
1
Introduction

Luı́s Miguel Pinho1, Eduardo Quiñones2, Marko Bertogna3,
Andrea Marongiu4, Vincent Nélis1, Paolo Gai5 and Juan Sancho6

1CISTER Research Centre, Polytechnic Institute of Porto, Portugal
2Barcelona Supercomputing Center (BSC), Spain
3University of Modena and Reggio Emilia, Italy
4Swiss Federal Institute of Technology in Zurich (ETHZ), Switzerland;
and University of Bologna, Italy
5Evidence SRL, Italy
6ATOS, Spain

This chapter provides an overview of the book theme, motivating the need for
high-performance and time-predictable embedded computing. It describes the
challenges introduced by the need for time-predictability on the one hand,
and high-performance on the other, discussing on a high level how these
contradictory requirements can be simultaneously supported.

1.1 Introduction

High-performance computing has been for a long time the realm of a specific
community within academia and specialized industries; in particular those
targeting demanding analytics and simulations applications that require pro-
cessing massive amounts of data. In a similar way, embedded computing has
also focused mainly on specific systems with specialized and fixed function-
alities and for which timing requirements were considered as much more
important than performance requirements. However, with the ever-increasing
availability of more powerful processing platforms, alongside affordable and
scalable software solutions, both high-performance and embedded computing
are extending to other sectors and application domains.

1

2 Introduction

The demand for increased computational performance is currently
widespread and is even more challenging when large amounts of data need
to be processed, from multiple data sources, with guaranteed processing
response times. Although many systems focus on performance and handling
large volumes of streaming data (with throughput and latency requirements),
many application domains require real-time behavior [1–6] and challenge the
computing capability of current technologies. Some examples are:

• In cyber-physical systems, ranging from automotive and aircrafts, to
smart grids and traffic management, computing systems are embedded
in a physical environment and their behavior obeys the technical rules
dictated by this environment. Typically, they have to cope with the
timing requirements imposed by the embedding domain. In the Large
Hadron Collider (LHC) in CERN, beam collisions occur every 25 ns,
which produce up to 40 million events per second. All these events are
pipelined with the objective of distinguishing between interesting and
non-interesting events to reduce the number of events to be processed to
a few hundreds [7]. Similarly, bridges are monitored in real-time [8] with
information collected from more than 10,000 sensors processed every
8 ms, managing responses to natural disasters, maintaining bridge struc-
ture, and estimating the extent of structural fatigue. Another interesting
application is in intelligent transportation systems, where systems are
developed to allow for fuel consumption reduction of railway systems,
managing throttle positions, elaborating big amounts of data and sensor
information, such as train horsepower, weight, prevailing wind, weather,
traffic, etc. [9].

• In the banking/financial markets, computing systems process large
amounts of real-time stock information in order to detect time-dependent
patterns, automatically triggering operations in a very specific and tight
timeframe when some pre-defined patterns occur. Automated algorith-
mic trading programs now buy and sell millions of dollars of shares
time-sliced into orders separated by 1 ms. Reducing the latency by 1 ms
can be worth up to $100 million a year to a leading trading house. The
aim is to cut microseconds off the latency in which these systems can
reach to momentary variations in share prices [10].

• In industry, computing systems monitor business processes based on
the capability to understand and process real-time sensor data from
the factory-floor and throughout the whole value chain, with Radio
Frequency Identification (RFID) components in order to optimize both
the production and logistics processes [11].

1.1 Introduction 3

The underlying commonality of the systems described above is that they are
time-critical (whether business-critical or mission-critical, it is necessary to
fulfill specific timing requirements) and with high-performance requirements.
In other words, for such systems, the correctness of the result is dependent
on both performance and timing requirements, and meeting those is critical
to the functioning of the system. In this context, it is essential to guarantee
the timing predictability of the performed computations, meaning that argu-
ments and analyses are needed to be able to make arguments of correctness,
e.g., performing the required computations within well-specified bounds.

