
5
Privacy Preservation

This chapter describes the automated privacy preservation framework of the
GAMBAS middleware. The framework extends the adaptive data acquisition
and distributed data processing frameworks to support the automated sharing
of contextual information in a privacy-preserving manner. In the GAMBAS
middleware, privacy preservation encompasses mechanisms and protocols
to limit the access to contextual information to trustworthy clients, which
also allow the user to specify which data items can be used by the system.
Furthermore, it includes tools to automatically derive sharing policies by
inspecting privacy settings from a configurable and extensible set of web
services. Specific care is taken to avoid the use of central points of trust
in order to support the policy enforcement at runtime and to maximize the
applicability of derived policies to different types of context information. In
the following, the chapter first clarifies the focus and contribution of privacy
preservation in the GAMBAS middleware. Thereafter, it describes the privacy
protocols and mechanisms and discusses the policy generation tools. Finally,
the chapter presents details on the integration into the other systems.

5.1 Focus and Contribution

Context privacy is an important and very active research area in the ubiquitous
computing domain. Therefore, we briefly review the state of the art in
this area, before we discuss the contributions of the privacy preservation
framework of the GAMBAS middleware with respect to security and privacy.

5.1.1 Trusted Computing Hardware

Hardware-based privacy approaches try to make use of current security
technologies that enable trusted hardware design. This is usually based on the

123

124 Privacy Preservation

Intel trusted execution technology (TXT). The TXT uses the trusted platform
module (TPM) that is already built-in in many business PCs and laptops.
The TXT only allows trusted (and cryptographically validated) software to
run on the device. So the software itself cannot be tampered. This implies
that the software engineering process is monitored closely and the privacy-
preserving quality of the software can be approved [LZD08]. The drawback
of such a design beside the costs is the inflexibility in hardware design. For
example, simply attaching a new hardware device will tamper the security,
so “secure” versions of all hardware components that are used for context
processing are necessary. This includes “common” components like a USB-
controller or a storage-controller. Thus, in summary, all these approaches are
based on special hardware and need the complex creation of trusted software.

5.1.2 Key Exchange and Derivation

Context privacy can be achieved in several ways. One possibility is creating
a common symmetric key with users and devices which are allowed to
access the produced context [Mis08]. This approach is often used in eHealth
scenarios. An alternative is to derive keys based on the context information in
the surroundings [HV09], [RB04]. The context information used to create
these keys is usually based on physical characteristics like the acoustic
“fingerprint” of a room or a similar “fingerprint” based on Wi-Fi radio signals.
In general, common symmetric keys cannot be used in dynamic environ-
ments, because a new key must be created and redistributed if some device
leaves the group of devices that are allowed to access context information.
Many of the approaches that create keys from the context information that
persists in the current environment either need servers and a central authority
[HV09] or can only be used in a very limited physical region [RB04]. Besides
using encryption to keep the transferred context information secret, it is
possible to create hashes that are distributed instead of the original context
information. Because a hash is a one-way function, the original context
cannot be reconstructed easily. This is similar to an approach that uses hashes
and pseudonyms to hide the context from unauthorized access [EBBS07].

Another centralized approach shifts the context that can be accessed to
a central database [HM08]. Similarly, it is possible to rely on several third
parties that store (possibly private) context information [MMG11]. Here,
the user is supposed to control the access to this context information using
permissions (or a user-defined policy). When a user issues requests to a
context-based service, k-anonymity [Swe02] can help to make the accessing

5.1 Focus and Contribution 125

user anonymous. However, relying on central databases always means that the
user has to put trust in the database providers with regard to their compliance
with the user’s policy. Additionally, each provider needs to store the data
securely; otherwise, a data leak may make a user’s private context available.

5.1.3 Obfuscation and Generalization

Obfuscation and generalization of context information can be used to provide
context privacy, usually by blurring the context. Often, these techniques
are used for the privacy of location [XC09], [ACDCdVS08]. Although
k-anonymity is also suggested as a solution to the privacy of location [GG03],
[ZH09], [SHL+05], its use is also disputed [STD+10]. Other approaches for
location privacy rely on the collaboration of users, either with [SPTH11],
[RR98] or without user interaction [BS04]. MobiCrowd [SPTH11] allows
users that request information from the location-based service (LBS) to share
the information among each other. The information is signed by the LBS, so it
can be verified by each user individually. Besides the fact that the LBS cannot
gather information about users that share the context among each other, the
LBS is queried less regularly, so this also has an effect on load balancing. This
idea is roughly based on the use of crowds to anonymized requests [RR98].
Here, a proxy technology is used that (randomly) forwards web requests (e.g.
http, ftp, gopher, etc.) to other computers or to the target server on the Internet
to make the original user, who created the request, anonymous.

An approach for location privacy which is not based on the interaction
between different users uses the so-called “Mix Zones” [BS04]. In Mix
Zones, users are changing their pseudonyms secretly to maintain location
privacy. Mix Zones require specially marked zones that cannot be used
by location-based services. Additionally, using a map, many traces through
mixed zones might be guessed successfully due to normal human movement
behavior. The IETF working group called “Geopriv” [IET13] is also focused
on location privacy. The Geopriv working group uses central servers that
apply a user-specific policy and send the data to the location-based service if
the policy did approve it. An evaluation of the privacy risk of location-based
services [FSH12] using traces from real users concludes that current solutions
which use user anonymity are effectively not providing location privacy and
this result may encourage “the use of distributed solutions in which users
store maps and the related information directly on their mobile devices.”

The generalization of context information can also be done with other
context information, especially when the information encompasses numerical

126 Privacy Preservation

values like age or height [PRAB08]. The quality of a service customized
on this context information might of course be lower than if the actual
context information would have been used; however, the user’s privacy is
still preserved.

Social networking sites often contain different context information.
Additionally, they usually allow a fine-grained access control policy to be
defined. Helping the user in creating and maintaining this policy as well
as extracting policy information out of the social network will allow an
in-depth analysis of privacy settings [FL10]. A similar approach is taken
by the privacy policy tool PRiMMA [WCMS10] that allows editing privacy
settings in social networks more fine-grained than supported by the network
itself. The tool allows co-ownership of shared data (e.g. photos) and allows
all owners to edit the privacy settings. Since social networks currently do not
support a more complex privacy policy, it is necessary to store the context
data on an additional server and use a separate viewer for policy editing.
Often, social networks cannot be trusted with private context information,
so a decentralized social network that stores the user’s profile on the user’s
devices [NPA10] provides a solution. The necessary access control is directly
enforced by the user’s devices, according to the user’s policy that must be
specified beforehand. To have a high availability of the user’s profile, the
profile’s context data is distributed among devices from different, trusted
users. Another approach, comparable to our approach in GAMBAS, uses a
server-side aggregator [JJFZ11] that crawls through different social networks
and collaboration tools to retrieve the user’s context that should be shared
between users and devices. The user needs to specify a common profile and
edit her privacy settings, defining a privacy policy. All approaches which
target the privacy policies in social networks usually involve manual user
actions that need to be done additionally to defining the privacy settings in
the social networks.

5.1.4 Contribution

Privacy-preserved sharing of context information is a very active research
area without providing the user with a clear solution. GAMBAS provides
concepts and mechanisms that focus on the automated privacy-preserving
sharing of context information while still being applicable for devices in
the ubiquitous computing scenario, which includes heterogeneous devices,
mobility and resource constraints. Hardware-based approaches for privacy-
preservation need special hardware and a defined software development

5.2 Privacy Framework 127

process that allows security audits, which define the “trust” in software. Since
GAMBAS is using a dynamic architecture in software and hardware, this
approach is not feasible.

Current approaches for context privacy often rely on (external) databases
run by third-party providers. In contrast to that, GAMBAS does not rely
on central databases, so no infrastructure is necessary to share context
information in a privacy-preserving way. Key derivation for context privacy
is usually only applicable in special environments and not a general solution
in a pervasive scenario where devices exhibit mobility and are not bound
to any infrastructure. Additionally, the necessary configuration conflicts with
the goal of a distraction-free usage of devices. The context generalization in
GAMBAS extends the existing approaches. If a generalization path is avail-
able that would make the context information privacy-preserving according
to the used privacy policy, GAMBAS tries to use obfuscation or generaliza-
tion, so customized service access is possible while preserving privacy. This
obfuscation can be done in an automatic way, without distracting the user.

