For J2SE, we use
Apache Jena [Apa13], a well-established, efficient and powerful implementa-
tion that supports many additional functions such as full support for SPARQL
1.1. For Android, we use rdf-on-the-go [NUI12], a triple store implementa-
tion that is derived from Jena. On top of the triple stores, GAMBAS adds
additional support for formatting query results as JSON strings according
to [W3C13a]. Finally, to support formatting RDF data as N-Triple strings
[W3C04], the semantic data storage contains bindings to a custom but generic
N-Triple parser, called YANTRIP (Yet Another N-TRIple Parser) that is
based on the JavaCC parser generator to minimize development effort and
to allow for easy extensibility.

In the following, we discuss the optimization techniques applied to the
semantic data storage components in order to increase their scalability. The
focus of the optimizations lies on memory consumption and data indexing
techniques of the storage on mobile devices. Consequently, the optimization
primarily apply to the Android version of the SDS, since this version faces
the most restricting constraints.

116 Data Processing

4.4.1.1 Data Storage Optimization Techniques
Reducing the memory footprint is one of the critical key targets to improve
performance of the SDS [Nor07], especially when running on mobile devices.
Although random access memory on mobile devices has improved, the heap
size of an Android application is still limited. For example, the system
RAM of an ASUS NEXUS 7 tablet is approximated 1GB, but the default
memory heap size for an application running on it is only 64MB. There
are a couple of reasons for this limitation. First, Android is a multi-tasking
operational system with many applications stored in memory concurrently. If
an application occupies too much memory, it might impact other applications
or bloat the whole system. Second, Android uses the mark-sweep algorithm
to perform garbage collection. Thus, an application will be paused while
being garbage collected and bigger heap sizes lead to longer pause times
[MNP+10]. This reduces the performance of an application significantly.

To reduce memory footprint, the GAMBAS SDS for Android employs
dictionary encoding which is similar to the implementations of Jena TDB or
Sesame. In contrast to solutions for standard computers, we use a compact
integer format that is optimized for millions rather than billions of RDF
nodes. We believe this is the common scale of most mobile personal infor-
mation applications. Existing RDF stores for mobile devices are restricted to
smaller data sizes of approximately one order of magnitude less [ZS12]. Each
RDF node is processed and mapped to a node identifier before it is loaded
into main memory. A node identifier is 32 bits in size, where 9 bits are used
for encoding the node type and the remaining 23 bits for encoding a string
identifier. Most operations on nodes, e.g., matching during a query execution,
can be performed on these node identifiers without accessing the actual string
representation. Thus, only one integer must be kept in memory for each node,
while string representations can be stored on flash memory. This leads to a
memory footprint of just up to 12 bytes per triple, while memory profiling
reported about 450 bytes per triple for the Jena memory model. Note that
despite this large memory footprint reduction, we do not restrict our system
to keep all triples in main memory. Instead, our RDF store can store triples in
flash memory as discussed next.

For efficient access, all RDF triples are indexed with a schema we already
presented in [LPPRH10]. It consists of three triple indexes with different node
orders with respect to subject (S), predicate (P) and object (O): SPO, POS and
OSP. The indexes are stored in flash memory to reduce the required amount
of main memory and to make data persistent. We also operate a triple cache
in main memory, which contains currently used parts of the indexes.

4.4 Data Processing 117

Flash memory has a great impact on the design of an efficient DBMS
for mobile platforms [LNK+07]. For example, well-known B-Tree indexing
techniques were shown to be not suitable for flash memory [LHLY09]. There-
fore, we have built a special lightweight key-value database. This database is
optimized for flash memory and allows us to fully control I/O blocking and
block caching. This way we can better manage memory access and mini-
mize the impact of Android’s garbage collection due to erase-before-write
limitations of flash devices [JS10].