1.1.1 The Convergence of High-performance and Embedded
Computing Domains

Until now, trends in high-performance and embedded computing domains
have been running in opposite directions. On one side, high-performance
computing (HPC) systems are traditionally designed to make the common
case as fast as possible, without concerning themselves with the timing
behavior (in terms of execution time) of the not-so-often cases. As a result,
the techniques developed for HPC are based on complex hardware and
software structures that make any reliable timing bound almost impossi-
ble to derive. On the other side, real-time embedded systems are typically
designed to provide energy-efficient and predictable solutions, without heavy
performance requirements. Instead of fast response times, they aim at having
deterministically bounded response times, in order to guarantee that deadlines
are met. For this reason, these systems are typically based on simple hardware
architectures, using fixed-function hardware accelerators that are strongly
coupled with the application domain.

In the last years, the above design choices are being questioned by the
irruption of multi-core processors in both computing markets. The huge
computational necessities to satisfy the performance requirements of HPC
systems and the related exponential increments of power requirements (typ-
ically referred to as the power wall) exceeded the technological limits
of classic single-core architectures. For these reasons, the main hardware
manufacturers are offering an increasing number of computing platforms
integrating multiple cores within a chip, contributing to an unprecedented
phenomenon sometimes referred to as “the multi-core revolution.” Multi-core
processors provide better energy efficiency and performance-per-cost ratio,
while improving application performance by exploiting thread-level paral-
lelism (TLP). Applications are split into multiple tasks that run in parallel

4 Introduction

on different cores, extending to the multi-core system level an important
challenge already faced by HPC designers at multi-processor system level:
parallelization.

In the embedded systems domain, the necessity to develop more flexible
and powerful systems (e.g., from fixed-function phones to smart phones
and tablets) have pushed the embedded market in the same direction. That
is, multi-cores are increasingly considered as the solution to cope with
performance and cost requirements [12], as they allow scheduling multiple
application services on the same processor, hence maximizing the hardware
utilization while reducing cost, size, weight, and power requirements. How-
ever, real-time embedded applications with time-criticality requirements are
still executed on simple architectures that are able to guarantee a predictable
execution pattern while avoiding the appearance of timing anomalies [13].
This makes real-time embedded platforms still relying on either single-core or
simple multi-core CPUs, integrated with fix-function hardware accelerators
into the same chip: the so-called System-on-Chip (SoC).

The needs for energy-efficiency (in the HPC domain) and for flexibility
(in the embedded computing domain), coming along with Moore’s law,
greedy demand for performance, and the advancements in the semiconductor
technology, have progressively paved the way for the introduction of “many-
core” systems, i.e., multi-core chips containing a high number of cores (tens
to hundreds) in both domains. Examples of many-core architectures are
described in the next chapter.

The introduction of many-core systems has set up an interesting trend
wherein both the HPC and the real-time embedded domains converge towards
similar objectives and requirements. Many-core computing fabrics are being
integrated with general-purpose multi-core processors to provide a heteroge-
neous architectural harness that eases the integration of previously hardwired
accelerators into more flexible software solutions. In recent years, the HPC
computing domain has seen the emergence of accelerated heterogeneous
architectures, most notably multi-core processors integrated with General
Purpose Graphic Processing Units (GPGPU), because GPGPUs are a flexi-
ble and programmable accelerator for data parallel computations. Similarly,
in the real-time embedded domain, the Kalray Multi-Purpose Processor
Array (MPPA), which includes clusters of quad-core CPUs coupled with
many-core computing clusters. In both cases, the many-core fabric acts as
a programmable accelerator. More recently, the Field-Programmable Gate
Array (FPGA) has been used as a flexible accelerator fabric, complementing
the above.

1.1 Introduction 5

In this current trend, challenges that were previously specific to each
computing domain, start to be common to both domains (including energy-
efficiency, parallelization, compilation, and software programming) and are
magnified by the ubiquity of many-cores and heterogeneity across the whole
computing spectrum. In that context, cross-fertilization of expertise from both
computing domains is mandatory.

