RF CMOS Oscillators for Modern Wireless Applications

Series Editors:

MASSIMO ALIOTO National University of Singapore

Singapore

KOFI MAKINWA

Delft University of Technology The Netherlands

DENNIS SYLVESTER

University of Michigan USA

Indexing: All books published in this series are submitted to the Web of Science Book Citation Index (BkCI), to SCOPUS, to CrossRef and to Google Scholar for evaluation and indexing.

The "River Publishers Series in Circuits & Systems" is a series of comprehensive academic and professional books which focus on theory and applications of Circuit and Systems. This includes analog and digital integrated circuits, memory technologies, system-on-chip and processor design. The series also includes books on electronic design automation and design methodology, as well as computer aided design tools.

Books published in the series include research monographs, edited volumes, handbooks and textbooks. The books provide professionals, researchers, educators, and advanced students in the field with an invaluable insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the following:

- Analog Integrated Circuits
- Digital Integrated Circuits
- Data Converters
- Processor Architecures
- System-on-Chip
- Memory Design
- Electronic Design Automation

For a list of other books in this series, visit www.riverpublishers.com

RF CMOS Oscillators for Modern Wireless Applications

Masoud Babaie

Delft University of Technology The Netherlands

Mina Shahmohammadi

Catena The Netherlands

Robert Bogdan Staszewski

University College Dublin Ireland

Published, sold and distributed by: River Publishers Alsbjergvej 10 9260 Gistrup Denmark

River Publishers Lange Geer 44 2611 PW Delft The Netherlands

Tel.: +45369953197 www.riverpublishers.com

ISBN: 978-87-93609-49-5 (Hardback) 978-87-93609-48-8 (Ebook)

©The Editor(s) (if applicable) and The Author(s) 2019. This book is published open access.

Open Access

This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/ licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated. The images or other third party material in this book are included in the work's Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work's Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper.

Contents

Pr	eface		ix	
List of Figures				
Li	st of T	ables	xxi	
Li	st of A	bbreviations x	xxiii	
1	Intro 1.1 1.2	DeductionIntroductionTechnology Scaling1.2.1Supply Voltage1.2.2Quality Factor of Passives1.2.3Noise of Active DevicesReferences	1 5 6 7 9 10	
2	LC (2.1 2.2 2.3 2.4 2.5 2.6	Dscillator Structures Introduction Class-B Oscillator Topology Class-C Oscillator Topology Class-D Oscillator Topology Class-F Oscillator Topologies Conclusion References	 13 13 16 19 21 22 22 23 	
3	A Cl 3.1 3.2	ass-F ₃ CMOS Oscillator Introduction Evolution Towards Class-F ₃ Oscillator 3.2.1 Realizing a Square Wave Across the LC Tank 3.2.2 F ₃ Tank	27 27 29 30 31	

vi Contents

		3.2.3 Voltage Gain of the Tank	36
		3.2.4 Class-F ₃ Oscillator	38
	3.3	Class- F_3 Phase Noise Performance	41
		3.3.1 Quality Factor of Transformer-Based Resonator	41
		3.3.2 Phase Noise Mechanism in Class- F_3 Oscillator	43
		3.3.3 Class-F ₃ Operation Robustness	48
	3.4	Experimental Results	49
		3.4.1 Implementation Details	49
		3.4.2 Measurement Results	50
	3.5	Conclusion	54
		References	55
4	An U	Ultra-Low Phase Noise Class-F ₂ CMOS Oscillator	59
	4.1	Introduction	59
	4.2	Challenges in Ultra-Low Phase Noise Oscillators	60
	4.3	Evolution Towards Class-F ₂ Operation	64
	4.4	Phase Noise Mechanism in Class- F_2 Oscillator	71
	4.5	Experimental Results	77
	4.6	Conclusion	82
		References	83
5	A 1/	f Noise Upconversion Reduction Technique	87
	5.1	Introduction	87
	5.2	Method to Reduce 1/f Noise Upconversion	91
		5.2.1 Auxiliary Resonant Frequencies	91
		5.2.2 Harmonic Effects on the Effective ISF	92
		5.2.3 Resonant Frequency at $2\omega_0$	99
		5.2.4 ω_{CM} Deviation from $2\omega_0$	100
	5.3	Circuit Implementation	102
		5.3.1 Inductor-Based F_2 Tank	106
		5.3.2 Class- D/F_2 Oscillator	108
		5.3.3 Transformer-Based F_2 Tank	110
		5.3.4 Class- $F_{2,3}$ Oscillator	111
	5.4	Experimental Results	114
		5.4.1 Class- D/F_2 Oscillator	114
		5.4.2 Class- $F_{2,3}$ Oscillator	115
	5.5	Conclusion	118
		References	118

