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Preface

The steady growth of cellular and wireless communications motivates
researchers to improve the performance of the systems, overcome the
limitations and face new the challenges. One of the key blocks in a
wireless radio is the RF oscillator which its purity limits the radio
performance. The oscillator’s phase noise in a transmit chain results
in power leakage into adjacent channels. In the receive chain, the
downconversion of a large interferer with noisy local oscillator (LO)
cause reciprocal mixing. Furthermore, in orthogonal frequency-division
multiplexing (OFDM) systems, the phase noise leads to inter carrier
interference and a degradation in the digital communication bit error rate.
The trade-off between oscillator’s phase noise and its power consumption
introduce a challenge for oscillator designers.

The main focus of this book is on the design and implementation of
RF oscillators for wireless (mostly cellular) applications. Each oscillator
that is introduced in these chapters tackles an obstacle in RF designs, such
as low 1/f2 or low 1/f3 phase noise requirements, low voltage, low power
requirements, and wide tuning range requirements.

Chapter 1 discusses how a transceiver performance can be limited by an
oscillator characteristics. It also reviews how technology scaling affects an
oscillator’s performance.

Chapter 2 is a reminder how circuit noise up-converts to phase noise in
an oscillator, and then briefly introduces and compares different LC oscillator
structures.

In Chapter 3 we introduce a class-F3 oscillator topology which
demonstrates an improved phase noise performance by enforcing a
pseudo-square voltage waveform around the LC tank by increasing
the third harmonic of the fundamental oscillation voltage through an
additional impedance peak. Furthermore, a comprehensive study of
circuit-to-phase-noise conversion mechanisms of different classes of RF
oscillator is presented.

ix



x Preface

In Chapter 4, we elaborate on a design and implementation of class-F2

oscillators. The main idea is to enforce a clipped voltage waveform
around the LC tank by increasing the second-harmonic of fundamental
oscillation voltage through an additional impedance peak, thus giving rise
to a class-F2 operation. This oscillator specifically addresses the ultra-low
phase noise design space while maintaining high power efficiency. Extensive
experimental results are also presented at the end of this chapter.

Excited by a harmonically rich tank current, a typical oscillation voltage
waveform is observed to have asymmetric rise and fall times. This results in
an effective impulse sensitivity function (ISF) of a non-zero dc value, which
facilitates the flicker (1/f) noise up-conversion into the oscillator’s 1/f3 phase
noise. Chapter 5 elaborates a method to reduce a 1/f noise up-conversion in
voltage-biased RF oscillators.

Chapter 6 introduces and analyzes in detail an oscillator with switching
current sources to reduce supply voltage and power without sacrificing its
phase noise and startup margins. This oscillator is specifically addressed IoT
application constraints.

In Chapter 7 a method to broaden a tuning range of an LC-tank oscillator
without sacrificing its area is presented. The extra tuning range is achieved
by forcing a strongly coupled transformer-based tank into a common-mode
resonance at a much higher frequency than in its main differential-mode
oscillation. The oscillator employs separate active circuits to excite each
mode but it shares the same tank, which largely dominates the core area but
is on par with similar single-core designs.

Chapter 8 presents a design guide to estimate the time dependent
dielectric beak down of any analog circuit with evaluating life time of class-F
oscillators as an example.
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