
6
Applications

This chapter describes the applications that have been built using the
GAMBAS middleware. To do this, the chapter briefly outlines the integration
of the system components described in Chapter 3, Chapter 4 and Chapter 5.
Based on this description, it introduces the application development support
provided by GAMBAS for different execution environments. To clarify this,
we present a number of simple but full-featured applications that leverage the
different components of the middleware. Based on this, we then describe the
two large-scale applications that have been built with the middleware. These
applications focus on realizing significant parts of the mobility scenario and
the environmental scenario introduced in Chapter 1 that motivated the work
on the GAMBAS middleware.

6.1 Application Development Support

In the following, we describe how the GAMBAS middleware is used during
application development. To do this, we first briefly review how the different
middleware components described in the previous chapters are integrated into
a single system. Thereafter, we discuss how different execution environments
are supported through the GAMBAS SDK and middleware runtime. Finally,
we present a number of simple applications that have been built with the SDK
to demonstrate the different features offered by GAMBAS.

As shown in Figure 6.1, the integrated GAMBAS system consists of
(1) a number of networked devices executing the GAMBAS middleware
and (2) the GAMBAS Dynamic Data Registry. Each device may execute
one or more GAMBAS applications (or simply apps) using the GAMBAS
middleware. An example for such an app is an Android application executed
by an end user on his smart phone. Another example would be server software

161



162 Applications

Figure 6.1 Integrated System.

executed by a service provider on a dedicated server connected to the Internet.
As described in Chapter 4, the GAMBAS Dynamic Data Registry is a generic
service that provides devices with the ability to discover data sources. The
functionality of this registry is comparable to the Domain Name System
(DNS), which provides name resolution on the Internet. Although GAMBAS
assumes that this functionality is provided publicly, GAMBAS allows devel-
opers to run their own registry during development and testing. Since the
functionality of the registry has been described in detail in Chapter 4, in the
following, we focus on the remaining functionalities.

6.1.1 Overview

Figure 6.2 gives an abstract overview of the middleware structure. The
integration is realized by: (1) a set of interfaces, support libraries and tools
called the Software Development Kit (SDK) and (2) the GAMBAS CoreSer-
vice which provides the accompanying runtime environment. The Software
Development Kit (SDK) in turn consists of two parts. The Service Program-
ming Interface (SPI) is used to develop GAMBAS functionality and integrate
it into the middleware. The Application Programming Interface (API) is
used to develop GAMBAS apps. The CoreService sets up the GAMBAS
middleware and manages the life cycle of GAMBAS system components.
Each system component encapsulates the implementation of one of the core
GAMBAS parts described in Chapter 3, Chapter 4 and Chapter 5, e.g. the
Semantic Data Storage (SDS) or the Data Acquisition Framework (DQF).

In addition, the CoreService integrates a special communication system
component that encapsulates an extended version of the BASE communica-
tion middleware discussed in Chapter 5. This enhances GAMBAS with com-
munication support to interact with remote GAMBAS devices. Furthermore,
the CoreService realizes the SPI by linking each system component to all
other components that they use during their own execution via interfaces from



6.1 Application Development Support 163

Figure 6.2 Abstract Middleware Structure.

the SPI. This effectively provides a tight and efficient integration between the
components without inducing dependencies to their actual implementation.
Finally, the CoreService implements the GAMBAS API towards GAMBAS
applications in both Android and J2SE environments. To do this, it receives
calls, forwards them to the right system component and delivers results back
to the original caller.

Due to the intrinsic differenced between Android and J2SE execution
environments, the abstract structure shown in Figure 6.2 has two dis-
tinct concrete implementations. In the following, we briefly describe their
differences and similarities.

6.1.2 J2SE Support

GAMBAS for J2SE specializes and implements the generic middleware
architecture described before for server systems running J2SE. This allows
service providers to integrate their services into the GAMBAS platform.
Figure 6.3 shows the resulting system architecture. Since the J2SE version
of GAMBAS is primarily intended for the development of server systems, it
does not include support for user interfaces. Clearly, service providers will,
in many cases, add their own user interface, e.g. based on web technologies.
This, however, is outside of the scope of GAMBAS and thus not explicitly
supported. All other GAMBAS system components mentioned previously are
integrated, namely communication, data acquisition (the DQF), data storage
(the SDS) and querying (the xQP), as well as security and privacy (the PRF).



164 Applications

Figure 6.3 GAMBAS for J2SE.

As described before, the CoreService realizes the SDK and manages the
life cycle of the whole GAMBAS system and all its components on a local
device. GAMBAS for J2SE is implemented as a library that is linked to
an application using it. To start using the GAMBAS system, an application
has to first import and instantiate the CoreService. The CoreService can
be configured by passing it an instance of CoreSetting. This allows the
application to specify, e.g. the address of the GAMBAS data registry and
communication gateway as well as a pseudonym that should be used to
address the system. Settings can be changed dynamically and the CoreService
will perform any necessary updates automatically, e.g. when a pseudonym
should be changed. When the CoreService is instantiated (and thus started)
it instantiates, configures and starts in turn all necessary GAMBAS system
components.

To decouple life cycle management of components from their actual
implementation, each component is encapsulated by a specific subclass of
AbstractSystem, providing, e.g. methods for startup and shutdown. As an
example, the SDS is integrated by sublassing AbstractSystem with a new
class DataStorageSystem, which implements all life cycle management func-
tions independently of the actual SDS implementation. This way, the SDS
is independent of the CoreService and can, e.g. be reused in other contexts
without other GAMBAS components. The CoreService also passes each
component references to all other components it may require. As an example,
the query processor uses the data storage, the communication system and the
privacy manager. The CoreService enables this by passing references to these



6.1 Application Development Support 165

three components to the query processor. At runtime, the query processor
calls these components directly, without using the CoreService anymore.

To use functionality of the GAMBAS middleware, e.g. to store data,
applications can call a number of methods on the CoreService. The Core-
Service in turn forwards this request to the corresponding local system
component, retrieves results from it and forwards them to the calling appli-
cation. This design was chosen over directly exposing system components
to applications because it allows the CoreService to impose further checks
on the correctness, security and consistency of these calls, if needed. As an
example, the CoreService might deny a new request if it has already started
shutting down the system. In addition to this, this approach also provides
access transparency for system components, i.e. it allows us to decouple the
system components from the way they are called. If an application wants
to call a remote system component (e.g. to store data in a remote SDS), it
can do so by calling a local method on the CoreService. The CoreService
will forward this request to the communication system (essentially acting as
a communication broker), which will send it to the remote system. There,
the incoming request will be forwarded by the communication system to
the CoreService, which in turn forwards it to the corresponding system
component. Finally, if an application wants to stop the GAMBAS middle-
ware, it again calls the CoreService, which notifies all components and shuts
down the system correctly.

As a result, the CoreService is the central component of this architecture.
It is responsible for receiving and answering all local and remote calls
from applications, mediates all dependencies between system components
and fully manages their life cycles. This encapsulates nearly all integration
activities into it, reduces the complexity of implementing the actual system
components and allows them to focus on their core functionality.

6.1.3 Android Support

In addition to J2SE devices, the GAMBAS middleware also directly supports
application development on Android devices. From a high-level perspective,
the Android integration is similar to the J2SE version, but when looking at
the details, it has two main differences: first, it separates the core middleware
from applications using it, reflecting the distinct Android runtime model
and reducing the overall resource need of the system. Second, it includes
additional support for user interactions with the intentional user interface
(IUI). The resulting architecture can be seen in Figure 6.4.



166 Applications

Figure 6.4 GAMBAS for Android.