6	A Sv	vitching Current-Source Oscillator	123
	6.1	Introduction	123
	6.2	Oscillator Power Consumption Trade-offs	125
	6.3	Switching Current-Source Oscillator	129
	6.4	Thermal Noise Upconversion	134
		6.4.1 Calculating the Effective Noise Due to	
		Transconductance Gain of M_{1-4} Transistors	
		$(\overline{i_{n,Gm}^2(\phi)})$	134
		6.4.2 Calculating the Negative Conductance of the	
		Oscillator $(G_n(\phi))$	136
		6.4.3 Calculating the Positive Conductance of the	
		Oscillator $(G_{DS}(\phi))$	139
		6.4.4 Satisfying Barkhausen Criterion	142
		6.4.5 Phase Noise Equation	146
	6.5	1/f Noise Upconversion	150
	6.6	Optimizing Transformer-Based Tank	150
	6.7	Experimental Results	152
	6.8	Conclusion	155
		References	155
7		ng Range Extension of an Oscillator Through	161
7	СМ	Resonance	161
7	CM 7.1	Resonance Introduction	161
7	CM 7.1 7.2	Resonance Introduction	161 164
7	CM 7.1 7.2 7.3	Resonance Introduction Mode-Switching Oscillator Common-Mode Resonances	161 164 170
7	CM 7.1 7.2	Resonance Introduction	161 164 170 173
7	CM 7.1 7.2 7.3	Resonance Introduction	161 164 170 173 173
7	CM 7.1 7.2 7.3	Resonance Introduction	161 164 170 173 173 176
7	CM 7.1 7.2 7.3 7.4	Resonance Introduction	161 164 170 173 173 176 184
7	CM 7.1 7.2 7.3	ResonanceIntroduction	161 164 170 173 173 176
7	CM 7.1 7.2 7.3 7.4	ResonanceIntroduction	161 164 170 173 173 176 184 184
7	CM 7.1 7.2 7.3 7.4 7.5	Resonance Introduction Mode-Switching Oscillator Common-Mode Resonances Novel Wide Tuning Range Oscillator 7.4.1 Dual-Core Oscillator 7.4.2 Phase Noise Analysis 7.4.3 Center Tap Inductance Experimental Results 7.5.1 Supply and Ground Routing Inductances and Losses	161 164 170 173 173 176 184 184
7	CM 7.1 7.2 7.3 7.4	Resonance Introduction	161 164 170 173 173 176 184 184 184 186 188
7	CM 7.1 7.2 7.3 7.4 7.5	Resonance Introduction Mode-Switching Oscillator Common-Mode Resonances Novel Wide Tuning Range Oscillator 7.4.1 Dual-Core Oscillator 7.4.2 Phase Noise Analysis 7.4.3 Center Tap Inductance Experimental Results 7.5.1 Supply and Ground Routing Inductances and Losses	161 164 170 173 173 176 184 184
8	CM 7.1 7.2 7.3 7.4 7.5 7.6 A St	Resonance Introduction Mode-Switching Oscillator Common-Mode Resonances Novel Wide Tuning Range Oscillator 7.4.1 Dual-Core Oscillator 7.4.2 Phase Noise Analysis 7.4.3 Center Tap Inductance Topply and Ground Routing Inductances and Losses Conclusion References udy of RF Oscillator Reliability in Nanoscale CMOS	161 164 170 173 173 176 184 184 184 186 188 189 193
	CM 7.1 7.2 7.3 7.4 7.5 7.6 A St 8.1	Resonance Introduction	161 164 170 173 173 176 184 184 184 186 188 189
	CM 7.1 7.2 7.3 7.4 7.5 7.6 A St	Resonance Introduction Mode-Switching Oscillator Common-Mode Resonances Novel Wide Tuning Range Oscillator 7.4.1 Dual-Core Oscillator 7.4.2 Phase Noise Analysis 7.4.3 Center Tap Inductance Topply and Ground Routing Inductances and Losses Conclusion References udy of RF Oscillator Reliability in Nanoscale CMOS	161 164 170 173 173 176 184 184 184 186 188 189 193