1.1.2 Parallelization Challenge

Needless to say that many industries with both high-performance and real-
time requirements are eager to benefit from the immense computing capa-
bilities offered by these new many-core embedded designs. However, these
industries are also highly unprepared for shifting their earlier system designs
to cope with this new technology, mainly because such a shift requires adapt-
ing the applications, operating systems, and programming models in order
to exploit the capabilities of many-core embedded computing systems. On
one hand, neither have many-core embedded processors, such as the MPPA,
been designed to be used in the HPC domain, nor have HPC techniques
been designed to apply embedded technology. On the other hand, real-time
methods to determine the timing behavior of an embedded system are not
prepared to be directly applied to the HPC domain and these platforms,
leading to a number of significant challenges.

On one side, different parallel programming models and multiprocessor
operating systems have been proposed and are increasingly being adopted in
today’s HPC computing systems. In recent years, the emergence of acceler-
ated heterogeneous architectures such as GPGPUs have introduced parallel
programming models such as OpenCL [14], the currently dominant open
standard for parallel programming of heterogeneous systems, or CUDA [15],
the dominant proprietary framework of NVIDIA. Unfortunately, they are not
easily applicable to systems with real-time requirements, since, by nature,
many-core architectures are designed to integrate as much functionality
as possible into a single chip. Hence, they inherently share out as many
resources as possible amongst the cores, which heavily impacts the ability
to providing timing guarantees.

On the other side, the embedded computing domain world has always
seen plenty of application-specific accelerators with custom architectures,
manually tuning applications to achieve predictable performance. Such
types of solutions have limited flexibility, complicating the development of
embedded systems. Commercial off-the-shelf (COTS) components based on

6 Introduction

many-core architectures are likely to dominate the embedded computing mar-
ket in the near future, even if complemented with custom function-specific
accelerators. As a result, migrating real-time applications to many-core exe-
cution models with predictable performance requires a complete redesign of
current software architectures. Real-time embedded application developers
will therefore either need to adapt their programming practices and operating
systems to future many-core components, or they will need to content them-
selves with stagnating execution speeds and reduced functionalities, relegated
to niche markets using obsolete hardware components.

This new trend in the manufacturing technology and the industrial need
for enhanced computing capabilities and flexible heterogeneous program-
ming solutions of accelerators for predictable parallel computations bring to
the forefront important challenges for which solutions are urgently needed.
This book outlines how to bring together next-generation many-core accel-
erators from the embedded computing domain with the programmability
of many-core accelerators from the HPC computing domain, supporting
this with real-time methodologies to provide time predictability and high-
performance.

1.2 The P-SOCRATES Project

The work described in this book was performed in the scope of the
European project P-SOCRATES (Parallel Software Framework for Time-
Critical Many-core Systems)1, funded under the FP7 framework program
of the European Commission. The project, finished in December 2016,
aimed to allow applications with high-performance and real-time require-
ments to fully exploit the huge performance opportunities brought by the
most advanced COTS many-core embedded processors, whilst ensuring pre-
dictable performance of applications (Figure 1.1). The project consortium
included Instituto Superior de Engenharia do Porto (coordinator), Portugal,
the Barcelona Supercomputing Centre, Spain, the University of Modena
and Reggio Emilia, Italy, the Swiss Federal Institute of Technology Zurich,
Switzerland, Evidence SRL, Italy, Active Technologies SRL, Italy and ATOS,
Spain.

P-SOCRATES focused on combining techniques from different domains:
the newest high-performance software techniques for exploiting task paral-
lelism, the most advanced mapping and scheduling methodologies and timing

1htttp://www.p-socrates.eu

1.2 The P-SOCRATES Project 7

Figure 1.1 P-SOCRATES Global perspective.

and schedulability analysis techniques used in real-time embedded systems,
and the low-energy many-core platforms of the embedded domain. This
allowed taking important steps towards the convergence of HPC and real-
time and embedded domains (Figure 1.2), providing predictable performance
to HPC systems and increasing performance of real-time embedded systems.

Figure 1.2 P-SOCRATES combines high-performance parallel programming models, high-
end embedded many-core platforms and real-time systems technology.

8 Introduction

Figure 1.3 Vertical stack of application decomposition.