6.1.3.1 GAMBAS Middleware App
On Android, the main functions of the GAMBAS middleware are realized as a
stand-alone Android app instead of a linkable library. This app is independent
of any third-party Android applications using it. On Android, the life cycle
of an app is controlled by the OS. It may at any time pause or stop/destroy
any app, if it requires more resources. If the GAMBAS middleware would
be linked to an app using it, the OS could decide to stop it, if the app is not
used by the user right now. By separating the middleware into its own app,
we are separating its life cycle management from that of all apps that use it.
In addition, this design allows us to efficiently share a single instance of the
middleware between all third-party apps, reducing the needed resources and
thus allowing the OS to keep all apps active in memory for a longer time.

An alternative approach would be to model the middleware as an Android
service. However, allowing the middleware to have its own user interface –
independently of any other app – allows us to integrate all configuration
activities that a user wants to perform for the whole system in one place. In
addition, it also allows the user to start and stop the middleware explicitly,



6.1 Application Development Support 167

since its execution will reduce battery lifetime. To remind the user that
GAMBAS is running, we display a corresponding icon in the Android status
bar. By clicking this icon, the user can display the middleware user interface
and control its behavior, e.g. reconfigure or stop it.

The separation of the middleware into a distinct app also influences
how third-party apps can access its functionality. Direct calls are no longer
possible since the apps are running in separate processes. Therefore, we use
Android intents to interact with the middleware. Intents are small events
or messages that a process can publish and that can be received by other
processes. To use the GAMBAS middleware, an application can publish a
number of intents that are received by the middleware. The CoreService
includes support for this. It translates the intents into direct calls and forwards
them to the corresponding GAMBAS system components. Once a result is
available, the CoreService translates it back into an intent and publishes it,
allowing the original app to receive it.

Clearly, this is more complicated for app developers than directly calling
a method on a Java object. To reduce the complexity of the interface, we
provide a GAMBAS API service. This service is realized as a Java class
that can be subclassed by an application developer. It already includes all
necessary functionalities to translate calls to the middleware into intents and
vice versa as well as additional support for handling life cycle and error.
Thus, by using this API service, the app developer can access the middleware
without knowing about the specifics of Android interprocess communication.

6.1.3.2 GAMBAS User Interface
As described above, the GAMBAS middleware for Android devices contains
the Intent Aware User Interface (IUI). The IUI is separated into two parts:
an interface to control the behavior of the GAMBAS middleware itself and
support for the development of user interfaces of third-party apps.

The GAMBAS middleware user interface enables the user to config-
ure a multitude of aspects (Figure 6.5(b)) such as the middleware life
cycle (Figure 6.5(a)), the used data discovery registry and communication
gateway (Figure 6.5(f)), the user’s pseudonym, known friends, their keys
(Figure 6.5(d)) and privacy policies. This allows users to inspect and adapt
the current system state in one integrated place and makes it much easier for
them to understand what data is currently made available to whom.

In addition, the middleware user interface allows to manage all third-party
GAMBAS apps (Figure 6.5(c)) in an integrated view. This view allows to



168 Applications

Figure 6.5 User Interface. (a) Start, (b) Settings, (c) Apps, (d) Privacy, (e) Features,
(f) Development.

install new apps from the Google Market, to start them and to remove them
once they are no longer needed. Finally, in order to give full control over sens-
ing to the users, the user interface also enables users to disable the different
data collection components offered by the data acquisition framework.



6.1 Application Development Support 169

6.1.4 Application Examples

To test and showcase the GAMBAS SDKs, we have developed sev-
eral applications that demonstrate the use of the different features of the
GAMBAS middleware. These application have been made available to devel-
opers and they have also been published on the Android market. In the
following, we briefly describe three of these applications. We first describe
the application functionality and then map it to the middleware functionality.

6.1.4.1 GAMBAS Voiceprint Launcher
The GAMBAS Voiceprint Launcher is an Android application developed
on top of the GAMBAS middleware. The application uses the voiceprint
technology developed as part of the data acquisition framework (c.f.
Chapter 3). The Voiceprint Launcher enables a user to launch an applica-
tion by issuing a voice command. To enable the launching of applications
via a voice command, the user first needs to train the launcher by creat-
ing recordings of the commands that shall start different applications (see
Figure 6.6).

To do this, the user can add an application from the list of applications
installed on the device. Then, the user can select the application and press
the train button (i.e. the button with the white headset) to start the training.
Alternatively, the user can press the delete button (i.e. the button with the
white trash can) to delete the application and all training data. Once the

Figure 6.6 Voiceprint Luncher Training.



170 Applications

user has pressed the train button, a dialog appears that prompts the user to
say the application name loud. Once the user completed this, the application
computes a voiceprint and stores it locally.

As soon as the user has trained one or more applications, he can start
the application by pressing the start button (i.e. the white microphone). This
will open up a dialog that prompts him to say the application name out
loud. Once he has done that, the application will compute a voiceprint and
match it against all stored voiceprints. The closest match will be selected
and the associated application will be started. Alternatively, the user can also
add the voiceprint launcher widget to the home screen of the device. This
allows the user to directly access the launcher (see Figure 6.7).

From a technical perspective, the GAMBAS Voiceprint Launcher
demonstrates a substantial part of the middleware. However, it is noteworthy
that it solely executes locally on the phone of a user and thus, it does
not require any remote connectivity or services. Consequently, it does not
cover any communication-related aspects and it also does not cover the J2SE
integration. As depicted in Figure 6.8, the GAMBAS Voiceprint Launcher
extensively uses the GAMBAS middleware on Android through the Android
SDK that connects it with the core service of the GAMBAS Middleware App.

Of the functionality provided by the core service, the GAMBAS
Voiceprint Launcher uses four out of five building blocks as follows:

Figure 6.7 Voiceprint Launcher Usage.



6.1 Application Development Support 171

GAMBAS Middleware App

GAMBAS Core Service

St
or

ag
e 

an
d

Q
ue

ry
 P

ro
ce

ss
or

Da
ta

 A
cq

ui
si�

on

Se
cu

rit
y 

an
d

Pr
iv

ac
y

Co
m

m
un

ic
a�

on

Voiceprint Launcher App

App-specific Code

GAMBAS API Service

Intents

In
te

n�
on

al
 U

se
r I

nt
er

fa
ce

Figure 6.8 Voiceprint Launcher Coverage.

6.1.4.1.1 Data Acquisition
In order to capture audio data and to compute and classify voiceprints, the
application uses the audio components of the context recognition framework.
In particular, the application uses an AudioSensor component to capture
audio, a Windowing and FFT component to perform preprocessing, a trig-
ger component for silence detection, a voiceprint generator and matcher
component for voiceprint computations and classification as well as an intent
broadcaster component to signal the successful acquisition of a voiceprint as
well as to signal the classification result. Figure 6.9 depicts the configurations
of the component system.

Figure 6.9 Voiceprint Launcher Configurations for Training (left) and Classification (right).



172 Applications

6.1.4.1.2 Data Processing
To store the voiceprints as well as the set of configured applications, the
GAMBAS Voiceprint Launcher uses the semantic data storage as well as
the SPARQL-based query processor. To store the voiceprints, they are seri-
alized as strings such that they can be stored as RDF triples. To retrieve
the set of configured applications and the associated serialized voiceprints,
the GAMBAS Voiceprint Launcher uses the SDK to issue SPARQL queries
against the data storage that are executed with the middleware’s built-in local
one-time query processor.