About the Authors		
Index		207
	References	205
8.6	Conclusion	204
	8.5.2 Class- F_2 Oscillators	201
	8.5.1 Class-F ₃ Oscillators	199
8.5	Reliability of Class-F ₃ Oscillators	199
8.4	Negative Bias Temperature Instability	199
8.3	Hot Carrier Degradation	198
	Condition	197
	8.2.4 Principle of Extrapolation to a Specified	
	8.2.3 Area and Temperature Dependence of T_{BD}	197
	8.2.2 η Estimation for Different Oxide Thicknesses	195

Preface

The steady growth of cellular and wireless communications motivates researchers to improve the performance of the systems, overcome the limitations and face new the challenges. One of the key blocks in a wireless radio is the RF oscillator which its purity limits the radio performance. The oscillator's phase noise in a transmit chain results in power leakage into adjacent channels. In the receive chain, the downconversion of a large interferer with noisy local oscillator (LO) cause reciprocal mixing. Furthermore, in orthogonal frequency-division multiplexing (OFDM) systems, the phase noise leads to inter carrier interference and a degradation in the digital communication bit error rate. The trade-off between oscillator's phase noise and its power consumption introduce a challenge for oscillator designers.

The main focus of this book is on the design and implementation of RF oscillators for wireless (mostly cellular) applications. Each oscillator that is introduced in these chapters tackles an obstacle in RF designs, such as low $1/f^2$ or low $1/f^3$ phase noise requirements, low voltage, low power requirements, and wide tuning range requirements.

Chapter 1 discusses how a transceiver performance can be limited by an oscillator characteristics. It also reviews how technology scaling affects an oscillator's performance.

Chapter 2 is a reminder how circuit noise up-converts to phase noise in an oscillator, and then briefly introduces and compares different LC oscillator structures.

In Chapter 3 we introduce a $class-F_3$ oscillator topology which demonstrates an improved phase noise performance by enforcing a pseudo-square voltage waveform around the LC tank by increasing the third harmonic of the fundamental oscillation voltage through an additional impedance peak. Furthermore, a comprehensive study of circuit-to-phase-noise conversion mechanisms of different classes of RF oscillator is presented.

x Preface

In Chapter 4, we elaborate on a design and implementation of class- F_2 oscillators. The main idea is to enforce a clipped voltage waveform around the LC tank by increasing the second-harmonic of fundamental oscillation voltage through an additional impedance peak, thus giving rise to a class- F_2 operation. This oscillator specifically addresses the ultra-low phase noise design space while maintaining high power efficiency. Extensive experimental results are also presented at the end of this chapter.

Excited by a harmonically rich tank current, a typical oscillation voltage waveform is observed to have asymmetric rise and fall times. This results in an effective impulse sensitivity function (ISF) of a non-zero dc value, which facilitates the flicker (1/f) noise up-conversion into the oscillator's $1/f^3$ phase noise. Chapter 5 elaborates a method to reduce a 1/f noise up-conversion in voltage-biased RF oscillators.

Chapter 6 introduces and analyzes in detail an oscillator with switching current sources to reduce supply voltage and power without sacrificing its phase noise and startup margins. This oscillator is specifically addressed IoT application constraints.

In Chapter 7 a method to broaden a tuning range of an LC-tank oscillator without sacrificing its area is presented. The extra tuning range is achieved by forcing a strongly coupled transformer-based tank into a common-mode resonance at a much higher frequency than in its main differential-mode oscillation. The oscillator employs separate active circuits to excite each mode but it shares the same tank, which largely dominates the core area but is on par with similar single-core designs.

Chapter 8 presents a design guide to estimate the time dependent dielectric beak down of any analog circuit with evaluating life time of class-F oscillators as an example.