Flash I/O is based on memory blocks. Instead of reading or writing
individual bytes, the I/O unit always reads/writes a whole block. The size
of a block depends on the individual devices. Thus, in order to write a single
byte in a block, the whole block must be read, modified and written again.
This makes random access writing very inefficient. Our aim is to reduce
the number of read and write accesses as much as possible. To do so, we
partition each index into individual blocks, which have the same size as
the flash I/O blocks of the device. The individual blocks are stored in flash
memory. A metadata structure specifies the triples contained in each block,
given as lowest and highest node identifier in the sorted block. The triple
cache contains a number of index blocks. If a new triple is added, it must be
added to the indexes. To do so, the system loads the required index blocks into
the cache. Then, the triple must be included at the right position in the index.
This is trivial if the triple should be added at the end of an existing block that
still has open space. Otherwise, we would need to move all triples by one
position, resulting in a large number of writes. To reduce this overhead, we
do not change the original block. Instead, we slice the block into two parts: an
old, original block and a new one. The old one is not changed at all. The new
one contains all triples starting with the newly added one. Then, the metadata
structure is updated to specify that the new block contains all parts including
the new triple, while the old one only contains parts before that.

As an example, imagine that a block contains three triples for subject
nodes with identifiers 1, 5 and 7. The metadata will specify that this block
contains triples for subjects 1 to 7. To add a triple starting with a subject node
with identifier 6, we read the original block if it is not already in the cache
and create a new block containing the triples starting with identifiers 6 and 7.
Then, we update the metadata to specify that the old node contains triples for
subjects 1 to 5, while the new one contains triples for subjects 6 to 7. We did
not have to modify the original block in any way. The new block is still in
the cache and hopefully will get additional triples for the same subject before
writing it onto flash later. This way, we will only need to perform one write

118 Data Processing

access to flash memory. To further reduce the number of read/write accesses,
when we need to remove a block from the cache and write it back to flash,
our strategy chooses a block that has a high chance of not being changed in
the future. Together, these optimizations reduce the overhead of using flash
memory considerably.

4.4.1.2 Data Storage Optimization Results
To evaluate the performance gains when applying the optimization techniques
to a Semantic Data Storage, we have implemented them as part of the SDS for
Android. Using this implementation, we compare the new version with the
old version, which used Berkeley DB as underlying database (RDF-BDB).
We also compare against the Android version of Jena TDB (TDBoid).

Figure 4.13 shows that the throughput of the improved version of the
SDS (RDF-OTG) is four times higher than TDBoids and is roughly seven
times higher then the original version (RDF-BDB). Moreover, besides having
much better update throughput, RDF-OTG also consumes considerably less
memory than other systems (see Figure 4.14). Especially, while the previous
version crashed at 200,000 triples due to memory overflow error (i.e. the
application consumed more than 64MB heap size), the improved version only
needs 20MB heap size for the same amount of triples.

A similar trend can be seen when analyzing the response times of queries
and the scalability of the optimized implementation. There, we can measure a
performance increase of 20 to 200 times, depending on the query complexity.
Similarly, while the original version of rdf-on-the-go was only able to handle

Figure 4.13 SDS Throughput Comparison.

4.4 Data Processing 119

Figure 4.14 SDS Memory Comparison.

200000 triples, using the optimization techniques, it is possible to scale up to
4 million triples while still achieving response times in the order of seconds.

4.4.2 Query Processor

The query processing (QP) component enables clients to execute SPARQL
[W3C12b] data queries on data sources, including queries on the local SDS,
on remote SDS or on a combination of both. The GAMBAS architecture
contains two different components for this: the one-time query processor
(OQP) and the continuous query processor (CQP). The QP relies on the
SDS to store RDF data and to execute local SPARQL queries and retrieve
results for them. To enable this, the SDS provides a special interface to
the QP. This interface allows direct access to the SDS in order to increase
system performance. In addition to this, the interface is also used to store
intermediate results of distributed queries. In the following, we discuss how
the two main functional parts of the query processor, the privacy analysis and
the distributed query support, are realized.

4.4.2.1 Access Control
When a query is received, the query processor has to check if this query can
be executed within the specified privacy policies of the user. To do so, each
query has an accompanied CallerContext to identify the sender of a query
and to distinguish local and remote queries. Each query can be authorized or
denied by an implementation of a so-called PrivacyManager that is described
in more detail in Chapter 5. The authorization process is based on an analysis

120 Data Processing

of the received query, more specifically on the kind of data (models with data
classes in the ontology) that the query will affect, e.g. a user or a location.
The privacy manager can block the query, if the remote user is not allowed to
access those classes. This allows a very fast authorization phase even on low-
end Android devices, because it requires no result filtering. The actual privacy
authorization workflow is handled by the so-called PrivacyQueryVerifier,
which coordinates several internal classes to:

1. Extract the predicates for each subject in the query.
2. Derive the most probable class for each subject in the query.
3. Ask the privacy manager if the querying user might access the derived

classes.