6.1.4.1.3 Privacy Preservation
Although the Voiceprint Launcher is executed locally on the device, it still
integrates with some of the privacy features of the GAMBAS middleware.
In particular, as depicted above, the GAMBAS Voiceprint Launcher’s access
to the device’s soundcard and audio capabilities are controlled through
the GAMBAS middleware. Thus, a user can prevent the application from
recording audio by simply deactivating the associated middleware feature.
Consequently, the requests to capture audio by means of the configurations
depicted previously will be blocked by the middleware. The associated block-
ing will then be signaled back to the application via the Android SDK such
that it can react to it in an adequate way, for example, by showing a dialog
that tells the user that the application requires audio capabilities to function
properly. Intuitively, for more complex applications, it may also be possible
to provide different modes of operation, e.g., a mode that uses audio and a
mode that does not. However, for the GAMBAS Voiceprint Launcher, the
ability to record audio is essential. Consequently, it is not feasible to provide
such a mode.

6.1.4.1.4 Intentional User Interface
Similar to security and privacy, the GAMBAS Voiceprint Launcher also
integrates with the intentional user interface through the SDK. In order to
provide the user with a clean view on the applications that are installed as
well as the features that are requested by them, the GAMBAS Middleware
app uses intent-based interaction to populate the list of installed GAMBAS-
enabled applications. This enables the user to quickly list all GAMBAS
applications and to start an application from the GAMBAS Middleware App’s
user interface.



6.1 Application Development Support 173

6.1.4.2 GAMBAS Linked Weather
While the GAMBAS Voiceprint Launcher is focused on the Android SDK,
the GAMBAS Linked Weather application focuses primarily on data man-
agement, remote communication and the J2SE SDK. The application uses
the legacy data wrapper to integrate with a third-party data source, namely
the weather web service provided by Wetter.com. To do this, a J2SE-based
service periodically retrieves the weather information for the largest German
cities and stores it in a semantic data storage that is equipped with remote
communication and distributed query processing functionality such that the
data becomes accessible to other devices.

To demonstrate the J2SE application as well as the interaction between
J2SE-based and Android devices, we have developed a Linked Weather app.
The functionality provided by the application is depicted in Figure 6.10. The
application enables a user to add an arbitrary number of cities to his device.
Once the cities are added, the user can press a sync button to retrieve the latest
weather information. Internally, tapping the sync button will issue a series of
remote SPARQL queries against the RDF data stored in the semantic data
storage on the J2SE device, which will synchronize the local data storage of
the Android device with the remote data storage of the server. In order to
reduce the amount of data that must be transferred, however, only the cities
selected by the user are actually synchronized. When the synchronization is
completed, the user can tap any city to view the current forecasts. This will
issue a series of local queries against the storage, to retrieve the forecasts for
a city. At this point, there is no more need for remote interaction as the device
already has the associated data.

As depicted in Figure 6.11, the GAMBAS Linked Weather application
uses the GAMBAS middleware on Android through the Android SDK and
on J2SE through the J2SE SDK. From the functionality provided by the
core services, the GAMBAS Linked Weather uses four building blocks
as follows:

6.1.4.2.1 Secure Communication
In order to interact with each other, both the Android and the J2SE parts of
the application use the communication services provided by the middleware.
Thereby, the Android part of the application contacts an application-specific
service provided by the J2SE part of the application. To determine the
communication endpoint that provides the application-specific service, the
Android app interacts with the dynamic data discovery registry.



174 Applications

Figure 6.10 Linked Weather Android App and J2SE Service.

6.1.4.2.2 Data Processing
In order to store the weather information, both the Android and the J2SE parts
of the application use the storage facilities provided by the local semantic data
storage. In addition, the Android part of the application executes (remote)
queries on the semantic data storage of the J2SE part of the application in
order to synchronize the local weather information with the most current
version of the weather information provided by the J2SE application.



6.1 Application Development Support 175

GAMBAS Middleware J2SEGAMBAS Middleware App

GAMBAS Core Service

St
or

ag
e 

an
d

Q
ue

ry
 P

ro
ce

ss
or

D
at

a 
A

cq
ui

si
ti

on

S
ec

ur
it

y 
an

d
P

ri
va

cy

Co
m

m
un

ic
a�

on

Linked Weather App

App-specific Code

GAMBAS API Service

Intents

In
te

n�
on

al
 U

se
r I

nt
er

fa
ce

Linked Weather Service

GAMBAS Core Service

St
or

ag
e 

an
d

Q
ue

ry
 P

ro
ce

ss
or

D
at

a 
A

cq
ui

si
ti

on

S
ec

ur
it

y 
an

d
P

ri
va

cy

Co
m

m
un

ic
a�

on

Direct Calls

Legacy Data Wrapper

Figure 6.11 Linked Weather Coverage.

6.1.4.2.3 Intentional User Interface
Similar to the GAMBAS Voiceprint Launcher, the GAMBAS Linked Weather
application also integrates with the intentional user interface through the
SDK. The integration closely follows the explanation given previously in the
sense that the application is shown in the associated list with the associated
permissions.

6.1.4.2.4 Legacy Data Wrapper
In order to integrate with Wetter.com, the actual provider of the weather
information made accessible through the J2SE service, the J2SE specific
part of the application uses a legacy data wrapper that translates the custom
data model used by Wetter.com to linked open data that is then stored in
the semantic data storage and made available through the query processor to
mobile devices. To gather data, the J2SE service periodically pull the latest
data from the web service. However, in order to avoid exceeding the free
quota provided by Wetter.com, the pull frequency is set to one day.

6.1.4.3 GAMBAS Locator
To demonstrate the location prediction algorithms developed as part of the
data acquisition framework as well as the privacy-preserving data-sharing
among devices, we have developed the GAMBAS Locator application
depicted in Figure 6.12. Similar to the GAMBAS Voiceprint Launcher, the
GAMBAS Locator only uses the Android version of the GAMBAS mid-
dleware. From an end-user perspective, GAMBAS Locator enables users to
continuously track their location. They can track visits to locations that are
relevant for them and they can share their current location with their friends



176 Applications

Figure 6.12 Locator History and Sharing.

in a peer-to-peer fashion through the GAMBAS middleware. In addition, the
application computes and visualizes predictions for the next user location
based on the location history captured by the application. Since the history
and predictions are stored in the local SDS of the user’s device, they can be
used by other applications easily, i.e. by simply querying the local SDS.

To enable the sharing of location information with other users, the
GAMBAS Locator uses the secure communication and data sharing mech-
anisms described in Chapter 5. To perform the necessary key-exchange for
user authentication, the GAMBAS Locator can leverage the keys provided
by the GAMBAS Middleware App. This means that if a user is using some
social network like Facebook, for example, the user simply needs to connect
the GAMBAS Middleware App with his Facebook account. Once this is
done, the GAMBAS middleware will automatically exchange keys with all
of his friends who are also using GAMBAS. If the user does not use social
networking sites, he can alternatively use NFC to manually exchange a
key. From an application programmer’s perspective, using this functionality
does not require a single line of code, since the middleware takes care of
implementing it. Similarly, in order to share the location information with
another user, the GAMBAS Locator does not require any backend service.
Instead, due to the distributed processing capabilities of the middleware, the
devices can exchange this information directly without a trusted third party.
From an application developer’s perspective, this eliminates the need and cost



6.1 Application Development Support 177

for developing and running a service infrastructure. Thus, using GAMBAS,
the developer can focus soley on implementing the user-facing functions.

6.1.4.3.1 Secure Communication
In order to interact with each other, the Android applications of different
users are relying on the secure communication services provided by the
middleware. Thereby, the authentication and encryption is done transparently
for the application. In addition, it is noteworthy to point out that the sharing
is not mediated through a service, which is the common realization of most
location sharing apps that are available today. The keys that are required to
ensure a proper end-to-end authentication of different users are provided by
the mechanisms of the privacy preservation framework.