List of Figures

Figure 1.1	(a) Evolution of data rates for wireless LAN,	
	cellular, and wireline short links over time; (b) power usage in a smartphone	2
Figure 1.2	Contribution of RF oscillator to the power consumption of cellular frequency synthesizers and receivers.	3
Figure 1.3	(a) Analog and; (b) digital phase locked loops	5
Figure 1.4	Oscillator's open loop and output frequency phase noise.	6
Figure 1.5	Nominal supply voltage versus CMOS technology node for (a) thin-oxide and (b) thick-oxide	
Figure 1 (devices.	7
Figure 1.6	(a) Back-end-of-line (BEOL) metallization; quality factor of (b) a 250 fF capacitor, and (c) a 100 pH inductor in 65 nm and 32 nm CMOS	
	technologies.	8
Figure 1.7	Damascene process steps.	8
Figure 1.8	 (a) Thickness variation by erosion in the CMP stage; (b) electromagnetic coupling between the wire and dummy fills; (c) inductor/transformer with lots of 	
	dummy metal fills.	9
Figure 1.9	(a) Flicker noise scaling trend; (b) measured excess noise (γ) factor versus drain-source voltage at 10 GHz and $V_{qs} = 1.0$ V for different gate lengths	-
	of NMOS transistors in 40 nm LP technology	10
Figure 2.1	A generic RF transceiver	14
Figure 2.2	Phase response to an impulse current	14
Figure 2.3	A class-B oscillator (a) schematic; (b) oscillation amplitude versus tail current; (c) ideal and real drain current waveforms; (d) oscillation voltage	
	waveforms.	17

xii List of Figures

Figure 2.4	The switch capacitor tuning circuit in on and off states.	18
Figure 2.5	(a) A class-C oscillator schematic and (b) its voltage waveforms.	20
Figure 2.6	(a) A class-C with dynamic generation of V_{bias} ; (b) a hybrid class-B/class-C oscillator.	21
Figure 2.7	(a) A class-D oscillator schematic and (b) its voltage waveforms.	22
Figure 3.1	Oscillator schematic: (a) traditional class-B; (b) class-C	28
Figure 3.2	LC-tank oscillator: (a) noise sources; (b) targeted oscillation voltage (top) and its expected	29
Figure 3.3	ISF (bottom)	29 30
Figure 3.4	New oscillator's waveforms in time and frequency domains.	31
Figure 3.5	The effect of adding third harmonic in the oscillation waveform (top) and its expected ISF (bottom).	32
Figure 3.6	(bottom)	32 32
Figure 3.7	Ratio of the tank resonant frequencies versus X -factor for different k_m	34
Figure 3.8	The transformer-based tank characteristics: (a) the input impedance, Z_{in} magnitude; (b) the trans-impedance, Z_{21} magnitude; (C) transformer's secondary to primary voltage gain; (d) the phase of	
Figure 3.9	Z_{in} and Z_{21} (momentum simulation)	35
Figure 3.10	frequency	36
	(b) cross-coupled. The first option was chosen as more advantageous in this work.	39

Figure 3.11	Root-locus plot of the transformer-based class-F ₃	
	oscillator: (a) transformer-coupled structure of	
	Figure 3.10(a); and (b) cross-coupled structure of	
	Figure 3.10(b)	39
Figure 3.12	(a) Oscillation voltage waveforms and (b) transient	
	response of the class- F_3 oscillator.	40
Figure 3.13	Open-loop circuit for unloaded Q-factor calculation	
	(a); its equivalent circuit (b).	41
Figure 3.14	RF CMOS oscillator noise sources.	44
Figure 3.15	Mechanisms of circuit noise to phase noise	
	conversion in different classes of RF CMOS	
	oscillator.	46
Figure 3.16	Sensitivity of class-F ₃ oscillator to the position	
	of the second resonant frequency: tank's input	
	impedance magnitude and phase (top); oscillation	
	waveform (bottom).	49
Figure 3.17	Die photograph of class- F_3 oscillator.	51
Figure 3.18	Measured phase noise at 3.7 GHz and power	
_	dissipation of 15 mW. Specifications (MS: mobile	
	station; BTS: basestation) are normalized to the	
	carrier frequency.	51
Figure 3.19	(a) Phase noise and figure of merit (FoM) at 3 MHz	
	offset versus carrier frequency and (b) frequency	
	pushing due to supply voltage variation.	52
Figure 3.20	Measured phase noise at 3.5 GHz and simulated	
	oscillation waveforms: (a) optimum case;	
	(b) exaggerated non-optimum case	53
Figure 4.1	Phase noise reduction techniques without sacrificing	
	tank's Q-factor: (a) coupled oscillators,	
	(b) connecting two step-up transformers back-to-	
	back, and (c) its equivalent circuit model.	62
Figure 4.2	Preliminary oscillator schematic and its simulated	
	voltage and estimated current waveforms at $f_0 =$	
	$8 \text{ GHz}, \text{V}_{\text{DD}} = 1.2 \text{ V}, \text{I}_{\text{DC}} = 33 \text{ mA}, \text{L}_{\text{eq}} = 80 \text{ pH},$	
	and $C_{eq} = 4.95 \text{ pF.} \dots \dots \dots \dots$	63
Figure 4.3	Simulated phase noise performance of the	
	preliminary oscillator of Figure 4.2 versus gate	
	differential oscillation voltage for the ideal and real	
	current sources.	63