P-SOCRATES developed a complete and coherent software system
stack, able to bridge the gap between the application design with both
high-performance and real-time requirements, and the hardware platform,
a many-core embedded processor. The project provided a new framework
to combine real-time embedded mapping and scheduling techniques with
high-performance parallel programming models and associated tools, able
to express parallelization of applications. The programming model used was
based on the state-of-the-art OpenMP specification.

The software stack (shown in Figure 1.3) is able to extract a task-
dependency graph from the application, statically or dynamically mapping
these tasks to the threads of the operating system, which then dynamically
schedules them on the many-core platform.

1.3 Challenges Addressed in This Book

1.3.1 Compiler Analysis of Parallel Programs

In order to enable predictable parallel performance to be analyzed, it is
required that the application parallel graph is known, with control- and

1.3 Challenges Addressed in This Book 9

data-flow information needed for the analysis of the timing behavior of the
parallel program. The extraction of this information should be as automatic as
possible, to release the programmer from the burden of needing to understand
the exact hardware details.

Chapter 3 addresses this challenge by presenting how this information can
be obtained from the OpenMP tasking model, and how this information can
be used to derive the timing properties of an application parallelized using
this model.

1.3.2 Predictable Scheduling of Parallel Tasks on Many-core
Systems

To be able to derive guarantees on the correct timing execution of parallel
programs, it is required to provide appropriate mapping and scheduling
algorithms of parallel computation in many-core platforms, together with
deriving the associated offline analysis that enable determining if applications
will meet their deadlines.

The challenge of real-time scheduling and schedulability analysis of par-
allel code is discussed in Chapter 4, which provides the substantial advances
that the project has performed in the real-time scheduling and schedulability
analysis of parallel graphs, using different scheduling models.

1.3.3 Methodology for Measurement-based Timing Analysis

The use of multi- and many-core platforms considerably challenges
approaches for real-time timing analysis, required to determine worst-case
execution time of the application code. In fact, the analysis of code execution
time is considerably complex due to the interaction and conflicts between
the multiple cores utilizing the same hardware resources (e.g., bus, memory,
network).

Chapter 5 investigates the different available methods to perform this
timing analysis in a many-core setting. After weighing the advantages and
disadvantages of each technique, a new methodology is presented based on
runtime measurements to derive worst-case estimates.

1.3.4 Optimized OpenMP Tasking Runtime System

The methodology presented in Chapters 3 to 5 of this book relies on the par-
allel computing abstraction provided by the OpenMP tasking model, and its
conceptual similarities to the Direct Acyclic Graph (DAG) model, to achieve

10 Introduction

predictable task scheduling, requiring an efficient runtime support. However,
a space- and performance-efficient design of a tasking run-time environment
targeting a many-core system-on-chip is a challenging task, as embedded
parallel applications typically exhibit very fine-grained parallelisms.

For that purpose, Chapter 6 presents the design and implementation of
an OpenMP tasking run-time environment with very low time and space
overheads, which is able to support the approach of the book.

1.3.5 Real-time Operating Systems

The run-time environment of Chapter 6 requires the underlying support of
a Real-Time Operating System (RTOS) for many-core architectures. This
operating system needs to both be able to execute multi-threaded applications
in multiple cores, and also efficiently support a limited pre-emptive model,
where threads are only pre-empted at the boundaries of OpenMP tasks.

Chapter 7 presents the re-design and re-implementation of the ERIKA
Enterprise RTOS, aiming at an efficient execution on this kind of platforms.
The new version of the RTOS allows us to share a single binary kernel
image across several cores of the platform, reducing the overall memory
consumption, and includes the new limited pre-emptive model.

1.4 The UpScale SDK

An outcome of the P-SOCRATES project was a complete and coherent
software framework for applications with high-performance and real-time
requirements in COTS many-core embedded processors. This software
framework was publicly released under the brand of the UpScale SDK (Soft-
ware Development Kit)2. The UpScale SDK includes the tools to manage
the application compilation process, its timing analysis and its execution
(Figure 1.4):

• Compiler flow. This flow has a twofold objective: (i) to guide the process
to generate the binary that will execute on the many-core architecture
and (ii) to generate the application DAG used for the timing analysis
and run-time components.