6.1.4.3.2 Data Acquisition
To capture the user’s location, the GAMBAS Locator application makes use
of the data acquisition framework. To do this, it sets up an component configu-
ration with an associated state machine in the activation system. Together, the
component and the activation system perform a periodic but energy-efficient
localization of the user’s device. To do this, the localization stack integrates
the motion sensors, the GPS receiver and the network hardware. This ensures
that the energy-hungry GPS receiver is only used when the user’s location
cannot be established through the motion sensors or through Wi-Fi scans.
In addition, the GAMAS Locator also uses the data acquisition framework
to perform the predictions on the user’s next location. The predictions are
triggered periodically whenever a new location is detected. Towards this end,
the prediction components are accessing the user’s location history that is
stored in the semantic data storage of the user’s device.

6.1.4.3.3 Data Processing
In order to store the location information including the user’s location his-
tory and the predicted next location, the GAMBAS Locator leverages the
Semantic Data Storage of the device. When a prediction must be computed,
the prediction components query the local data storage for an (aggregated)
view on the user’s history. The data model presented in Chapter 4 specifically
addresses this issue by supporting aggregation.

6.1.4.3.4 Privacy Preservation
To enable access control on the data stored in the SDS, the issuer of remote
queries must be authenticated. To do this, the privacy preservation framework



178 Applications

GAMBAS Middleware App

GAMBAS Core Service

St
or

ag
e 

an
d

Q
ue

ry
 P

ro
ce

ss
or

Da
ta

 A
cq

ui
si�

on

Se
cu

rit
y 

an
d

Pr
iv

ac
y

Co
m

m
un

ic
a�

on

GAMBAS Locator App

App-specific Code

GAMBAS API Service

Intents

In
te

n�
on

al
 U

se
r I

nt
er

fa
ce

Figure 6.13 Locator Coverage.

presented in Chapter 5 defines two key exchange mechanisms that are either
automatic (i.e. when using Piggybacked Key Exchange on top of an online
service) or easy to use (e.g. when using a physical gesture to exchange a
key between two nearby devices through NFC). In addition to authenticity,
however, it is also necessary to define who should be able to access the
data. For this, the privacy preservation framework provides an automatic
policy generation tool that provides a pre-configured privacy policy based
on the user’s sharing behavior. Based on this, the user can get recommen-
dations (c.f. Figure 6.13) for suitable policies that can be customized later
on. Due to these two mechanisms, the GAMBAS Locator application does
not need to handle the intrinsics of secure sharing. Instead, it simply relies
on the GAMBAS middleware which automatically provides the necessary
mechanisms to enforce the level of privacy desired by the user.

6.1.4.3.5 Intentional User Interface
Similar to the other applications, the GAMBAS Locator also integrates
with the intentional user interface through the SDK. The integration closely
follows the previous explanations. However, due to this integration, the
application developer does not need to provide user interfaces to configure
the sharing of location information. Instead, the application can simply rely
on the definitions managed through the user interface of the GAMBAS
Middleware app.

6.2 Application Architecture

As basis for the description of the application components in the next section,
we provide an instantiation of the high-level architecture detailed in Chapter 2



6.2 Application Architecture 179

for the mobility and environmental scenario outlined in Chapter 1. For each of
the scenarios, we describe deployment that maps the abstract software com-
ponents detailed in the component view to concrete systems. Furthermore,
we outline the interactions that will take place at runtime.

6.2.1 Mobility Scenario

As described in Chapter 1, one of the motivating application scenarios behind
the GAMBAS middleware is support for mobility applications in a smart city.
To demonstrate the middleware capabilities, we developed a so-called Public
Transport Exploitation System (PTES) and a GAMBAS mobile application
to take into account the information retrieved directly from the user and
to offer citizens customized services – not exclusively related to mobility
though – in order to enhance their trip experience. Overall, the scenario
encompasses personal mobile Internet-connected objects such as the smart
phones of citizens, buses that are equipped with embedded systems, existing
external services and a number of novel GAMBAS services. Figure 6.14
shows both their deployment and interaction.

6.2.1.1 System Deployment
As depicted in Figure 6.14, the mobility scenario contains a number of
computer systems that run various parts of the GAMBAS middleware as well

Processing SystemProcessing System

Ci�zen
Systems
Ci�zen

Systems

Discovery SystemDiscovery System

CQP

SDS

DDR

PRF

PRF

OQP

xQP

SDS

xQP

LDW

PRF

DQF

SDS

IUI

External Systems
(Facebook, Google, etc.)

External Systems
(Facebook, Google, etc.)

Execute Con�nuous 
Queries for Distributed 

Inferences

Export and Search 
Metadata and Iden�ty 

Informa�on

Report Data of 
Collabora�ve Acquisi�on
for Service Op�miza�on

Query Informa�on for 
Intent-aware Interac�on 
and Personal Inferences

Enable Intent-aware 
User Interac�on

Acquire Data for 
Personal and 

Collabora�ve Use

Derive Policy and Get 
Social Informa�on

Perform Local Inferences 
on Collabora�vely 

Acquired Data

Transport 
System

Transport 
System

DQF

Bus 
Systems

Bus 
Systems

Report Data of 
Collabora�ve Acquisi�on
for Service Op�miza�on

Figure 6.14 Mobility Scenario Architecture.



180 Applications

as application-specific code that realizes the selected use cases. The computer
systems are:

• Citizen Systems: In order to access services, citizens make use of their
personal mobile devices like smartphones and tablets, which are running
a mobile application. The application consists of the intent-aware user
interface as well as background services that automatically acquire
data and either forward or store it. Furthermore, it makes parts of the
stored data accessible to other devices. Typically, these systems can be
considered as Constrained Computer Systems (CCS). Consequently, the
background operations must optimize their resource usage, especially in
terms of energy. The application makes use of the data acquisition frame-
work, the semantic data storage and – to protect the user’s privacy –
the privacy preservation framework. In order to make data available to
other devices and to support local inferences at the application level, the
device is equipped with a one-time query processor. Finally, in order to
enable intent-aware user interaction, the application makes use of the
intent-aware user interfaces.

• Transport System: In order to provide route information and to aggre-
gate capacity-related information, we introduce a transport system that
is available on the Internet. Since the data about bus routes and schedules
is already available in a legacy system, the transport system uses a legacy
data wrapper in order to tap into this information source. Furthermore,
in order to store information coming from the citizen systems as well as
from public buses, the system is equipped with semantic data storage.
To support local as well as distributed inference on the data and to make
it available to third parties, the system is equipped with a one-time and
a continuous query processor. Finally, in order to protect the raw data
and to restrict the sharing of data, the system is equipped with a privacy
framework component that limits the sharing accordingly.

• Bus Systems: Besides the citizen systems, the mobility scenario also
relies on embedded systems deployed in public buses in order to collect
data. Consequently, the buses are equipped with an application that
determines the relevant context and forwards it to the transport system,
which then stores and aggregates the data. In order to do this, the
embedded system running in the bus makes use of the data acquisition
framework in order to acquire and report the data.

• Discovery System: To enable transparent access to data coming from
different data sources, it is necessary to make the possible data sources



6.2 Application Architecture 181

discoverable. Performing this task is the primary function of the discov-
ery system. In order to do that, it runs a data discovery registry which
uses the semantic data storage component and a one-time as well as a
continuous query processor component in order to store metadata and
identity information of data sources. In contrast to other systems in the
architecture, this system is application-independent.

• Processing System: To enable the citizen systems to run continuous
queries against each other’s devices, the architecture encompasses a
second generic type of system. This processing system is equipped with
a privacy framework and a continuous query processor.

• External Systems: To reduce the configuration effort for the privacy
mechanisms, the privacy preservation framework taps into the informa-
tion available in other external systems. For this, the privacy framework
provides a number of adapters that can access the user-specific infor-
mation in these external systems. Since these systems are maintained
by third parties, no additional GAMBAS software is installed on them.
Consequently, the adapters of the privacy framework are responsible for
performing the necessary data conversion.