xiv List of Figures

Figure 4.4	Drain current of $M_{1,2}$ devices of Figure 4.2 in time	
	and frequency domains	64
Figure 4.5	New oscillator's waveforms in time and frequency	
-	domains	65
Figure 4.6	Effect of adding second harmonic in the oscillation	
0	voltage waveform (top) and its expected ISF based	
	on Equation (38) (bottom).	66
Figure 4.7	Transformer behavior in (a) differential-mode and	
8	(b) common-mode excitations	67
Figure 4.8	New transformer-based resonator: (a) schematic, (b)	
8	its simplified equivalent differential-mode circuit	
	$(k_{m(DM)} \approx 1)$, and (c) simplified tank schematic	
	for common-mode input signals ($k_{m(CM)} \approx 0$)	67
Figure 4.9	Simulated characteristics of the transformer-based	
0	tank of Figure 4.8: (top) magnitude of input	
	impedance Z_{in} ; (bottom) tank voltage gain between	
	gate and drain of core devices.	69
Figure 4.10	Transformer-based class- F_2 oscillator schematic.	69
Figure 4.11	Simulated oscillation waveforms of the class- F_2	
0	oscillator at $V_{DD} = 1.2$ V and $I_{DC} = 29$ mA:	
	(top) oscillation voltage of different circuit nodes	
	and (bottom) core transistors drain current	70
Figure 4.12	Root-locus plot of the class- F_2 oscillator	71
Figure 4.13	Mechanisms of circuit-to-phase-noise conversion	
8	across the oscillation period in the class- F_2	
	oscillator: (a) simulated ISF of different tank nodes,	
	(b) equivalent ISF in the simplified oscillator	
	schematic of Figure 4.14, (c) simulated effective	
	power spectral density of the oscillator's noise	
	sources normalized to KT/R_{in} , (d) oscillation	
	waveforms and operation region of $M_{1,2}$,	
	(e) transconductance and channel conductance of	
	M_1 , (f) loaded Q-factor and effective parallel input	
	resistance of the tank, (g) power spectral density	
	of M_1 noise sources normalized to 4KT/R_{in} ,	
	(h) simulated ISF function of M_1 channel noise,	
	and (i) simulated effective power spectral density of	
	different noise sources of M_1 normalized to	
	KT/R_{in}	73
	-	

Figure 4.14	Simplified noise source model of the class- F_2	
	oscillator.	73
Figure 4.15	Die photograph of the class- F_2 oscillator	78
Figure 4.16	Measured (blue) and simulated (red) phase noise	
	plots at 4.35 GHz, $V_{\rm DD}~=~1.3$ V and $P_{\rm DC}~=~$	
	41 mW. Specifications (MS: mobile station, BTS:	
	basestation) are normalized to the carrier frequency.	79
Figure 4.17	Measured phase noise and figure of merit (FoM) at	
0	3 MHz offset versus carrier frequency.	81
Figure 4.18	Measured phase noise at 3 MHz offset frequency	
8	from 4.3 GHz carrier versus the oscillator current	
	consumption.	81
Figure 5.1	Class-B oscillator: (a) with tail transistor M_T ; (b)	01
i igui e ett	with tail resistor R_T ; and their PN when (c) M_T	
	is always in saturation; (d) M_T enters partially into	
	triode	88
Figure 5.2	(a) Current harmonic paths; (b) drain current in time	00
Figure 5.2	and frequency domains; (c) frequency drift due to	
	Groszkowski effect.	89
Figure 5.3	(a) Auxiliary resonances at higher harmonics; (b)	0)
Figure 5.5	current harmonic paths; (c) frequency drift; (d)	
	input impedance of the tank.	92
Figure 5.4	Oscillator example: (a) schematic; (b) V_{DS} , V_{GS} ,	92
Figure 5.4		
	and g_m of M_1 transistor when oscillation voltage	
	contains only fundamental component; (c) its ISF, NMF, and effective ISF.	93
Figure 5.5	Conventional tank waveforms: (a) fundamental,	93
Figure 5.5		
	V_{H1} , second harmonic, V_{H2} , voltage components,	
	and oscillation waveform, V_{T2} ; (b) its ISF, NMF,	
	and effective ISF; (c) $\Gamma_{eff,dc}/\Gamma_{eff,rms}$ for different	95
Figure 5 (α_2 values	95
Figure 5.6	Conventional tank waveforms: (a) fundamental,	
	V_{H1} , third harmonic, V_{H3} , voltage component, and	
	oscillation waveform, V_{T3} ; (b) its ISF, NMF, and	00
F: 5 7	effective ISF.	96
Figure 5.7	Ideal and real current waveforms.	97
Figure 5.8	Tank's current fundamental and second-harmonic	
	phases in (a) class-D; (b) class- F_3 ; and (c) class-C	0.0
	topologies	98