Approaches that extend social networks mainly focus on the privacy
policies. The policies must be created manually by the users. This requires
the user to learn the usually complex privacy policy language. Additionally
some approaches require a central server that stores context and/or the
defined policy. This requires additional server infrastructure where the user’s
context is stored. In GAMBAS, we use a decentralized approach where
the context is usually stored on the user’s device instead of a third-party
server. Privacy policies can be retrieved automatically from social networks
without user interaction. Also, these approaches must be extended to be
applicable to not only one social networking site, but many and to other
context providers like physical sensors. To create a privacy-preserved sharing
of context information, GAMBAS encompasses extraction tools that gather
and generalize privacy policies from a set of web services automatically as
well as an associated set of mechanisms and protocols that enforce these
policies at runtime.

5.2 Privacy Framework

In GAMBAS, the data acquisition and the interoperable data representation
and processing mechanisms are developed to gather and distribute all possible
types of data. Furthermore, it is possible to access dynamic as well as static
information using one-time and continuous queries. To protect the privacy of
users, the privacy framework has to limit the data acquisition and in particular

128 Privacy Preservation

the data sharing such that it respects the privacy preferences (i.e. policies)
of different entities. Enforcing the desired limits is the primary task of the
privacy framework.

Conceptually, the privacy preservation framework interacts with the
semantic data storage (SDS) as well as the data acquisition framework (DQF)
that are deployed on each personal device. In addition, the privacy framework
may also be used to limit the access to information that is provided by a
particular service. For this, it is also integrated into devices that are offering
the services. Using a privacy policy, the privacy framework takes care of
exporting sensitive data in a way that it can only be accessed by legiti-
mate entities. The necessary privacy policy can be generated automatically
by means of plug-ins that access proprietary data sources. Furthermore,
depending on the user preferences, the framework can apply obfuscation
in order to limit the data precision and it can also anonymize the data in
order to unlink the data from a particular user. Since GAMBAS aims at
supporting the use of personal mobile devices as primary sources of data,
the privacy framework supports not only traditional computer systems, but
also constrained computer systems as its execution platform.

5.2.1 Overview

The architecture presented in Chapter 2 describes different views on data.
Regarding privacy, there are two relevant views. One is the data acqui-
sition view in Section 2.2.1, and the other one is the processing view in
Section 2.2.2. Here, we first concentrate on the data acquisition view, before
we have a look at the processing view from a privacy-preserving perspective.

The data acquisition view envisions two different scenarios. The first
scenario is targeting the personal acquisition of data that is used to capture
the user’s behavior on behalf of the user. The second scenario is targeting the
collaborative acquisition of data from a large number of users that is used to
improve or provide a particular service upon request of a service provider. In
both scenarios, private data may be processed. Therefore, both scenarios are
relevant regarding privacy.

For the first scenario, the identity of the user is important to ensure that
the resulting profile can be associated with the right user. Consequently, the
acquired data may be highly sensitive from a privacy perspective. For the
second scenario, the user’s identity is not that important, since often an
aggregated view of the data will be used. Additionally, for both scenarios,
it is necessary for the user to give an explicit consent to the data acquisition

5.2 Privacy Framework 129

at least once in order to ensure that only the desired data types are acquired.
To do this, the user can interact with the privacy framework by means of
the intent-aware user interface to define the associated preferences. In the
following, we show and describe the architectural figures from Section 2.2.1
that were extended to highlight the relevant parts for the automated privacy
preservation framework.

As can be seen in Figure 5.1, the privacy preservation framework is rele-
vant for every step of this scenario. The first two steps include the retrieval of
the policy-related data from a third party (e.g. a social network or a business
collaboration tool) and the generation of a personalized privacy policy from
this data. A Policy Generator can create this policy using the policy language
described later on in this chapter. Similarly, the third step concentrates on
the policy. Here, the integration and visualization of the policy in the user
interface is the focus of this step. It enables the user to manually modify
the automatically generated policy to suit his or her needs. The last two
steps concentrate on the data acquisition and the storing of collected data.
For privacy reasons, the user may limit the data acquisition directly at the
data acquisition framework, actively avoiding the gathering of certain data. A
second filter step includes the short-time or long-time storage of data in the
device-based registry. The user may limit or modify (e.g. obfuscate or blur)
the stored data according to his or her policy. Since this scenario is focused

Personal Mobile
Internet-connected Object

Personal Mobile
Internet-connected Object

External Services
(Facebook, Google, etc.)

External Services
(Facebook, Google, etc.)

1. Retrieve policy-related
data

5. Collect data and store
it locally

2. Generate personalized
privacy policy

4. Limit data acquisi�on
based on privacy policy

3. Configure generated
privacy policy

Personal Privacy
Policy

Personal Privacy
Policy

Policy – UI Integra�on

Policy – UI Integra�onPolicy Generator

Acess Control – Device-
based Registry

Acess Control – DQF

DQF

PRF

SDS

IUI

Figure 5.1 Privacy Components for Personal Data Acquisition.

130 Privacy Preservation

on personal data acquisition, this may affect predictions that are based on the
data’s history, but it does not affect other devices.

The second scenario is focused on collaborative data acquisition. This
includes the sharing of data with third parties, like an external SDS. The
scenario is depicted in Figure 5.2. While the first four steps are identical to the
ones presented for the first scenario on personal data acquisition, the last step
differs. In the last step, data is not stored locally on the device, but transferred
to a remote SDS where the data is stored or further processed. At this point,
the privacy preservation framework needs to secure the connection to the
remote service. This is done by means of mechanisms for device/service
authentication and by encryption. The encryption prevents eavesdroppers
from overhearing the data transmission and is necessary since the data might
be transferred over insecure networks like the Internet. The authentication
enables an access control component to identify the remote service and to
apply the necessary limitations with regard to the acquired data. Since the
data is shared with a remote service, it is often necessary to enforce a stricter
policy. The access control component of the privacy preservation framework
must therefore limit, anonymize, obfuscate or blur data, if requested by
the policy.

In addition to data acquisition, the second relevant view is the processing
view. Similar to acquisition, the processing view envisions two scenarios

Personal Mobile
Internet-connected Object-

DQF

PRF External Services
(Facebook, Google, etc.)

External Services
(Facebook, Google, etc.)

IUI

1. Retrieve policy-
related data

5. Report anonymized
data and store it remotely

2. Generate personalized
privacy policy

4. Limit data acquisi�on
based on privacy policy

3. Configure generated
privacy policy

Personal Privacy
Policy

Personal Privacy
Policy

GAMBAS ServiceGAMBAS Service

SDS

Policy Generator

Policy Generator

Policy – UI Integra�on

Acess Control – DQF Acess Control – SDS
Mechanisms – Authen�ca�on/Key Exchange and Encryp�on

Figure 5.2 Privacy Components for Collaborative Data Acquisition.

5.2 Privacy Framework 131

that are relevant with respect to privacy. The first scenario describes the
processing of shared data using a one-time query to the data discovery registry
(DDR), and then accessing the shared data source. In the second scenario, a
continuous query is executed at the continuous query processor (CQP) that
retrieves and sends data on behalf of the user continuously.

The one-time processing of shared data is depicted in Figure 5.3, which
shows how the privacy preservation framework integrates into the GAMBAS
architecture for the processing of shared data. As a first step, if the data
source’s owner decides to share data through GAMBAS, the data source will
be exported to the DDR. If now, as a second step, a device (i.e. the query
issuer) initiates a query regarding the data source(s), it will look up the data
sources at the DDR. After that, the query issuer will remotely access the
data, if the user gave his consent to accessing and processing remote data.
The consent is provided by means of the privacy policy. The remote data
access makes use of the authentication and key exchanging mechanisms that
are provided by the privacy preservation framework (Step 5). On access, the
shared data sources check the status of the query issuer (i.e. check, if their
policy allows data to be shared with this entity) and create a personalized
view for this query issuer. In the last step, the query issuer uses the key
that was exchanged in Step 5 to access and retrieve the data from the shared
data sources. In this step, the communication channel is encrypted to prevent
unauthorized devices from overhearing the data in transit.