6.2.1.2 System Interaction
In order to implement the mobility scenario, the systems and their associated
components have to interact with each other locally (within a single system)
and some of them have to interact remotely. This interaction follows the
abstract interaction patterns described as part of the dynamic perspective in
the high-level architecture presented in Chapter 2.

In order to enable distributed query processing, all semantic data storage
components export metadata and/or identity information to the discovery
system. The query processors and the privacy framework use this information
transparently to determine and contact the appropriate data sources and to
create the necessary views, respectively.

For the mobility scenario, most queries are issued by the citizen systems.
They target either the transport system, e.g. in order to compute route infor-
mation, or other citizen systems, e.g. in order to find collocated routes or to
determine whether two friends are in the same bus. Since some of the latter
type of queries may be continuous queries, the remote processing system
must interpret them – as continuous queries are not supported directly on
Constrained Computer Systems (CCS).

In order to provide advanced behavior-driven services, the citizen systems
and the bus systems are used to collect data collaboratively. As described



182 Applications

previously, for citizen systems, this requires each citizen to opt in to the data
collection and sharing by configuring the appropriate privacy settings. For
bus systems, such a configuration is not necessary since the collected data
does not affect privacy. Once relevant data is collected at the bus system or
the citizen system, it is reported to the transport system.

The transport system collects the data received from the bus systems
and citizen systems. Furthermore, it stores and aggregates it for service
optimization purposes. This should typically result in local inferences as the
aggregations required for the mobility scenario do not require dynamic data
that is not available locally.

In order to make the optimized services accessible to the citizens,
the application running on citizen systems provides an intent-aware user
interface. Using the behavior information gathered by the data acquisition
framework, the intent-aware user interface can notify the citizen about impor-
tant events and it can display relevant information at the right time. In cases
where the required predictions for this are imprecise or not possible, the
citizen may specify goals using a speech recognition engine that is part of
the framework.

In order to fetch the information that is relevant for the citizen, the
intent-aware user interface issues queries and performs local or distributed
inferences using the query processor and application-specific code. For some
distributed inferences, it is necessary to access the data gathered by citizen
systems of other citizens that share this data.

In order to enable privacy-preserving sharing, the privacy preservation
framework controls the access to the data stored on the citizen systems. The
basis for this is a privacy policy that is initialized using the information
from external services such as Facebook or Google. The privacy preserva-
tion framework retrieves the privacy-related information from these systems
periodically in order to determine relationships between different citizens and
to keep the initial policy up-to-date. However, it is noteworthy that citizens
can manipulate this generated policy through the user interface in order to
customize it to their needs.

6.2.2 Environmental Scenario

The environmental application scenario is related to the mobility scenario due
to the sources of information that are used for data collection. Specifically,
the architectural instantiation described in the following relies on the data
being captured by the bus system and a mobile application. Consequently,



6.2 Application Architecture 183

Processing SystemProcessing System

Ci�zen
Systems
Ci�zen

Systems

Discovery SystemDiscovery System

CQP

SDS

DDR

PRF

PRF
OQP

xQP

SDS

xQP

PRF

DQF

SDS

IUI

External Systems
(Facebook, Google, etc.)

External Systems
(Facebook, Google, etc.)

Execute Con�nuous
Queries for Distributed 

Inferences

Export and Search 
Metadata and Iden�ty 

Informa�on

Report Data of
Collabora�ve Acquisi�on

for Service Opera�on

Query Informa�on for
Intent-aware Interac�on 
and Personal Inferences

Enable Intent-aware 
User Interac�on

Acquire Data for
Personal and

Collabora�ve Use

Derive Policy and Get
Social Informa�on

Perform Local Inferences
on Collabora�vely

Acquired Data

DQF

Bus 
Systems

Bus 
Systems

Transport
System

Transport
System

Environment
System

Environment
System

Report Data of
Collabora�ve Acquisi�on

for Service Opera�on

Query Mobility
Informa�on for

Aggrega�on

Figure 6.15 Environmental Scenario Architecture.

from an architectural perspective, the environmental scenario can be thought
of as an extended version of the transport scenario. This is also clearly visible
when comparing the instantiated architecture depicted in Figure 6.15 with
the associated instantiation of the mobility scenario depicted in Figure 6.14.
Nonetheless, we briefly describe both the deployment and the resulting inter-
action. For the sake of brevity, we refrain from revisiting the interactions with
the transport system and focus on the environment system instead.

6.2.2.1 System Deployment
As depicted in Figure 6.15, the environmental scenario contains a number
of computer systems that run various parts of the GAMBAS middleware as
well as application-specific code that realizes the application functions. As
indicated previously, a number of these systems are slight variations of the
systems in the mobility scenario:

• Citizen Systems: Citizens are using their systems to gather information
and to access services. For this, they rely on the same set of components
as in the mobility scenario. However, the application-specific code has
to be extended to accommodate the different usage.

• Transport System: Since some of the environmental use cases require
transport-related information, the transport system of the mobility sce-
nario is used to offer it. Specifically, the transport system is used to
determine bus locations, which are required to provide the necessary
context for environmental information.



184 Applications

• Bus Systems: Similar to the mobility scenario, the environmental sce-
nario also makes use of embedded systems deployed in public buses in
order to collect environmental data. The environmental data, however,
will not be reported to the transport system but it will be reported to a
new system – called the environmental system.

• Discovery System: Since the environmental scenario also requires dis-
tributed data processing, it is necessary to rely on the discovery system
that manages the metadata and identity information.

• Processing System: Just like in the mobility scenario, a dedicated
processing system is used to enable the citizen systems to run continuous
queries against each other’s devices. The processing system is equipped
with a privacy framework and a continuous query processor.

• External Systems: The environmental scenario makes use of external
systems to initialize the privacy policy. These systems are maintained
by third parties, so no additional GAMBAS software can be installed
on them and the necessary adapters are provided by the GAMBAS
middleware app.

In addition to these systems which were also used for the mobility scenario,
the architecture of the environmental scenario also introduces a new system:

• Environment System: Conceptually, the environment system is related
to the transport system introduced in the mobility scenario as it manages
and aggregates the environmental data reported by the bus and citizen
systems. The main difference between the transport system and the
environment system is the lack of a legacy data wrapper since the
environment system does not have to tap into existing data sources.
Other than that it, performs conceptually similar tasks such as data
storage, aggregation and the computation of inferences.

6.2.2.2 System Interaction
In order to realize the different applications for the environmental scenario,
the systems and their associated components have to interact with each other
in a similar fashion as in the mobility scenario. The export of metadata and
identity information is handled by the data storage components, the privacy
framework and the data discovery registry. The searching is done transpar-
ently by the query processors and the privacy framework, which also create
views on the semantic data storage of the citizen system, if necessary. The
control for this is enabled by the policy generated by the privacy framework,
which can be manually adjusted through the user interface.



6.3 Application Components 185

Queries are issued by the citizen systems and the environmental system.
They target either the transport system, e.g. in order to compute route infor-
mation or other citizen systems. If a citizen system requires the execution of
a continuous query, the remote processing system is used.

In order to provide advanced behavior-driven services, the citizen systems
and the bus systems are used for collecting data collaboratively. The envi-
ronment system collects the data received from the bus systems and citizen
systems. Furthermore, it stores and aggregates the data, for example, to offer
a pollution map, which can be used in conjunction with the transport system
to compute alternative routes. This should typically result in local inferences
at the environment system since the route information is mostly static and can
be retrieved once for each computation.

In order to make the environmental services accessible to the citizens,
the application running on citizen system provides an intent-aware user
interface. In order to fetch the information that is relevant for the citizen, the
intent-aware user interface issues queries and performs local or distributed
inferences using the query processor and the application-specific code. This
may entail distributed inferences, which are enabled by combining the contin-
uous query processor on the processing system with the privacy frameworks
on the citizen systems.