xvi List of Figures

Figure 5.9	(a) Voltage-biased class-B oscillator schematics;	
	(b) $1/f^3$ corner versus I_{H2}/I_{Hn}	99
Figure 5.10	Proposed tank waveforms: (a) fundamental voltage component, V_{H1} ; (b) voltage second harmonic in the presence of auxiliary resonance, $V_{H2,aux}$; (c) oscillation waveform, $V_{T2,aux}$; (d) its ISF, NMF,	100
Figure 5.11		102
Figure 5.12	(a) A tank with DM and CM resonances; (b) $1/f^3$ corner of the oscillator employing this tank; (c) ϕ_{CM} ; and (d) $\alpha_{2,aux}$ of the tank versus ω_{CM}/ω_{DM} .	103
Figure 5.13	(d) PN and (e) current harmonic components of a class-B oscillator (a), and similar counterparts with noise filtering technique (b) and the proposed method applied (c).	105
Figure 5.14	A 2-turn " F_2 " inductor in (a) DM excitation; (b) CM excitation; (c) F_2 DM and CM inductances and their	105
Figure 5.15	(a) Inductor-based F_2 tank and (b) its input	107
Figure 5.16	Class-D oscillator: (a) schematic; its (b) waveforms; and (c) gm-transistor ISF, NMF, and effective ISF. Class-D/F ₂ oscillator: (d) schematic; its (e) waveforms; and (f) gm-transistor ISF, NMF, and effective ISF; (g) their PN performance; and (h) $1/f^3$ corner sensitivity to ω_{CM}/ω_{DM}	108
Figure 5.17	Class-D/F ₂ oscillator: $1/f^3$ corner over process variation and (b) histogram of PN at 10-kHz offset	110
Figure 5.18	1:2 transformer when the primary is excited with	110
Figure 5.19	(a) Transformer-based F_2 tank; (b) its input impedance; (c) DM and CM primary and secondary inductance; (d) primary and secondary inductance quality factor and coupling factor; (e) DM and CM resonant frequencies over TR	111

Figure 5.20	Class-F ₃ oscillator: (a) schematic; (b) its waveforms;	
	and (c) gm-transistor ISF, NMF, and effective	
	ISF. Class- $F_{2,3}$ oscillator: (d) schematic; (e) its	
	waveforms; and (f) gm-transistor ISF, NMF, and	
	effective ISF; (g) their PN performance; and (h) $1/f^3$	
	corner sensitivity to ω_{CM}/ω_{DM}	112
Figure 5.21	Class- $F_{2,3}$ oscillator: $1/f^3$ corner over process	
	variation and (b) histogram of PN at 10-kHz offset	
	frequency	113
Figure 5.22	Chip micrographs: (a) class-D/F ₂ oscillator;	
	(b) class- $F_{2,3}$ oscillator	115
Figure 5.23	Class-D/F ₂ oscillator: measured (a) PN at $f_{\rm max}$ and	
	f_{\min} ; (b) frequency pushing due to supply voltage	
	variation; and (c) $1/f^3$ corner over tuning range	116
Figure 5.24	Class- $F_{2,3}$ oscillator: measured (a) PN at f_{max} and	
	f_{\min} ; (b) frequency pushing due to supply voltage	
	variation; and (c) $1/f^3$ corner over tuning range	117
Figure 6.1	BLE system lifetime versus radio current	
	consumption for various battery types	124
Figure 6.2	Delivered voltage and power density for various	
	harvester types.	124
Figure 6.3	Dependency of various inductor parameters in	
	28-nm LP CMOS across inductance value:	
	(a) inductor and tank Q-factor; (b) equivalent	
	differential input resistance of the tank; and	
	(c) required tank capacitance at 4.8-GHz resonance.	
	Note that at this point the inductors are without	
	dummy metal fills	127
Figure 6.4	$V_{DD,min}$, α_I and α_V parameters for: (a) cross-	
	coupled NMOS and (b) complementary push-pull	
	oscillators	128
Figure 6.5	Evolution towards the switching current-source	
	oscillator.	130
Figure 6.6	Various options of a tank providing voltage gain	131
Figure 6.7	Schematic of the switching current-source	
	oscillator.	131
Figure 6.8	Waveforms and various operational regions of M_{1-4}	
	transistors across the oscillation period	132