Query IssuerQuery Issuer

7. Execute Query on View
(Encrypt)

Shared Data SourceShared Data Source

Shared Data SourceShared Data Source

Discovery ServiceDiscovery Service

1. Export Iden�ty

1. Export Iden�ty

OQP

SDS

SDS

DDR

2. Ini�ate Query

PRF

PRF

PRF

3. Search Data Source 4. Request Access to
Remote Data

7. Execute Query on View
(Encrypt)

5. Request Access
(Authen�cate & Authorize)

5. Request Access
(Authen�cate & Authorize)

6. Create View

6. Create View

Policy – UI Integra�on

Mechanisms – Encryp�on

Mechanisms – Encryp�on

Mechanisms –
Authen�ca�on/Key Exchange

Mechanisms –
Authen�ca�on/Key Exchange

Access Control – SDS

Access Control – SDS

IUI

Figure 5.3 Privacy Components for One-time Processing of Shared Data.

132 Privacy Preservation

Processing ServiceProcessing Service

Query IssuerQuery Issuer

7. Execute Query on View
(Encrypt)

Shared Data SourceShared Data Source

Shared Data SourceShared Data Source

Discovery ServiceDiscovery Service

1. Export Iden�ty

1. Export Iden�ty

CQP
IUI

SDS

SDS

DDR

2. Ini�ate Query

PRF

PRF

PRF

3. Search Data Source
4. Request Access to

Remote Data

7. Execute Query on View
(Encrypt)

5. Request Access
(Authen�cate & Authorize)

5. Request Access
(Authen�cate & Authorize)

6. Create View

6. Create View

Policy – UI Integra�on

Mechanisms – Encryp�on

Mechanisms – Encryp�on

Mechanisms –
Authen�ca�on/Key Exchange

Mechanisms –
Authen�ca�on/Key Exchange

Access Control – SDS

Access Control – SDS

Figure 5.4 Privacy Components for Continuous Processing of Shared Data.

The second scenario is shown in Figure 5.4. In this scenario, a continuous
query is executed. In contrast to one-time processing, the query is not exe-
cuted by the query issuer itself. Instead, an intermediate middleware service,
the continuous query processor (CQP), is used. This changes the message
flow in comparison to Figure 5.3, since the CQP executes the query (i.e.
performs Step 7) and not the query issuer. Therefore, the query issuer needs
to trust the processing service that is running the CQP to perform queries and
aggregate data reliably. As the CQP is executing the query on behalf of the
query issuer, the query issuer is still requesting the access to the shared data
sources. The retrieved access token is then handed over to the CQP, which
uses it to execute the query. Although the message flow is more complicated,
due to the addition of the CQP, the processing load decreases for the query
issuer. From a privacy point of view, the CQP executes and analyzes the
query, i.e. processes potentially private data. Any query issuer that is using
a CQP should therefore either only request and process public data or must
exhibit trust in the CQP it is using.

5.2.2 Mechanisms

The privacy preservation framework uses several mechanisms to keep data
private, e.g. prevent eavesdroppers from overhearing private data, establish
encrypted communication channels and authenticate users and servers. Addi-
tionally, the framework uses a privacy policy to describe which data should

5.2 Privacy Framework 133

be shared with whom. The mechanisms then make sure that the primitives
that are defined by the policy (i.e. users, groups, data and access rights) are
enforced properly at any point in time. To enforce the policy with regard to
users or groups, authentication is necessary. For the security of data, devices
and servers need to communicate securely (i.e. using encryption commu-
nication channels). Access to the shared data is controlled by combining
authentication and secure communication. Additionally, access control must
be enforced depending on the different views and scenarios that are targeted
by the GAMBAS middleware.

To support remote communication, the GAMBAS middleware relies on
the BASE communication middlware depicted in Figure 5.5. Originally, this
middleware has been developed by researchers at the Universität Stuttgart
[BSGR03] and it has been refined over several years [HWS+10]. For exam-
ple, in the European research project PECES (PErvasive Computing in
Embedded Systems) [PEC12], BASE has been used to enable the secure
networking of embedded devices in smart spaces over the Internet [AHM12].

As hinted in Figure 5.5, the BASE middleware provides a rather tradi-
tional object-oriented interface for the application programmer, which relies
on explicitly defined service interfaces and generated proxies and skeletons.
Underneath, it enables spontaneous and secure device interaction and dis-
covery. To do this, BASE relies on an extensible plug-in model that can be
used to support different communication technologies and protocols. The
extensibility of BASE includes hooks for the integration of authentication
and key-exchange mechanisms as well as encryption protocols. However,
instead of describing BASE, in the following, we focus on the contributions
of GAMBAS that are required to implement the overall system architecture.
From a conceptual point of view, these contributions are independent of the

Figure 5.5 BASE Middleware.

134 Privacy Preservation

concrete implementation and could have been implemented on top of other
communication middleware systems as well. However, due to its flexible
communication plug-in support, we found that implementing them with
BASE was efficient.

5.2.2.1 Authentication and Key Exchange
In order to enable trustworthy and secure interaction between devices, it is
necessary to authenticate interacting devices and the data exchanged between
them. In particular, it is necessary to authenticate individual devices/services,
e.g. during the establishment of a connection or during the access of
shared data.

In GAMBAS, authentication relies on both asymmetric and symmetric
cryptography, which requires the availability of keys. In the case of symmetric
approaches, the keys are available only to a particular set of devices, which
may use this key to ensure authenticity with respect to the devices that share
the key. In the case of asymmetric approaches, the key consists of a public
part (the so-called public key) and a private part (the so-called private key).
The keys may then be used to authenticate individual devices.

Both symmetric and asymmetric approaches can be used to distribute
further keys on the basis of existing keys. However, there needs to be at least
one key available to bootstrap the overall process. Usually, this key needs to
be distributed by means of a secure channel. Typically, this is done offline,
e.g. as part of the device configuration. In GAMBAS, while still supporting
this type of key distribution, we also offer a more convenient key exchange
for user-to-user authentication, which is as secure as the underlying service.

5.2.2.1.1 Server Authentication
Server authentication enables the authentication of a server or a server-based
service to another device. The other device can either be another server
(for server-to-server communication) or a user device (e.g. a smartphone).
In GAMBAS, servers are used to host services like a traffic information
service or GAMBAS-related services like the CQP. The authenticity of these
servers and services is important since GAMBAS applications rely on the
data retrieved from them.

It is noteworthy that the server infrastructure envisioned by GAMBAS is
similar to the server infrastructure in other networks, like the Internet. Here,
pre-deployed certificates enable the verification of the authenticity of sites for
purposes like Internet banking or e-mail retrieval. Since these mechanisms are
in daily usage and have been proven effective for years, GAMBAS also relies

5.2 Privacy Framework 135

on them. Each server in GAMBAS is therefore equipped with a certificate
that is issued by the certificate authority or some trusted third party (e.g. a
particular company).

Since certificates rely on asymmetric cryptography, this results in a key
pair (a public and a private key) being deployed on every server. While only
the server knows its private key, the public key (as part of the certificate) is
shown to devices for authentication. Using a common certificate infrastruc-
ture, the public key is signed by the authority’s key pair, which might then
again be signed by the domain authority’s key pair, leading to a certificate
tree. An example certificate hierarchy tree is depicted in Figure 5.6.

As can be seen in Figure 5.6, it is not necessary for a GAMBAS appli-
cation to trust a whole company. It is sufficient to trust only the parts of the
company that are providing GAMBAS-related servers and services. Access-
ing a GAMBAS-related server will then trigger a certificate verification. It is
possible to verify whether a particular certificate belongs to the GAMBAS-
related sub-tree by recursively validating the certificate chain from bottom
to top. To do this, the signatures must be verified one at a time. If the chain
is valid and if it contains a pre-deployed GAMBAS certificate, the validated
certificate belongs to the spanned part of the tree, i.e. it belongs to a valid
GAMBAS server.

Similar to other infrastructures, the GAMBAS middleware makes use of
the X.509 certificate standard. Among other things, this standard defines a
common format for certificates, which enables the use of existing tools to
generate keys and certificates offline. Specifically, it is possible to use the
implementations provided by the OpenSSL library. This avoids the need for
implementing key generation mechanisms and thus, it eliminates the need for
providing tools that exist already.

For device authentication, GAMBAS uses an authentication based on
the standard ISO authentication framework [CCI89], which can be used
with the Diffie–Hellman (DH) key exchange in its original version (using

Figure 5.6 Certificate Hierarchy Example.

136 Privacy Preservation

Figure 5.7 Certificate-based Key Exchange.