6.3 Application Components

As indicated by the application architecture, the implementation of the appli-
cation scenarios entails a number of different components that are required
to deliver the application functions. In the background, there are a number
of application services that store and offer the data captured through sensing
applications used by citizens or running in buses. In addition, there are back-
ground services that wrap legacy data coming from third-party data sources.
Thus, in order to create a complete picture of the applications developed as
part of GAMBAS, we first describe these application services. Thereafter, we
outline the applications that we developed to capture the required data. On
the basis of this description, we then describe the end-user applications for
citizens as well as a set of innovative applications that feed the captured data
back to the transit network operator.

6.3.1 Application Services

To power the mobility and environmental applications, we have developed
a number of application-specific services using the GAMBAS middleware.



186 Applications

These services integrate with different data sources including data coming
from EMT Madrid (incident feed, time tables, routes, etc.), open data pro-
vided by OpenStreetMap (addresses, geometry, etc.) and application-specific
data (e.g. crowd-levels measured by the embedded applications running in
vehicles). Although these services are conceptually backend services that
are not directly visible to end users, the application services encompass
frontends targeted at application developers and service administrators. In
the following, we briefly walk through the different services and, where
applicable, show a few screenshots of their frontends.

6.3.1.1 Tile Service
The tile service integrates with OpenStreetMap geometry data in order to
generate images that are used to draw the map-based visualization. It sup-
ports multiple output formats and color schemes. The api has been designed
to work with the Leaflet.js Javascript library, which is used consistently
throughout the GAMBAS mobile applications. The screenshot shown in
Figure 6.16(a) depicts a number of output options.

6.3.1.2 Incident Service
The incident service integrates with the EMT Madrid incident feed in order to
provide incident information to the navigation application described later on.

Figure 6.16 Tile and Incident Service. (a) Tile Service and (b) Incident Service.



6.3 Application Components 187

Figure 6.17 Crowd and Routing Service. (a) Crowd Service and (b) Routing Service.

It is tightly integrated with the routing service in order to enable the output
of route incidents for trips computed by the user. Since the EMT inci-
dent feed is only available in the Spanish language, the incident service
has been integrated with Microsoft Translator, which provides machine
translations into other languages supported by the mobile prototype appli-
cations. Figure 6.16(b) shows the resulting machine-translated output that is
integrated into the routing result on the mobile app.

6.3.1.3 Crowd Service
The crowd service captures the crowd-level information generated by several
buses in the city of Madrid. The captured data is then used by the routing ser-
vice in order to provide crowd-level information as part of the routing result.
To do this, the service aggregates the reports and assigns them to 15 minute
timeslots, which are then used to drive the predictions. Figure 6.17(a) shows
a sample crowd-level for one of these 15 minute timeslots.

6.3.1.4 Routing Service
The routing service (c.f. Figure 6.17(b)) integrates with the EMT GTFS data
in order to compute crowd-aware routes, which are then used to power the
navigation functions in the mobile application for citizens. In addition to
transit routes using buses, it can also compute walking routes. If available,
incident and crowd-level data will be returned directly as part of the routing
result in order to minimize the amount of data that must be transferred
between the mobile application and the service.

6.3.1.5 Network Service
The network service provides the mobile application for citizens with
network-related information such as location and names of stops, routes of



188 Applications

Figure 6.18 Network and Timetable Service. (a) Network Service and (b) Timetable Service.

lines, etc. The resulting information is then used to visualize the route in
the application. Using a tool, it is possible to extract the information from
the network service and to ship it with the application. This is done in order
to minimize the latency for displaying search results. Figure 6.18(a) shows
the application which uses the built-in address database for auto-completion
during place search.

6.3.1.6 Timetable Service
The timetable service provides the mobile navigation application with bus
schedule information that is extracted from the GTFS information provided
by EMT Madrid. Since the associated amount of GTFS data is too large to be
processed directly on the device, this service takes care of extracting the rele-
vant subsets based on a stop name and a calendar date. The mobile application
then visualizes the output in a tabular form as depicted in Figure 6.18(b).

6.3.1.7 Geo Service
The geo service integrates with OpenStreetMap in order to resolve addresses
into GPS coordinates. The service is used by the mobile applications to
enable the user to search for addresses and to resolve GPS coordinates into
addresses. The number of results returned by the service to the application is
configurable in order to enable the optimization of applications for different
criteria (i.e. bandwidth vs. flexibility). Figure 6.19(a) shows the output of the
service on a map when searching for a particular address.

6.3.1.8 Log Service
The log service captures usage information generated by the mobile appli-
cations and enables the offline analysis of the user behavior for evaluation



6.3 Application Components 189

Figure 6.19 Geo and Log Service. (a) Geo Service and (b) Log Service.

purposes. It is based on a simple event abstraction that captures the reporting
component, a generated user identifier, the time and the type of event as well
as associated application-specific event data. A logging framework that has
been integrated into the mobile applications is used to capture and synchro-
nize the data produced by an application with the service. The captured events
can be downloaded for later analysis. To do this, the service supports different
queries based on event types, application components, dates, etc. In addition,
the service can generate a report summary to track its internal status (e.g.
which devices are uploading data, when devices have uploaded data and how
much data has been captured already).

6.3.1.9 Noise Service
This service captures, aggregates and visualizes the noise information cap-
tured by a mobile sensing application. In addition, it can display the noise
level for the captured locations. In order to avoid overloading clients, the
data is aggregated inside the service before it is delivered to other appli-
cations. Figure 6.20 shows some sample noise data. The circles indicate
locations where noise measurements are available. The circle color indicates
the average noise-level at the location.

6.3.1.10 Environmental Service
The environmental service captures the environmental information gathered
through measurements taken by sensors located in various buses that are
driving through the city of Madrid. Thereby, the service associates the mea-
surement with the real-time location of the bus. The service is equipped with



190 Applications

Figure 6.20 Noise Service.

Figure 6.21 Environment Service.

a simple user interface so that the individual measurments can be displayed.
Thereby, it is possible to filter the measurements based on the sensor type as
shown in Figure 6.21.

6.3.2 Sensing Applications

To provide data for the end-user applications, we have developed a number
of sensing applications that target environmental information (noise, CO2-
level, pollen-levels, etc.) and transit information (i.e. crowd-levels of buses).
As indicated in Section 6.2, this data is captured partly by mobile applications
running on the devices of end-users and partly by embedded applications that



6.3 Application Components 191

are integrated into the buses that are operating in the city of Madrid. In the
following, we briefly describe these sensing applications.

6.3.2.1 Noise-level Mobile App
To measure the noise profile at different points in the city, we extended the
GAMBAS Locator application described in Section 6.1.4.3 with support for
crowd-sensing. To do this, we integrated a data acquisition configuration that
captures the sound profile using as the average frequency vector described
in Chapter 3 and the sound pressure level. A user that wants to participate
can activate the periodic background capturing of the sound profile through a
settings screen. When activated, the sound profile is stored locally whenever
the user’s location is computed. As a result, the user can then visualize the
the daily noise exposure as shown in Figure 6.22.

In addition to locally storing the information, the user can opt-in to
crowd sensing. If the user enables crowd sensing, the sound profile and noise
level will be uploaded to the noise service together with the user’s current
location and measurement time. Given a larger number of participants, the
measurements can be used to create a picture of the noise profile of a city.

6.3.2.2 Pollution-level System
To capture pollution information in the city, we equipped a small number
of buses with an environmental sensor as shown in Figure 6.23. Using an

Figure 6.22 Noise-level Crowd-Sensing.