xviii List of Figures

Figure 6.9	f_{max} of low- V_t 28 nm transistor versus V_{DS} for	
0	different V_{GS} .	133
Figure 6.10	Generic noise circuit model of the disclosed	
	oscillator.	134
Figure 6.11	Simplified schematic of the switching current-source	
	oscillator.	136
Figure 6.12	Simplified schematic of the lower pair of	
	the oscillator.	136
Figure 6.13	Simplified schematic of the upper pair of	
	the oscillator.	138
Figure 6.14	Circuit-to-phase-noise conversion across the	
	oscillation period in the switching current-source	
	oscillator. Simulated (a) channel conductance of	
	M_{1-4} ; (b) conductance due to resistive losses; (c)	
	noise factor due to losses; (d) transconductance	
	of M_{1-4} ; (e) effective noise factor due to	
	transconductance gain; (f) effective noise factors	
	due to different oscillator's components	148
Figure 6.15	Transformer-based tank: (a) schematic; (b) input	
	parallel resistance; (c) voltage gain; and (d) R_{21}	
	versus ζ -factor.	151
Figure 6.16	(a) Chip micrograph; (b) measured oscillator phase	
	noise and FoM at 3-MHz offset frequency across the	
	tuning range.	152
Figure 6.17	Measured phase noise of this oscillator	153
Figure 7.1	LC tanks for wide tuning range: (a) resonant mode	
	switching technique; (b) band switching technique;	
	(c) introduced technique	163
Figure 7.2	(a) Transformer-based tank and (b) its input	
	impedance; (c) capacitively coupled transformer-	
	based tank and (d) its input impedance	165
Figure 7.3	(a) Simplified schematic of DCO; (b) DCO operates	1.65
T: 7 4	in HB; and (c) LB.	165
Figure 7.4	Differential transconductance schematic.	167
Figure 7.5	(a) Inductance and (b) quality factor of the	
	transformer's primary and secondary winding.	177
F: 7 ((c) The coupling factor. (d) Chip micrograph	167
Figure 7.6	PN of the oscillator in the LB.	168
Figure 7.7	PN of the oscillator in the HB	169

Figure 7.8	Oscillation frequency dependency on supply voltage	1.00
Figure 7.9	for different frequency bands	169
	excitation; (d) CM excitation; and (e) tank's input	170
F: 7 10	impedance.	170
Figure 7.10	(a) Differential and (b) single-ended capacitor banks.	173
Figure 7.11	Dual core oscillator: (a) schematic; (b) overlap and	170
i igui e //ii	octave oscillation conditions; and (c) tuning range.	174
Figure 7.12	Dual core oscillator waveforms: (a,b) DM and (c,d)	
8	СМ	175
Figure 7.13	Procedures of referring the noise back to the tank	
0	from: (a) r_{ds3} and negative conductance; (b) g_m of	
	M_3 ; and (c) g_m of M_4 . (d) The equivalent circuit of	
	the Colpitts oscillator.	178
Figure 7.14	Noise sources of the DM oscillator.	179
Figure 7.15	Circuit-to-phase-noise conversion in CM oscillator.	180
Figure 7.16	(a) Drain and source voltage waveforms. (b) g_{m3} :	
	theory and simulations.	181
Figure 7.17	(a-d) Circuit-to-phase-noise conversion in DM	
	oscillator; (e) tail transistor ISF; and (f) PN of CM	
	and DM oscillators at the overlap frequency	183
Figure 7.18	Transformer characteristics.	185
Figure 7.19	(a) Measured PN at $f_{DM,max}$, $f_{DM,min}$; (b) $f_{CM,max}$	
	and $f_{CM,min}$. Measured (c) PN and (d) FoM at	
	10-MHz offset across TR. Frequency pushing due	
	to supply voltage variation in (e) DM and (f) CM	
	oscillators	187
Figure 7.20	Return current path in the 1:2 transformer	188
Figure 8.1	Weibull slope versus gate-oxide thickness	195