RSA certificates). The interaction is depicted in Figure 5.7. Additionally,
the GAMBAS middleware supports a modified version of DH that relies
on elliptic curve cryptography (ECC) certificates, which is more lightweight
and therefore better suited for the use on smartphones or other devices with
constraint resources. The exchanged keys can then be used with a key-
derivation function like PBKDF2 [Kal00] to create a common shared key
among any set of devices.

For pre-deployed username/password combinations, we use a hash-based
authentication mechanism that does not reveal any user or password infor-
mation to eavesdroppers which is important, since the past successful attacks
on protocols such as MS-CHAPv2 show the necessity of a higher security
standard. However, due to the focus on smartphone applications, finding the
right balance between security and user convenience is a challenge.

Both the certificate-based and the username/password-based key
exchanges result in the computation of a common shared key that cannot be
computed by any attacker that might have overheard the communication. This
key may be stored by a key store component of the middleware and used for
further communication attempts, which speeds up the communication start
by skipping the authorization part. This does not result in lower security,
because the possession of a common shared key shows that each interaction
partner was authorized properly before. Nevertheless, such a key should never
become persistent. It should time-out or be renewed after a certain amount
of time.

5.2.2.1.2 User-to-User Authentication
User-to-user authentication explicitly authenticates one user’s device to
another user’s device, e.g. to share data between two smartphones. This can

5.2 Privacy Framework 137

be used to share data between users that trust each other, e.g. friends or
co-workers. The authentication between users is different from the server
authentication described previously, because the devices are not necessar-
ily part of a certificate infrastructure. Only few users set up a certificate
infrastructure for their private devices, so we cannot reasonably rely on user
certificates.

Clearly, user-to-user authentication is not necessary in all scenarios, e.g.
if a user requests information about the next bus from A to B from a service
provided by the bus company. It is necessary, however, in scenarios that
include the collaboration of users. This includes the sharing of data (like
the current location) or a behavior profile that describes a possible future
movement pattern of the user. Clearly, such private information should not
be shared with anybody, but instead, it should be properly secured. As the
first step to the solution, GAMBAS introduces an innovative user-to-user
authentication mechanism that makes use of collaboration tools such as
Google Calendar or social networks such as Facebook and that can be used
as an alternative to the common infrastructure-based certificate architecture.

Many users are using social networks or similar services on a regular
basis. They define trusted users in these networks by adding them to their
personal network (e.g. friend relationships on Facebook). This information
can be used to exchange a shared key, piggybacked on the service. To do
this, GAMBAS introduces the so-called PIggybacked Key-Exchange (PIKE)
[AHIM13].

PIKE can be used on any service that enables the secure restricted sharing
of resources. This means that the service authenticates its users, models rela-
tionships between different users with respect to resource usage and enables
the specification and enforcement of access rights. From the perspective of
the users, the service performs its access control to resources properly. This
means that a) it protects the resources from being accessed by illegitimate
users and b) it allows access from legitimate users. Yet, beyond proper service
operation, we do not assume that the service is necessarily trustworthy.
Examples for these services are Facebook or Google Calendar. To use PIKE,
the device of the user must be able to access the service regularly through
the network. For this, the service provides some API or it uses a mobile
application that synchronizes the changes to the resource.

Every time the friend relationship changes, PIKE starts to analyze the
friends in order to detect new friends. In case a new friend is found, it will
trigger a key exchange between the two friends, using the secure resource-
sharing capabilities of the service. To do this, PIKE performs either a local

138 Privacy Preservation

modification on the triggering resource or, if this is not possible due to a
limitation of the mobile application, it uses the API of the service. Once the
changes have been made, PIKE simply waits for the next resource synchro-
nization at which point the new friend will have received the key through the
secure resource.

Once the personal interaction takes place, these keys can be used for
authentication among the devices of the friends. To do this, PIKE simply
extracts the keys from the secure resource and provides them during the
interaction to the GAMBAS middleware.

To formalize this interaction, Figure 5.8 depicts the resulting logical
protocol flow. Conceptually, PIKE involves three entities, namely the two
devices of the interaction partners (i.e. “Friend A” and “Friend B”) creating a
new friend relationship and the service. To establish keys, these three entities
interact with each other using three steps.

• After the change in the relationship was triggered (either through an
active notification or through a regular service synchronization interval),
the two friends contact the service to check if there needs to be a key
established between them.

• If so, the two friends compute two keys (KA and KB) independent from
each other and post them to a secure resource.

• In the next synchronization interval, they recognize and retrieve the key
posted by the other friend. Then, they compute the combined key KAB

and store it on their device(s).

After the completion of these steps, the interaction partners possess the
exchanged key. Once a personal interaction through GAMBAS takes place,
the key (or a derived key) can be used to enable group communication as
well as private communication and user-level authentication between the
two friends.

Figure 5.8 PIKE-based Key Exchange.

5.2 Privacy Framework 139

Figure 5.9 User-level Key Posted on Facebook.

To execute PIKE on top of the Facebook service, GAMBAS uses the
Facebook Graph API to access and modify data from the social network.
Each user of Facebook has a place for discussions, the so-called wall. This
wall is used to post the keys KA and KB that is then automatically picked up
by the friends’ devices. Since friends cannot change the visibility of posts on
another friend’s wall, the keys are posted to the own wall. On this wall, posts
can be created with a privacy setting that constraints the access to the other
friend (see Figure 5.9 for an example). The friends will then retrieve their
keys by going through their walls.

The combination of KA and KB to KAB can use different mechanisms.
While simple mechanisms like an XOR of the two values and the use of a
key-derivation function to create KAB will result in the same security as the
underlying service (i.e. Facebook, which does not leak the posts, i.e. complies
with its security and privacy settings), a more complex mechanism like a
Diffie–Hellman key exchange can also provide security against data loss.

The key KAB that will be exchanged after performing PIKE enables the
users to authenticate each other with an exchanged key, even when their
devices are not connected with the Internet, but in physical vicinity. A key
for every friend relationship ensures that the authenticity is on a user-to-user
basis and even malicious users cannot tamper the authentication to another
user. Similar to other exchanged keys in GAMBAS, this key may be stored
by the key store component and used for further communication attempts,
which speeds up the communication start by skipping the authorization part.
Also this key should not become persistent, but PIKE should be re-performed
from time to time such that the key is renewed.

5.2.2.2 Secure Communication
Secure communication is generally used to avoid eavesdroppers from
overhearing private data. In GAMBAS, the communication between different

140 Privacy Preservation

services, servers and mobile devices may contain private data. Imagine a user
searching for the next bus to the mall. If this search (usually a request to a
travel planner service) can be overheard, not only the next location of a user
(i.e. the mall), but also the planned activity (i.e. shopping) is revealed. Similar
problems occur, if personal data like audio recordings, GPS coordinates
or movement patterns are shared between users. Any eavesdropper might
receive this data if he is in the vicinity and can then later analyze this
data, creating user profiles. To avoid this, the GAMBAS middleware relies
exclusively on secure communication channels.

To establish a communication channel between two devices, the BASE
middleware uses plug-ins that abstract from the used communication tech-
nology. Due to BASE’s architecture, it is possible to extend this plug-in
stack easily. For secure communication, we add an encryption plug-in to the
set of existing plug-ins. The plug-in searches the key stored in the device
local SDS for a key of the communication partner and uses this key to per-
form authenticated and encrypted (i.e. secure) communication. An example
communication stack using the encryption plug-in is shown (for multi-hop
communication) in Figure 5.10.

Although not all applications in GAMBAS require secure communication,
recent publications [AHM12] have shown that the overhead by means of com-
munication latency is small. Therefore, secure communication is activated
by default and should only be deactivated for public announcements. The
encryption technology used in GAMBAS is AES, a symmetric encryption
mechanism, which is both fast and secure and available for all devices in
the GAMBAS scenarios. AES relies on a shared key between the communi-
cation partners that must be exchanged beforehand. The authentication/key
exchange in Section 5.2.2.1 shows how such a key can be established in

Figure 5.10 Secure Multi-hop Communication Example.

5.2 Privacy Framework 141

GAMBAS. To establish a secure communication, authentication is a crucial
step that must not be skipped. Without authenticity, the identity of the com-
munication partner remains unclear. If a secure communication channel does
not establish identities, any data that is traveling to a (possibly) unauthorized
communication partner must be regarded as public data.