192 Applications

Figure 6.23 Embedded Sensors.

application embedded into the existing ICT infrastructure of the bus, we
were using this deployment to continuously capture sensor readings while
the bus was operating. The captured readings were then transmitted to the
environmental service where the sensor data was stored together with the
real-time GPS position of the bus.

6.3.2.3 Crowd-level System
One of the innovative functions of the mobile navigation app described in
the following is to provide users with real-time and predicted crowd-level
information about the vehicles on different routes. To capture this crowd-level
information, we developed an embedded system and integrated into several
buses [HIW+14]. The system consists of a TP-Link 3020, which is equipped
with a Linux-based operating system (OpenWRT) running the JamVM virtual
machine. Several operating system services have been specifically configured
to enable a simple installation (e.g. DHCP, NTP) and to support remote
administration (e.g. SSH, AutoSSH). The system uses pcaplib and tcpdump
in order to sniff 802.11 probe requests and beacon frames. These are then
interpreted by a set of components running on top of the GAMBAS data
acquisition framework in order to determine the crowd-level of a bus (by
counting the number of people). Figure 6.24 depicts the hardware as well as
the software stack.

The configuration depicted in Figure 6.25 consists of a number of com-
ponents. The first one (RadioTap Sensor) captures packets using tcpdump,
filters and classifies them. Sitting on top of the senor, the annotator and gate
components are responsible for counting the persons. Finally, the reading
segmenter prepares an output file to be transmitted to a server at regular
time intervals. These uploads are then performed asynchronously using the
reading uploader. The reading uploader interacts with the crowd service,
described previously, that stores the crowd-levels and makes them available



6.3 Application Components 193

Figure 6.24 Embedded Crowd-Level Detection Application.

Figure 6.25 Crowd-Level Detection Configuration.



194 Applications

to the mobile application. In order to mitigate potential privacy issues, how-
ever, the collected data is anonymized by removing any personal identifiable
information (i.e. device MAC addresses) before it is uploaded.

6.3.3 End-user Applications

The end-user applications provide regular citizens with the ability to
access the information captured through the sensing applications and man-
aged by the GAMBAS application services. In the following, we briefly
outline the two end-user applications that have been developed for the
mobility and the environmental scenario.

6.3.3.1 Navigation App
For the mobility scenario, we developed a mobile application for Android.
Since the mobility-related application services are integrating data from the
public bus network of the city of Madrid, we called this application Madrid
Navigator.

The Madrid Navigator is a maps and navigation application that is con-
ceptually similar to other modern navigation applications for mobile phones.
As depicted in Figure 6.26, it provides users with a map of their environment
and allows them to search for places and bus stops. Using the voice control

Figure 6.26 Madrid Navigator App. (a) Position, (b) Search and (c) Menu.



6.3 Application Components 195

components described in Chapter 3, users can not only search for places via
text input but also through speech input. Using different icons, the Madrid
Navigator categorizes search results into cities, streets, buildings and bus
stops. Depending on the category, the Madrid Navigator can show additional
information such as bus routes going through a particular stop or timetables.

In addition to retrieving additional information, the search results can also
be used to compute routes. To do this, a user can simply pick any place on
the map and tap on a route button. Alternatively, the user can enter a source
and a destination address or GPS coordinate into the routing screen shown in
Figure 6.28. On this screen, a user can also adjust different parameters such
as the desired arrival or departure time and specify the desired modality (e.g.
on foot or by bus). When the user is satisfied and starts the computation, the
specified parameters are transmitted to a GAMBAS service that computes
one or more route alternatives. Once the routes have been computed, they are
visualized in a list of route summaries. The user can inspect this list and get
additional information by tapping on one of the summaries.

As shown in Figure 6.27, the detailed view not only shows information
about the sequence of actions on the route, but it also depicts crowd-level
information on the specific bus that is proposed. This allows users to compare
consecutive trips on the same route with respect to the expected crowdedness

Figure 6.27 Madrid Navigator Routing. (a) Request, (b) Summary and (c) Detail.



196 Applications

of the bus. To determine this information, we use the embedded sensing
application described previously, which we deployed in several buses run-
ning through the city. Using this embedded application, we collect real-time
information about the number of passengers on board of the buses. The
resulting information is then processed in order to compute predictions for
other buses, which are not equipped with the crowd-level sensing application.
The resulting predictions are then fed back into the routing service such that
they can be used (a) to guide routing decisions and (b) to inform the users.

Once a user has decided to follow a particular route proposal, the user can
start a navigation session for the route. During this session, the GAMBAS
middleware can automatically share the user’s intended destination with the
transit network operator. As explained later on, this allows the operator to
detect routes that are going to be in high demand in the near future. Thereby,
the user’s identity is hidden from the operator. During navigation session, the
user is supported through step-by-step instructions as shown in Figure 6.28.

The step-by-step instructions implement the concept of micro-navigation
described in [FKR+14]. The idea behind micro-navigation is to optimally
support the user’s information needs during the usage of public transporta-
tion. For this, the app must provide the right pieces of information at the
time when they are needed. To do this, the application usage text messages

Figure 6.28 Madrid Navigator Navigation. (a) Walking, (b) Riding and (c) Textual.



6.3 Application Components 197

that are shown at the bottom of the screen at all times. In addition, the
application provides (optional) voice output using text-to-speech. To generate
instructions, the application uses the GAMBAS data acquisition framework
to tap into the sensors and information provided by the bus. To do this, the
application automatically connects to the Wi-Fi network available in every
bus operated by EMT Madrid and connects to the internal information system
to determine the location and route of the bus. This information is then used to
generate messages that correspond exactly to the user’s context. For example,
the app will notify the user to get off the bus shortly before it arrives at
the correct stop. Similarly, if the user has taken the wrong bus, the app will
immediately inform the user and propose a corrective action (e.g. to re-plan
the route or to exit the bus at the next stop).

As shown in Figure 6.29, the app also enables users to directly access
the bus information whenever they are traveling. This allows them to get
real-time information about expected arrival times, even if they are not using
micro-navigation. In addition, the application also integrates with the incident
feed provided by the bus operator. This incident feed describes changes to
schedules, e.g. due to demonstrations in the city center or traffic accidents.
Thereby, the incidents are directly integrated into the routing results as well

Figure 6.29 Madrid Navigator Features. (a) Bus Infos, (b) Route Incidents and (c) Time
Table.



198 Applications

as the timetable information that can be fetched for different stops. In addition
to incidents, the timetable information also includes real-time information for
buses that are departing within the next 20 minutes. To do this, the application
integrates with a real-time service provided by EMT Madrid through the
GAMBAS middleware.

6.3.3.2 Environmental Map
For the environmental scenario, we have developed a web-based application
that enables end-users to inspect the state of the environment. This state is
captured through measurements of pollutants that are acquired via the sensor
deployment in buses and the noise-level measurements of the mobile noise-
sensing application. For this, the environmental map application integrates
with the GAMBAS noise service and the environmental service, described
previously. After retrieving the data from them, the application applies the
following data aggregation approach to create a visually appealing data
representation:

1. Values corresponding to measurements at certain locations are clustered.
2. Based on the clusters, we identify the Voronoi partitions to define the

area of the cluster.
3. Using Delaunay triangulation, we find adjacent areas to interpolate

missing data.
4. Finally, we perform hexagonal binning in order to represent the result.

The resulting hexagonal visualization is then added to an overlay of tiles
computed with the tile service, which results in the final result shown in
Figure 6.30. Thus, using the web-based application, a user can simply move

Figure 6.30 Environmental Map. (a) Voronoi Clusters and (b) Hexagonal Map.



6.3 Application Components 199

the map to a specific location in the city and then view the different sensor
readings in a manner that is easy to understand.