In order to support the ontology class derivation on Android devices, the
ontologies are preprocessed and only an index is included inside the mid-
dleware. This avoids the overhead for parsing the ontologies, reduces the
memory requirements and speeds up the analysis.

4.4.2.2 Distributed Queries
Dynamic distributed queries in GAMBAS are realized via a partial implemen-
tation of the recommendation for SPARQL 1.1 federated queries [W3C13b].
A query may contain one or more SERVICE keywords, each one specifying
a sub-query on a remote data source. Following the linked data principles,
data sources are identified by URIs. In principle, SPARQL 1.1 allows SER-
VICE sub-queries with unbound data sources. The QP does not support such
queries since they can lead to a high communication overhead and may easily
overwhelm restricted computer systems.

The core functionality for distributed queries consists of a generic dis-
tributed query processor and an intermediate result storage. The latter is
implemented using semantic data storage. The distributed query processor
receives a query and checks if it can be handled locally or contains remote
parts. In the first case, it executes the query on the local SDS. In the second
case, it forwards the query execution to the intermediate result storage. The
result storage sends each SERVICE sub-query to the specified data source,
collects intermediate results from them in the local SDS and joins them
into an integrated result set. The question remains how the query issuer
knows the right data sources for its query. For this, the QP uses the data
discovery registry (DDR) described in Section 4.3. The general approach can
be summarized as follows:

4.4 Data Processing 121

1. A query issuer wants to retrieve data from data sources of multiple
remote users.

2. To do so, the query issuer first places a local query for the URIs
identifying these users, e.g. based on their names or pseudonyms. Thus,
the query issuer must know these users before sending them queries.
Due to privacy, we do not allow users to send queries to other users that
they do not know.

3. The query issuer then constructs a distributed query by adding one
SERVICE sub-query for each remote user, which contains the user’s
URI as the URI of the remote data source.

4. This query is then placed at the QP.
5. When the QP finds SERVICE sub-queries, it accesses the local SDS

and retrieves the pseudonyms of all users, whose URIs are contained in
SERVICE queries.

6. With this information, the QP then contacts the DDR and requests con-
tact information for all data sources that are bound to these pseudonyms.

7. After retrieving these, it uses this information to contact these data
sources and place their SERVICE sub-query at them.

Note that to reduce the complexity for the application developers, the QP
contains utilities that can be used to construct a query with all necessary
SERVICE parts from a query template, in case that the remote query is
identical for all receivers, e.g. querying location information for a set of users.

4.4.2.3 Continuous Queries
In addition to one-time queries, the GAMBAS data processing system also
supports continuous query processing over streaming data. Similar to the one-
time query processor, the continuous module also follows the Linked Data
paradigm. This allows data integration among different data sources, being
stream or static. Stream data is represented by Linked Data Streams [SC09],
whereas the processing is supported by an instantiation of the CQELS
framework for Linked Data Stream processing [LPDTXPH11].

The architecture of the module for stream processing is shown in
Figure 4.15. It consists of an application client and an application server. For
the full-duplex client–server communication, the system uses Websockets,
which are supported by the client–server framework Netty [Net14]. In the
client application for Android devices, the system uses the SDS as the
Semantic Web framework, which provides an API to extract data from and
write data to Linked Data Streams. The Client Publisher Handler manages

122 Data Processing

Client WebSocket
Communication

Semantic Web Framework

Client
Publisher
Handler

Client
Subscriber

Handler

Applica�on Client

WebSocket Stream
Processing Server

CQELS engine

Server
Publisher
Handler

Server
Subscriber

Handler

Applica�on Server

Figure 4.15 Stream Processing Module.

the upstream, which pushes RDF-triples from clients to server. To subscribe
for the stream data from a particular server, the Client Subscriber Handler reg-
isters the queries to the server and manages the results listeners. Each listener
listens to the results from the server through a downstream corresponding
to the registered query. In the server application, the Linked Data Stream
management and continuous query processor are provided by the CQELS
engine. The physical streams are handled by the Server Publisher Handler
and the Server Subscriber Handler. The Server Publisher Handler is tightly
connected to the input manager of CQELS, in order to get the data from
the clients. The Server Subscriber Handler registers the subscribed queries to
the CQELS executor and routes the results to the corresponding subscribed
channels.