After the authentication, the exchanged shared key is stored in a key
store together with the device or user id. To enable secure communication,
the device or user id is then used to retrieve the key from the key store.
To improve the performance, the shared key can be cached after the com-
munication for the next interaction, but should be changed regularly (e.g.,
by performing a re-authentication) to avoid impersonation attacks using lost
keys for interactions.

5.2.2.3 Access Control
To ensure privacy, GAMBAS relies on user-specific privacy policies. Access
control enforces these privacy policies. Using access control, data that is
captured by the data acquisition framework (DQF) is protected from unau-
thorized access. In GAMBAS, access control must take into account the
following three points:

• Authentication: A user or device must be authenticated, before it may
access any resource in GAMBAS that is using access control. Therefore,
it must use one of the mechanisms described in Section 5.2.2.1.

• Encryption: A user or device must use encryption while accessing data
that is using access control. The encryption, described in Section 5.2.2.2,
enforces the secrecy of the data while it is being transferred.

• Policy Compliance: Before any data is transferred, the access control
must check the policy (see Section 5.3) for the data to be sent. The policy
contains the users or devices that may access the data (if any) and the
access control must follow the policy.

If these points are evaluated properly by the access control mechanisms,
the policy is enforced securely. The general process of access control in
GAMBAS can be seen as the execution of these six steps:

1. Device A wants to access private data on Device B. Since the data is
private, Device B is using access control to protect it from unauthorized
access.

2. Device A opens a communication channel to Device B. It sends the
plug-in configuration for authentication/key exchange and encryption to
signal the need for secure communication.

142 Privacy Preservation

3. Using the plug-ins, the two devices authenticate to each other. Device A
sees that Device B is owned by “Bob”, while Device B authorizes the
user “Alice” from Device A.

4. Device B now checks, if Device A is using encryption on the commu-
nication channel. If this is not the case, the interaction is terminated
otherwise the interaction continues.

5. If successful, Device B checks the policy for the data that is to be
retrieved by Device A. It searches for the appropriate data type and the
access rights of Alice.

6. If the data type can be found and the access rights of this type allow Alice
to access the data, Device B grants access and Device A can retrieve the
requested data.

In general, it might not be necessary to authenticate Device B in Step 3.
Nevertheless, many of the authorization schemes presented in this document
are using symmetric authentication, i.e. both communication partners are
authenticated at the same time. Additionally, the general process is modified
depending on the communication partners in GAMBAS.

In GAMBAS, access control is used to access any private data. Since the
scenarios in GAMBAS are manifold, the general access control process needs
to be adapted to these scenarios. In the following, the three different access
control mechanisms in GAMBAS are presented. At first, we show how access
control is used in the data acquisition framework. Then, we concentrate on
any device-based registry and at last, we describe how data access and access
control with remote data storages is realized.

5.2.2.3.1 Data Acquisition Framework (DQF)
The data acquisition framework (DQF) is running directly on the user’s
device. It is implemented as a module of the GAMBAS middleware, which is
realized as a combination of different modules. In GAMBAS, all modules are
running in the same process on the device. Since processes in operating sys-
tems are isolated against each other, only other GAMBAS modules (running
in the same process) can call the internal API. The PRF provides methods
that allow the DQF to check whether a certain data type is allowed to be
detected. The DQF must call this method before any attempt is taken, to create
a recognition stack for detecting any kind of data or context. The method
then returns a value that states whether the data or context is allowed to be
detected or not. The DQF then changes the recognition stack accordingly to
only detect the kind of data or context that is allowed to be detected by the
privacy preservation policy.

5.2 Privacy Framework 143

This access control mechanism does not need any authentication or
encryption since it limits the data acquisition directly on the device. Only
GAMBAS modules can therefore retrieve and access the policy and the
acquired data. On every startup of a GAMBAS application that needs to
acquire data using the DQF, the DQF will check the privacy policy for any
data type that needs to be detected by this application. If the policy does not
allow the gathering of this data type, the application might not be started
successfully, but the privacy of the user is preserved. This type of access
control enhances the privacy of the user by not capturing data. Data that
is not captured cannot get lost or overheard by anybody, even if the user’s
device gets stolen, the data cannot be revealed since it was not gathered at
all. Not acquiring data is therefore a valid privacy goal that can be fulfilled in
GAMBAS using the privacy preservation policy. It puts the user in the direct
position of defining the data types that are allowed to be used for context or
activity recognition.

5.2.2.3.2 Device-based Registry
Any device-based registry like the semantic data storage (SDS) stores data
that was gathered by the DQF. The data is stored directly on the device itself,
not involving remote interaction. Similar to the limitation of data gathering
that was described in the previous subsection, this allows the access control
to be performed without the need of encryption and authentication.

In GAMBAS, the data stored in a device-based registry is used to predict
possible user behavior in the future. To protect his privacy, a user can choose
not to store specific data on the device at all, such that no history on the device
is created. Additionally, the privacy preservation framework makes it possible
to mark stored data as not exportable. This can be modeled using a policy
entry for this specific data type, which does not give any access rights to
another user. The data is then only processed on the device itself and does not
leave the device. Of course, this might result in a limited prediction since the
device only has limited processing power. To mitigate this, the preservation
policy that is used to limit the access is personalized to each user and may be
tweaked, if it is perceived as too restrictive or too liberal.

The PRF contains a method that must be called through the API by any
GAMBAS application, if data acquired by the DQF is stored on the device
(e.g. using a device-based SDS). This method is similar to the one described
in the previous section, but returns whether the data may be stored on the
device or not. The application can then see if it is allowed to build a data
history for this type of data. It must then comply with the result of this call.

144 Privacy Preservation

Authen�cate, exchange key

Authen�cate, exchange key

Start encrypted request for data

Device A Device B

Compute the exchanged key

Check for encryp�on
check prior authen�ca�on
check access rights

Compute the exchanged key

Send the requested data

Figure 5.11 Data Request using Access Control.

In contrast to the DQF, a device-based registry like an SDS also con-
tains a remote interface that may be called by other devices. If no data is
shared, this remote interface must be inaccessible for other devices. If data
is shared, the remote interface uses the device’s PRF to perform access control
as described in the general process of access control above. A check for
authenticity and access rights, as well as the use of encrypted communication
is necessary, before any private data may be shared. A simplified message
flow for a successful data request can be seen in Figure 5.11.

5.2.2.3.3 Remote Data Storage and Continuous Queries
In some scenarios envisioned by GAMBAS, data might be stored outside the
user’s device. It could be stored in a remote SDS that provides additional
computing capacities to give a better prediction on the future values of the
data. Storing data remotely requires full user consent and could possibly
breach privacy, since private data is transferred and stored on a remote device
or server that is usually not owned by the user. This scenario is depicted in
Figure 5.2. Here, the data is stored on a remote SDS, for example, to be
aggregated for statistical purposes.

Private data is only stored remotely if the privacy policy has a valid entry
for the specific private data type and it allows the sharing of the data type at
this remote location. Similar to the mechanisms described before, the PRF
provides a method that shows, for given values of data type and remote ser-
vice or server, whether the data is allowed to be transferred there. In addition
to the enforcement of the policy (which already includes the authentication
of the remote service or server), the remote transfer needs to be encrypted,
such that the data cannot be overheard. The access control mechanism is
implemented similar to the ones described previously. Since storing data in a
remote location is inconvenient for many users, the GAMBAS applications

5.2 Privacy Framework 145

try to minimize the need for this. One important exception is the remote
storing of information that users are obligated to by contract, for example, a
bus company that gives out chip cards, which are validated by touching chip
card readers at the bus entry, may use the travel information in an anonymized
fashion, if it informs its customers accurately.

In addition to the simple one-time query that usually only needs one
request–response message flow, GAMBAS supports continuous queries that
may be used to notify users if the response data changes. Continuous queries
do need a permanent Internet connection and may need more resources
than a simple smartphone can provide (in terms of CPU power and RAM).
Therefore, the continual query processer (CQP) is realized as a remote
GAMBAS service.