• Analysis flow. This flow is in charge of deriving timing guarantees of the
parallel execution considering execution time traces of the application
running on the many-core platform and incorporated in the DAG. Timing

2http://www.upscale-sdk.com

1.5 Summary 11

Figure 1.4 The UpScale SDK.

guarantees are derived by means of execution time bounds and a static
scheduler or dynamic scheduler supported with response-time analysis.

• Execution stack. These two components are in charge of orchestrating
the parallel execution of the application in a time-predictable manner,
based on the DAG.

1.5 Summary

Providing high performance while meeting predictability requirements of
real-time applications is a challenging task, which requires new techniques
and tools at most if not all levels of the design flow and execution stack. This
book presents the work which was done within the P-SOCRATES project to
address these challenges, presenting solutions for deriving control- and data-
flow graph of OpenMP parallel programs using the tasking model, algorithms
for mapping and scheduling the OpenMP tasks into many-core platforms,
and methods to perform both timing and schedulability analysis. The book
also describes solutions for the runtime execution stack for real-time parallel
computation, both at the level of the OpenMP runtime, as well as within
real-time operating systems.

12 Introduction

References

[1] Magid, Y., Adi, A., Barnea, M., Botzer, D., Rabinovich, E., “Appli-
cation generation framework for real-time complex event processing,”
32nd Annual IEEE International Computer Software and Applications
(COMPSAC), 2008.

[2] Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N., “Stream reasoning
and complex event processing in ETALIS,” Semantic Web 1, 2009, IOS
Press, pp. 1–5.

[3] Luckham, D. C., “Event Processing for Business: Organizing the Real-
Time Enterprise,” John Wiley and Sons, 2011.

[4] Palmer, M., “Real-Time Big Data and the 11 Principles of Mod-
ern Surveillance Systems,” http://streambase.typepad.com/streambase
stream process/2011/07/in-his-tabbforum-article-dave-tolladay-
eloquently-argues-that-real-time-surveillance-is-crucial-in-todays-
high-frequency-t.html, last accessed February 2018.

[5] Twentyman, J., “Sensory Perception,” http://www.information-age.com/
technology/information-management/1248733/sensory-perception, last
accessed February 2018.

[6] Klein, R., Xie, J., and Usov, A., “Complex events and actions to control
cyber-physical systems.” In Proceedings of the 5th ACM International
Conference on Distributed Event-Based System (DEBS), 2011.

[7] Shapiro, M., “Supersymmetry, extra dimensions and the origin of mass:
exploring the nature of the universe using petaScale data analysis,”
Google TechTalk, June 18, 2007.

[8] “NTT DATA: Staying Ahead of the IT Services Curve With Real-Time
Analytics,” https://www.sap.com/sea/documents/2012/10/66e7c78d-357
c-0010-82c7-eda71af511fa.html, last accessed February 2018.

[9] “SAP Enters Complex-event Processing Market,” http://www.cio.com.
au/article/377688/sap enters complex-event processing market/, last
accessed February 2018.

[10] Tieman, R., “Algo trading: the dog that bit its master”, Financial Times,
March 2008.

[11] Karim, L., Boulmakoul, A., Lbath, A., “Near real-time big data ana-
lytics for NFC-enabled logistics trajectories,” 2016 3rd International
Conference on Logistics Operations Management (GOL), Fez, 2016,
pp. 1–7.

References 13

[12] Ungerer, T., et. al. “MERASA: Multi-core execution of hard real-time
applications supporting analysability,” In the IEEE Micro 2010, Spe-
cial Issue on European Multicore Processing Projects, Vol. 30, No. 5,
October 2010.

[13] Lundqvist, T., Stenstrom, P., “Timing anomalies in dynamically sched-
uled microprocessors.” In IEEE Real-Time Systems Symposium, 1999.

[14] “OpenCL (Open Computing Language)”, http://www.khronos.org/
opencl, last accessed February 2018.

[15] NVIDIA, https://developer.nvidia.com/cuda-zone, last accessed
February 2018.