6.3.4 Operator Applications

In addition to the application services, sensing applications and mobile
applications, we have also developed a number of applications that are not
targeting the citizens. Instead, they are targeted towards the transit net-
work operator, which, in our specific case, is EMT Madrid. The operator
applications are aggregating the information collected through the crowd-
level sensors and the mobile applications in order to help the operators to
understand the current transit network usage. This understanding can then
be used to optimize the network, possibly in real time, e.g. by dispatching
additional buses or issuing route warnings, etc. In the following, we briefly
outline these services.

6.3.4.1 Congestion Notifications
At the EMT Madrid headquarter, there are operators that control all the
operations related to the bus network management. Crowd-level detection
provides an estimation of the bus occupancy. A bus is considered as “con-
gested” when a threshold of 85% of its capacity is exceeded. When the
embedded application on the bus detects that a bus is getting congested, it
generates a notification to signal this to the operator. If 2/3 of the vehicles
within a route are congested, then the operator receives another notification
that signals the congestion in the route. These alarms and notifications have
been incorporated to the management system in a way that they can be
visualized in the same graphical user interface that EMT is currently using.
Figure 6.31 shows how the operator that is managing a route is notified
when the threshold level is exceeded, by displaying an “Ocupacion LLENO”
message (full occupation) and in red, the message “Ruta atocha-misericordia
congestionada” (Atocha-misericordia route congested).

6.3.4.2 Demand Notifications
As described previously, the most demanded routes by the Madrid Navigator
users are detected based on the usage of the navigation functionality. The
currently used destinations during navigation are stored in the demand ser-
vice. Once a certain number of destinations located in a certain area, for
a given period of time, are reached, then that area can be categorized as a
high-demanded destination zone. As a result, it will be shown to the bus



200 Applications

Figure 6.31 Congestion Notifications.

Figure 6.32 Demand Notifcations and Occupancy Analysis. (a) Demand Notification and
(b) Occupancy Analysis.

network operators who can use this information to detect a massive event
such as a concert or a demonstration. Based on this, the operator can decide
whether to reinforce the related bus lines covering that area or not. The
information is offered to the bus operator in a map by using the hexagonal
binning representation. The different hexagonal areas allow the operator to
visualize the most demanded destinations in a quick and simple manner, as
shown in Figure 6.32(a).

6.3.4.3 Occupancy Analysis
Crowd-level measurements are received in real time and stored in a data
storage for offline analysis. For this storage service, we developed an operator
tool to display the real-time and historical bus occupancy. Using this tool, the



6.4 Application Evaluation 201

bus network operator is able to visualize occupancy information in a geo-
located manner for a selected bus line. The viewer is implemented as a web
application to visualize the buses location integrated with a map. The colors
in the different routes are showing the crowd-level data at a specific time:
low-crowded (green), medium-occupied (orange) and congested (red), in the
same way as this information is shown in the mobile app.

6.4 Application Evaluation

During the course of the development of the GAMBAS middleware, we
deployed all application services and sensing components. In addition, we
performed a large-scale deployment of the Madrid Navigator navigation
application. For the operator applications and the pollution map, we per-
formed only internal testing with a closed user group. During the internal
testing of the environmental applications, we found that the pollutant sensing
system in the bus was not able to collect meaningful data. After an analysis
and several rounds of discussions with the hardware manufacturer of the
pollution sensor, we stopped the further roll-out of the system due to the
unreliability of the sensor readings. As a consequence, the evaluation results
described in the following are centered around the mobility scenario and the
navigation app in particular.

To evaluate the Madrid Navigator navigation app, we distributed it
through the Android market in order to make it available to interested users
and application developers. During the evaluation period, the application was
downloaded more than 1000 times and used by both an internal group of
testers and actual citizens that were not related to GAMBAS. From this
deployment, we collected a significant amount of feedback both implicit
(through the app usage) and explicit (through in-app questions and a feedback
form). In the following, we briefly describe the application functionality and
the results gathered during the deployment.

In order to detect issues and to improve the app during the deployment,
we instrumented it with logging code. If a user gave his explicit consent as
shown in Figure 6.33, we uploaded and analyzed the logs using the logging
service described previously. In addition to implicit feedback, we also offered
two ways to provide explicit feedback. First, we integrated a feedback form
into the application and second, we used pop-up dialogs to ask user’s about
their current experience. For this, we implemented a regular 5-star rating
dialog shown in Figure 6.33. Using the in-app questions, the users collectively
generated 350 responses to different questions. Each of these questions could



202 Applications

Figure 6.33 Madrid Navigator Feedback. (a) Implicit, (b) Form and (c) Question.

Figure 6.34 Madrid Navigator Results. (a) Reliability, (b) Interface, (c) Navigation,
(d) Motivation, (e) Usage and (f) Recommendation.

have been rated between 0 and 5 stars. The responses to each question are
shown in Figure 6.34. In the following, we briefly discuss the results.

To determine whether the application worked as expected on the broad
number of devices of the users, we asked the users to provide a rating with



6.4 Application Evaluation 203

respect to reliability. As depicted above, 36% of the users gave a 5-star rating
(works as it should), 27% of the users gave a 4-star rating and 37% of the
users gave a 3-star rating resulting in an average rating of 4 (out of 5).
Consequently, we think that the mobile application was working well in many
cases as none of the users gave a rating that was worse than 3 stars.

The second question that we posed to the users was to rate the overall
usability of the user interface between easy-to-use (5 stars) and very com-
plicated (0 stars). With 43%, the majority of users thought that the interface
is neither easy nor complicated to use. Another 43% assigned a 4 or 5 star
rating marking the interface clearly as easy-to-use. However, on the negative
side, 14% of the users thought that the interface was rather complicated. We
speculated that this could be due to issues on devices that have a small screen,
which could result in usability issues with the map-based visualizations (e.g.
small icons, etc.). However, we were not able to prove this assumption.

In addition to crowd-level and incident-aware routing, one of the core
features of the GAMBAS Madrid Navigator is the application of context-
awareness to enable intent-aware navigation instructions. Thus, in order to
evaluate the usefulness of this feature, we asked the users whether they
consider the navigation to be useful. Here, the overwhelming majority of
users (95%) is rating the application with a 3 star or higher rating. 41% are
rating the application even with the maximum rating resulting in an average
of 3.85 stars. This clearly shows that a) the navigation was working reliable
and b) the idea of micro-navigation was clearly considered to be useful.

In order to determine the impact of the Madrid Navigator on the user’s
transport behavior, we asked whether they think that the application could
motivate them to use more public transportation. Here, the answer is again
rather positive since 36% of the users completely agree that the application
could motivate them and another 20% rather agrees, which results in an aver-
age rating of 3.92 stars. Consequently, we argue that navigation applications
like the Madrid Navigator that employ context- and intent-awareness can be
a benefit for transport network operators.

To determine whether the application actually helps users during their
trips, we asked whether the application makes it easier for them to use the
bus network. Again, the overall results were rather positive since 39% of
the users stated that it would simplify their trips at least somewhat and only
6% answered that the application would not help. Thus, the overwhelming
majority of users providing detailed and precise navigation instructions by
means of context recognition at the right point in time can simplify their
bus trips.



204 Applications

Finally, to gather the users overall impression on the Madrid Navigator,
we asked them whether they would recommend the application to other users.
Just like with previous questions on the reliability, usability and helpfulness of
the application, the explicit user feedback reveals a rather positive result. With
an average of 3.58 stars, the users are either undecided or would recommend
the application.

In summary, these results are a clear indication for the maturity and use-
fulness of the navigation application. Given the fact that the implementation
of the Madrid Navigator and all of its background services was leveraging
the GAMBAS middleware, this also demonstrates the applicability of the
abstractions provided by it. Thereby, it is important to stress that, in contrast
to many other research projects, the tests were performed under realistic
conditions with a large number of users that were not affiliated with the
GAMBAS project.