A query involving a remote CQP changes the authorization flow, since the
CQP is querying other data sources on behalf of the user. As can be seen in
Figure 5.12, the device now first authenticates the remote CQP service, which
will then issue a request to access a certain data source. The device must now
check with the privacy policy whether the CQP service is allowed to access
the requested data on behalf of the user. If the policy evaluates to true, the data
source is queried to hand out an access token that enables a remote device to
act on behalf of Device A. The data source will again check, if the user of
Device A is allowed to retrieve the queried data. If that is the case, the data
will be processed by the remote CQP service. The PRF of the data source
will consult its policy to evaluate these two questions. If they evaluate to true,
the data source will transfer an access token to Device A. This access token

Authen�cate, give accessTokenAuthen�cate, give accessToken

Authen�cate, request accessTokenAuthen�cate, request accessToken

Hand over accessTokenHand over accessToken

Query Device Data Source

Query data source with accessTokenQuery data source with accessToken

CQP Service

Authen�cate, ini�ate con�nuous queryAuthen�cate, ini�ate con�nuous query

Authen�cate, request access to data sourceAuthen�cate, request access to data source

Stream result to querying deviceStream result to querying device

Return query resultReturn query resultWill be executed
repeatedly

Figure 5.12 Continuous Query Processing using Access Control.

146 Privacy Preservation

can then be used by the remote CQP service to execute the query, retrieve the
data and stream the query result continuously to Device A. The CQP might
execute the query repeatedly and update the continuous query result that is
streamed to the device accordingly. If used with more than one data source,
the CQP service needs an access token for every source and is also used to
aggregate data remotely. This aggregation removes burden from the device
and makes it possible to execute even complicated continual queries with
resource-constrained devices.

To preserve privacy whenever possible, the remote CQP service needs
to be properly authenticated and trusted by the device using it. An ideal CQP
would be a home server that is in possession by the user itself. In that case, the
query result will not depend on the relationship between the data source and
the CQP service (since it is identical to the relationship between the source
and the user’s device). If an external CQP service is used, the data source
could change its view on the data, since the policy on the source could have
different constraints for the user and the external CQP service.

In the case of a remote CQP, all interactions between devices, data sources
and the CQP must be encrypted, because they might contain private data.
As shown in Figure 5.12, also all devices must be authenticated, such that
the privacy preservation framework can perform the access control properly.
Although the access control process is more complicated since more parties
are involved, the benefits of using a remote CQP (i.e. a resource-saving query
execution) outweigh the drawbacks in many scenarios.

5.3 Privacy Policy

The privacy preservation policy is used to describe the access rights of data
types. Additionally, it describes how data types relate to each other. The
policy is customizable for the user and can be serialized in a policy language
that is based on RDF. When used in the PRF, the policy can specify which data
types should be shared with which users (or companies). Therefore, the policy
contains the data types and the sharing permissions, individual to each user.

The policy representation shown in Figure 5.13 displays policy permis-
sions (i.e. using triples), which model the access rights on data types. Each

Figure 5.13 Privacy Policy Permission Example.

5.3 Privacy Policy 147

of these RDF triples contains a unique name as first argument, and then
one of the relations “affects”, “grantedTo” or “obfuscation”, which denote
different aspects of the policy permissions. The third argument of the triple,
i.e. “affects”, is the data type that should be affected by this permission. The
relation “grantedTo” denotes the user that is granted this permission. Since a
permission could grant the same access rights to many users, the triple using
the relation “grantedTo” can occur more than once (with different users) in
one permission. The user name (which could include a unique identifier) links
to the profiles that this user is using on social networks or other collaboration
tools. The last relation “obfuscation”, optionally defines the obfuscation level
for this permission. Depending on the data type, different obfuscation levels
are possible. For the current location, this could be the actual GPS coordinates
(i.e. no obfuscation), the current city or the current country the user is located
in. Since the policy is created individually for every user, the user itself is
implicitly part of every policy triple and is left out in the policy language.
This means instead of creating statements like Charlie’s data type location is
“grantedTo” Bob using the “obfuscation” level city, we simplify the policy
triples in Charlie’s policy to the ones depicted in Figure 5.13.

The data types are specified in the data model described in Chapter 4 and
used by the data acquisition framework discussed in Chapter 3. Since each
different data type might provide different obfuscation levels, the levels are
also defined as part of the data model. While some data types like “location”
can provide more than one obfuscation level, other data types might not
provide any. Thus, the use of obfuscation is optional and depends heavily on
the underlying data type. In summary, both the data type and the obfuscation
level are based on the data model of the GAMBAS middleware.

Another type of policy definition are triples that describe relations
between different data types. These relations define a simple hierarchical
relationship between data types and can be used to infer access rights for
similar data or data that is used as a building block for a more complex data
type. Imagine that Charlie shares his current location with Alice. If now Alice
asks for the name of the street where Charlie is located, the PRF will search
for the data type “street”, might fail to find a policy entry for it and will deny
access to it. Therefore, the policy language includes the consistsOf-relation.
Using the privacy policy Location consistsOf street,city,country, the data type
“street” can be found and if there are no Permission policy relations for
“street”, the “location” data type is checked. In this example, Charlie shares
his current location with Alice, so the location data type grants access rights
also for the “street” data type.

148 Privacy Preservation

To support the different level of access control, e.g. storing data on
the device itself, device-based registry and the sharing of data with remote
devices, the policy introduces another relation that describes the level of
sharing data. The sharingLevel-relation shows on which level data may
be shared or stored. Using this relation, the privacy policy can be easily
used to enforce the sharing level on data. GAMBAS relies on three pre-
defined keywords that describe where data may be stored. The tree keywords
are “Remote”, which defines that data may be stored by remote devices,
“Device”, which denotes that the data should only be stored at the device
itself and must not be shared with others, and “DetectOnly”, which does not
allow the data to be stored anywhere. When “Device” or “DetectOnly” are
chosen, the Permission-relations are ignored, i.e. data may not be shared with
anybody, when using this keyword.

An example for the sharingLevel-relation is presented in Figure 5.14.
Here, location data is shared with remote devices; for the access rights,
the Permission-relations that are linked with the location data type must be
considered. Data about the current travel path may be stored on the device and
used for prediction that is executed on the device. This policy triple does not
allow sending the current travel path data to remote devices. In this example,
audio data might only be used for detection using the DQF, but not be stored
anywhere.

In summary, the privacy policy consists of three relation types. All of
them can be described using privacy triples:

• The Permission-relations that define access rights and obfuscation levels
of data types.

• The consistsOf -relation that defines hierarchical relationships between
data types.

• The sharingLevel-relation that defines the sharing level of the data type.

Next, we describe the policy generator, which enables the automatic
generation of the policy from social networks or other collaboration tools.
Thereafter, we describe the integration of the privacy policy with the user
interface to enable the user to modify the policy manually.

Figure 5.14 Privacy Policy Sharing Level Example.

5.3 Privacy Policy 149

5.3.1 Automatic Generation

The privacy preservation policy that is used by the PRF to constrain the access
to data gathered by the DQF can be created automatically, by the policy
generator. This enables the user to use GAMBAS applications without an
extensive (manual) configuration phase, while still having a privacy policy
that protects private data. The policy generator is therefore one of the key
concepts to enable automation in the privacy preservation framework.

Many users use social networks or collaboration tools like Google Calen-
dar as part of their everyday routine. They post messages to colleagues and
friends, share photos and create shared appointments. Often, it is possible
to constrain access to messages to a pre-defined user group. This could
be a list of friends on Facebook or individual users for a shared event in
Google Calendar. Similar, the access to other data in the social networks or
collaboration tools can be constrained by the user. Figure 5.15(a) depicts
an example. Using the APIs that are provided by the social networks or
collaboration tools, these privacy settings can be retrieved automatically. An
example using Facebook’s graph API is shown in Figure 5.15(b).

A user that is using such a social network or collaboration tool is therefore
already creating one or more privacy policies (depending on the number of
tools that are used). The privacy policy generator can query these policies
using the tools’ APIs. Since the policy generator operates on the user’s own
device(s) and uses the user’s accounts to access the tools, a policy which is
individual for each user can be generated. This generated policy is then also
tailored to the needs of the user, because it is only an import of a user-defined
policy into the privacy framework. To support as many social networks or
collaboration tools as possible, the policy generator has a modular structure.
This structure makes the policy generator extensible with regard to other
collaboration tools.

Usually, the user is able to define privacy settings in each social network
or collaboration tool individually. Because the user may edit this settings
freely and independent from each other, the settings might be inconsistent.
The policy generator is then not able to create a consistent policy. If this is the
case, the generator can detect and display the conflicting settings and suggest
possible solutions to the user. After the conflicts are (manually) resolved, the
policy generator creates a consistent policy.