xx List of Figures

Figure 8.2	Comparison of characteristic time-to-breakdown η versus gate voltage in NMOS inversion for different gate-oxide thicknesses from 1.5 to 12 nm. The solid lines represent the result of defect generation model as described. The dashed lines are from the least-square fit using the E-model, as described. The data points (open/solid squares, triangles, and circles) are extracted from literature and scaled to	
	140° C with an area of $10^3 \mu m^2$.	196
Figure 8.3	Extrapolation steps to the specified condition	198
Figure 8.4	Class-F oscillator: (a) schematic; (b) waveforms.	200
Figure 8.5	Class-F ₃ oscillator lifetime estimation due to TDDB	
	for thin- and thick-oxide transistors	200
Figure 8.6	(a) Measured cumulative failure rate F versus breakdown time T_{BD} for 14 samples of a thick-oxide transistor (176 µm/0.28 µm) at room temperature, (b) the projected η value versus different gate-oxide stress voltage based on the measured η_{ref} , (c) Weibull slope versus gate-oxide thickness extracted from measurement results, and (d) voltage acceleration versus gate-oxide thickness extracted from measurement results	202
Figure 8.7	Estimated time-to-breakdown (based on the measured parameters of Figure 8.6(a)) of thick-oxide transistors in 65-nm CMOS versus maximum gate-oxide stress voltage for different (a) cumulative failure rates, (b) temperatures, and (c) gate-oxide areas	203

List of Tables

Table 1.1	Communication standards requirements	4
Table 3.1	Normalized zero-crossing slope of the novel	
	oscillator	38
Table 3.2	Comparison of different oscillator's classes for	
	the same V_{DD} (1.2 V), tank Q-factor (15), R_P	
	(i.e. 220 Ω), and carrier frequency (7 GHz) at 3 MHz	
	offset frequency	48
Table 3.3	Comparison with relevant oscillators	54
Table 4.1	Comparison between the results of SpectreRF PSS,	
	Pnoise simulation and theoretical equations at 8-GHz	
	carrier for $V_{DD} = 1.2$ V, $R_{in} = 60 \Omega$, $L_{eq} = 80$ pH,	
	$\gamma_{MT} = 1.3$, and $\gamma_{M1,2} = 1$	77
Table 4.2	Comparison between two flavors of class-F oscillator	
	for the same carrier frequency = 8 GHz, V_{DD} =	
	1.2 V, tank Q-factor = 14, $\Delta f = 10$ MHz, and	
	$\mathbf{R}_{\mathrm{P}} = 240 \ \Omega \dots \dots \dots \dots \dots \dots \dots \dots \dots $	77
Table 4.3	Comparison with relevant ultra-low phase noise	
	oscillators	82
Table 5.1	Performance summary and comparison with relevant	
	oscillators	116
Table 6.1	Performance summary of state-of-the-art boost	
	converters	125
Table 6.2	Minimum P _{DC} for different RF oscillator topologies	129
Table 6.3	Comparison table of low power oscillators	154
Table 7.1	Performance summary and comparison with relevant	
	oscillators	185

List of Abbreviations

10	
4G	Fourth generation
5G	Fifth generation
AM	Amplitude modulation
BEOL	Back-end-of-line
BTS	Base station
BLE	Bluetooth Low Energy
CMP	Chemical-mechanical polishing
CMOS	Complementary metal-oxide-semiconductor
DCO	Digitally controlled oscillator
DT	Direct quantum-mechanical tunneling
FoM	Figure of merit
FinFET	Fin Field-effect transistor
FN	Fowler–Nordheim
GSM	Global system for mobile
ISF	Impulse sensitivity function
IoT	Internet-of-Things
KCL	Kirchhoff's current law
LTV	Linear time variant
LO	Local oscillator
MoM	Metal-oxide-metal
MOS	Metal-oxide-semiconductor
NBTI	Negative bias temperature instability
OFDM	Orthogonal Frequency-Division Multiplexing
PER	Packet error rate
PLL	Phase lock loop
PM	Phase modulation
PN	Phase noise
PA	Power amplifier
PVT	Process-voltage-temperature
Q-factor	Quality factor
RF	Radio frequency
	······································

xxiv List of Abbreviations

SNR	Signal-to-noise ratio
SoC	System-on-chips
TDDB	Time-dependent dielectric breakdown
TR	Tuning range
ULP	Ultra-low power
UMTS	Universal mobile telecommunication system
VCO	Voltage control oscillator