Using the consistsOf -relation, the policy generator proposes different
generalization strategies to apply the policy to a broad set of data types that
can be acquired by the DQF. This enables the generalization of the policy,

150 Privacy Preservation

Figure 5.15 Privacy Settings in Facebook. (a) User Interface and (b) Programming Interface
(JSON).

which includes new data types that might be related to data types retrieved
from the privacy settings in social networks or collaboration tools.

In summary, the policy that is used to allow access to different data
types is generated automatically using the policy generator. The generator
is designed to pick up policies or privacy settings that are pre-specified by
the user in a social network or collaboration tool and to create a policy that
is compatible to the GAMBAS policy format. The generator includes tools to
resolve conflicting settings and is able to generalize data types. The generated
policy can also be fine-tuned by the user using the user interface presented
in the next sub-section. Even without the fine-tuning, the generated privacy
policy is consistent and tailored to the user’s needs, without putting the user’s
privacy at risk.

5.4 Privacy Integration 151

5.3.2 Manual Fine-Tuning

The user interface developed as part of the middleware enables the user
to fine-tune the privacy policy. In general, the privacy policy is created
automatically using the policy generator. The automated creation takes into
account the settings of the user in social networks and other collaboration
tools, like the Google Calendar. Although this automatically derived policy
is therefore created on an individual basis, a user may want to modify the
policy. To do this, the privacy preservation framework encompasses methods
that allow retrieving the current policy and methods that can modify the
existing policy.

Using the user interface, the user can change the policy triples visually,
without having to use the policy language. This allows also non-expert users
to edit the policy successfully. The user interface displays the data types and
then shows the relevant policy relations graphically. The user can modify the
data types by clicking on them and, for example, choose users from a list of
users for the Permission-relations. Editing the other relations is similar. Any
change in the graphical user interface results in a change of the policy, i.e.
causes the addition, deletion or modification of policy triples. The user might
also use the interface to export or import the privacy policy, which enables
expert users to modify the RDF representation of the policy directly.

5.4 Privacy Integration

To clarify the mechanisms and protocols of the privacy framework, we
describe how they are integrated into data transfer, data acquisition and data
processing defined in the previous chapters.

5.4.1 Data Transfer

To support data exchange and possibly the exchange of context information,
data will be transferred between different devices. This data – for example,
a user asking the servers of a public transit network operator for the route
of a bus trip – can breach privacy. In this case, an eavesdropper could
get the current and future location of the user. Therefore, the data should
be transferred securely. In GAMBAS, the Privacy Preservation Framework
(PRF) is responsible for all security and privacy needs and therefore is also
responsible for securing the data transfer. For this, all data that is transferred
should be encrypted. The reason for this is twofold. Firstly, the data might

152 Privacy Preservation

contain private information that should not be shared with unauthorized users
or devices. Secondly, the shared data might be transferred over an insecure
communication channel (e.g. the Internet or an insecure WiFi network).

To apply the efficient concept of symmetric encryption (AES) to secure
communication, a shared key must be exchanged before any encrypted com-
munication can take place. During the exchange of a cryptographic key,
the communication endpoints show that they are eligible to access the data
that should be transferred by authorizing themselves. After the authorization
process, both endpoints possess a shared cryptographic key that allows them
to transfer data securely.

In the GAMBAS PRF, authorization can be performed in two different
ways. The first way uses asymmetric cryptography and is based on cer-
tificates, similar to the implementation of SSL in the Internet. This allows
an ad-hoc identification of devices that belong to a certain domain. If the
domain root is trusted, the authorization will be successful. Also, the access
rights may depend on the trust in this root. For authentication, the device’s
certificate is transferred together with a challenge that proves that the device
is in possession of the certificate’s private key. Together this data forms the
device’s credentials that are checked at the other endpoint. The alternative of
using compute intense asymmetric cryptography is symmetric cryptography.
Using symmetric cryptography, a key (256 Bit) can be attached to a connec-
tion between two endpoints. The first half (128 Bit) of this shared key allows
the identification of the other endpoint. The other half (128 Bit) can either
directly used for the secure communication or can be used to exchange a new
session key securely. For efficiency reasons, both of these checks (i.e. for
asymmetric and symmetric cryptography) are performed transparently by the
communication system of the GAMBAS middleware.

The secure data transfer is generally foreseen for every transmission
of data. The communication endpoints must first authorize each other at
the remote privacy preservation framework, before a key for the secure
communication is computed. The authorization that is performed by the
privacy-preserving framework incurs some overhead during the data transfer.
However, without the authorization, the communication partner is unknown
to another device and this contradicts the privacy of the transferred data.
Therefore, while the authorization is a crucial mechanism, it is possible to use
more lightweight security mechanisms, but this would result in a decrease of
the security level.

To enable encrypted data transfer, it is necessary for both communication
endpoints to use a cryptographic key. In GAMBAS, we support devices

5.4 Privacy Integration 153

with different capabilities with regard to the available resources (like RAM,
CPU and battery power). The encryption is therefore based on a hybrid
scheme that allows an efficient and secure encryption. With respect to data
processing, we can differentiate between three different cases. The first case
is the communication between a user’s device (a client) and a server (e.g.
the server is asked for a bus route by a user’s device). The second case is
the communication between devices of two users. An example could be two
friends who want to exchange photos with each other. The third case is the
communication between two servers. An example could be server of a public
transit network operator who communicates with a weather service server to
get the current forecast (which might influence the bus planning for the day).

The difference between a user’s device and a server in GAMBAS is that
the server is able to authenticate itself using a cryptographic certificate. This
ensures the identity of the server and allows for server authentication, before
the connection is established. In contrast, the user’s device does not have a
certificate since it is not bound to a certificate domain. Therefore, different
methods of authentication must be used, if a user needs to be authenticated
and/or identified. Because of these differences, the three cases mainly differ
in the authentication phase.

5.4.1.1 Client and Server Communication
When a device (client) contacts a service that is provided by a server, the
connection will be established as shown in Figure 5.16. The server will
use its certificate to authenticate itself against the client device. The client
application validates the certificate of the server against either a pre-deployed
service certificate or a pre-deployed certificate root. The root certificate can
be used for companies that support different kinds of services and eases
the deployment without lowering the provided security. This is a one-sided
authentication, i.e. the server authenticates itself against the client, but the
client is not authenticated. If it is necessary to authenticate the client, the
server may add any authentication scheme after the secure connection is
established. A username/password authentication could, for example, use the
secure remote password protocol (SRP 6) to authenticate the clients.

Using the (unencrypted) authentication messages, an elliptic curve Diffie–
Hellman (ECDH) key exchange is performed. As a result, both sides will be
able to compute a secret key that cannot be computed by eavesdroppers. The
signature of the message that is created by the server also prevents man-in-
the-middle attacks. After the authentication handshake and the key exchange,
the interaction is encrypted by using the exchanged secret key.

154 Privacy Preservation

Figure 5.16 Client and Server Communication.

5.4.1.2 Device-to-Device Communication
When two devices establish a connection, usually they cannot authenticate
each other. The authentication cannot rely on certificates, since the devices
do not know each other and normally do not possess a certificate. The users
might identify their devices manually, by device id, and may then create a
manual key on both of them. But GAMBAS also allows two other easier
methods to establish a key for each device.

The first method uses PIKE to exchange a key using an online social
network such as Facebook that is used by both users. This key is exchanged
before the interaction takes place and allows two or more devices to interact
securely with each other. The user identification is extracted from the rela-
tionship in the online social network and can then be used at the time later
on. This allows for a completely automatic key exchange that does not need
any user interaction. The only necessary step a user has to take is to connect
GAMBAS with the social network, e.g. through Facebook Connect as shown
in Figure 5.17(a).

The second method uses the NFC technology. Nowadays, many smart-
phones are equipped with an NFC reader system that may also be used
for short-range one-way communication. The GAMBAS middleware imple-
mentation for Android integrates with NFC to exchange a key. For this, the
middleware encompasses a service that is used to redirect the communication
back to the device that initiated the one-way NFC communication. This
backward channel is necessary to transfer the device id of the device that
received the NFC message. Using this service, we can establish a key just by
holding two devices together. For this, a user simply needs to press a button
in the user interface shown in Figure 5.17(b) and then bring two phones in
physical proximity to each other.

5.4 Privacy Integration 155

Figure 5.17 Device to Device Authentication. (a) PIKE-based Key Exchange via Facebook
and (b) Manual Key Exchange via NFC.

After the successful key exchange, the communication between the two
devices can be encrypted. Additionally, the devices can identify themselves
using the already established keys.

5.4.1.3 Server-to-Server Communication
The server to server communication in GAMBAS is similar to other commu-
nication on the Internet. Each server authenticates to the other server using its
own, pre-deployed certificates. Similar to the client–server communication,
the certificates can be verified by using the server certificates or by using
a common root certificate. Again, the authentication includes an ECDH
key exchange, which results in a shared key for this connection. Then, the
communication between the two servers will be encrypted using this key.

5.4.2 Data Acquisition

The Adaptive Data Acquisition Framework (DQF) enables the collection of
data using various sensors built into the user’s mobile device. The collected

156 Privacy Preservation

data can then be used personally (i.e. by the device, in the case of personal
data acquisition) or collaboratively (i.e. by a remote service, in the case of
collaborative data acquisition) to optimize services based on the users’ behav-
ior. Clearly, the data acquired by means of sensors built into the device of a
user may raise privacy concerns. Furthermore, the preferences with respect to
privacy may vary drastically from user to user. In order to empower users to
exercise control over which data can be collected, the access to the data acqui-
sition framework is guarded by the Privacy Preservation Framework (PRF).
Thereby, all accesses made to the data acquisition framework are checked
against the user’s privacy preferences with respect to data collection. This
allows the user to limit the data types that can be collected at all. In extreme
cases, a user may limit the collection of all data through the GAMBAS
middleware. In less extreme cases, the user may limit the collection of a
particular type of context information, such as location-related information
or audio information.

The PRF-DQF interface enables the data acquisition framework to check
whether the user has given consent to the acquisition of a particular type of
contextual information. To do this, the DQF performs calls to the PRF in
order to verify that the data types that shall be captured are permissible under
the user’s current preferences. Furthermore, since the user’s preferences may
change at any point in time, it is necessary that the PRF provides functionality
to signal a change to the DQF whenever the user’s preferences with respect
to a particular data type change.

The PRF therefore has two different duties. First, it checks the data type
that is about to be captured against the preferences of the user and returns a
Boolean to indicate whether the user permits the acquisition of the specified
data type. If the access is denied, the acquisition is aborted. If access is
granted, the acquisition task can be started. Additionally, a user could modify
his privacy settings. Therefore, the PRF needs to signal a change to the
preferences with respect to a particular data type such that the DQF can
check all currently executed data acquisition tasks against the updated set
of preferences. If a data acquisition task is no longer permitted by the user, it
must be aborted by the DQF.

In order to guarantee that all data acquisition tasks continuously conform
to the user’s preferences, the GAMBAS middleware implements the contin-
uous and gapless usage of this interface for all calls to the DQF. This means
that all tasks that are started within the DQF need to pass through the check
method of the PRF with the associated data types. In addition, as long as

5.4 Privacy Integration 157

the DQF is executing any tasks, it needs to react to changes indicated by
the signal method. If a signaled change affects a data type that is currently
acquired, the check for the associated (set of) task(s) needs to be reevaluated,
possibly aborting any conflicting tasks.

As every export of user’s context information is filtered based on the
privacy policy of the user, for every request of data by the service provider, the
DQF checks it with the privacy framework. If the PRF allows the data to be
sent, only then the users’ context information is exported. The PRF and DQF
communicate this information check through control interfaces provided by
the PRF. Specifically, PRF provides different methods that allow the DQF to
check if a certain data type is allowed to be detected. The DQF must call
these methods before creating a recognition stack for detecting any kind of
data or context. Based on the results from these methods, the DQF detects the
context data and subsequently sends it to the service providers.

In order to allow acquisition and subsequent export of user’s context
information, the GAMBAS middleware ensures that the context recogni-
tion applications can gather and export only the allowed context features.
In order to achieve this, the data DQF checks for permissions with the
privacy-preserving framework whenever a new application is started.

When the data acquisition framework starts to acquire data, it analyzes the
feature requirements of the application and then checks with the PRF whether
the desired features are allowed to be gathered. The PRF will decide, based
on the privacy policy that is set by the user and will inform the acquisition
framework whether the requested features are allowed to be gathered or not.
If the requested features are allowed, then the DQF starts gathering context
information.

When the PRF refreshes the privacy policy (either through a user that edits
the policy or through an update issued by the Privacy Policy Generator), the
GAMBAS core service indicates this change to the DQF, which again checks
the permissions with the privacy framework. If an already running application
does not adhere to the new privacy policy, then the application is shut down
immediately.

The list of privacy features that a user can edit in the privacy policy
includes features related to the acquisition of sensing data such as audio sens-
ing, location sensing, motion sensing, ambient sensing and features related
to the communication such as enabling of remote gateway communication,
enabling of Wi-Fi and Bluetooth as communication technologies, etc.

158 Privacy Preservation

5.4.3 Data Processing

Dynamic and distributed data processing is an essential part of the GAMBAS
middleware. Data processing in GAMBAS is performed by the Query Proces-
sors (xQP), which provides GAMBAS applications with the necessary data.
Often, the processor executes remote queries. These queries are executed at
remote devices and may try to access private data. The GAMBAS Privacy
Preservation Framework therefore has to check the access to the requested
data types and allow/deny access based on the policy of the remote user.

During the query execution, the query processor identifies the sources
needed to answer the query and then sends a request to the registry. The
registry resolves the sources and sends back to the processor the list of end-
points (remote storages) that contain needed data. For shared data, however,
before the query processor can access the data on the remote source, a privacy
control is performed to check if the query initiator has the rights to access the
data. A view of the data matching the privacy rules in place is created and
shared with the query processor. The query processor forwards the identity
and data requirements to the privacy framework, which in turn checks with
the privacy framework of the remote device hosting the shared data. A view
of the data is created based on the access control. The view can reflect the
original data, or it can modify the original data according to the privacy in
place. For example, it can aggregate or hide parts of the original data, like
changing GPS coordinates to the name of the city or country.

If a one-time query is issued, the access is granted based on the privileges
of the user that is trying to access the data. The query can then be directly
executed and will be transferred over a secure connection. If a continuous
query is issued, a secure access token is generated and sent to the query
processor. If a remote endpoint is trying to access the shared data, the secure
access token will allow transferring the shared data securely over the chosen
communication channel.

The interface between the xQP and the PRF checks whether the query
initiator is allowed to access the data. Additionally, if the xQP is executing
a remote query, the communication must be properly secured. The user and
data access credentials are sent over a secure data connection between the two
endpoints. Since the middleware manages the secure communication trans-
parently, the interface does not include a method that enables the exchange
of security tokens or start the encryption. Instead, this is done through the
authentication and key exchange plug-ins that the PRF integrated into the
GAMBAS middleware.

5.4 Privacy Integration 159

The access to data by the query processor must be checked through an
interface at the PRF. The interface consists of one function that checks if
the query initiator (i.e. the user requesting the data) is allowed to access the
data. The data types that are being requested also need to be specified. The
PRF queries the privacy policy of the device using the specified input and
decides whether the query is allowed or not. Each request is handled by the
privacy framework of each semantic data storage; therefore, this function is
performed locally.

The PRF therefore has a local PrivacyManager that implements and inter-
face that can be used by the xQP to check with the PRF if executing a received
query is allowed according to the currently active privacy policies. To do
so, the query processor hands the PRF (1) a set of classes in the GAMBAS
ontology that specify what data types the query will access and (2) the origin
of the query, e.g. if it was a local query or a query from a remote user. The
PRF then returns whether this query is allowed or not. The PRF needs to be
contacted for every query execution, when shared data is involved. The query
processor must first interact with the privacy framework, which is responsible
for allowing or denying data access, for data encryption/decryption and for
device authentication.

Of course, the privacy-preserving framework incurs some overhead in
the query processing, specifically an additional method call, device authen-
tication and data encryption. However, the PRF is crucial to maintain the
privacy of the users’ data. To minimize the performance impact, the PRF
uses lightweight privacy rules and lightweight encryption mechanisms (e.g.
symmetric encryption using AES) to allow a secure and privacy preserving
execution of queries by the xQP. More lightweight encryption mechanisms
could be applied, but this would result in a decrease of the privacy and secu-
rity level without a high speed-up compared to the used security mechanisms,
if measured on current smartphones.

