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This chapter motivates the use of the OpenMP (Open Multi-Processing)
parallel programming model to develop future critical real-time embedded
systems, and analyzes the time-predictable properties of the OpenMP tasking
model. Moreover, this chapter presents the set of compiler techniques needed
to extract the timing information of an OpenMP program in the form of an
OpenMP Direct Acyclic Graph or OpenMP-DAG.

3.1 Introduction

Parallel programming models are key to increase the productivity of parallel
software from three different angles:

1. From a programmability angle, parallel programming models provide
developers with the abstraction level required to program parallel
applications while hiding processor complexities.

2. From a portability angle, platform-independent parallel programming
models allow executing the same parallel source code in different
parallel platforms.

3. From a performance angle, different levels of abstraction allow for a
fine-tuned parallelism, i.e., users may either squeeze the capabilities of
a specific architecture using the language capabilities, or rely on runtime
mechanisms to dynamically exploit parallelism.
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Hence, parallel programming models are of paramount importance to exploit
the massive computation capabilities of state-of-the-art and future parallel
and heterogeneous processor architectures. Several approaches coexist with
such a goal, and these can be grouped as follows [1]:

• Hardware-centric models aim to replace the native platform program-
ming with higher-level, user-friendly solutions, e.g., Intel R© TBB [2] and
NVIDIA R© CUDA [3]. These models focus on tuning an application to
match a chosen platform, which makes their use neither a scalable nor a
portable solution.
• Application-centric models deal with the application parallelization

from design to implementation, e.g., OpenCL [4]. Although portable,
these models may require a full rewriting process to accomplish produc-
tivity.
• Parallelism-centric models allow users to express typical parallelism

constructs in a simple and effective way, and at various levels of
abstraction, e.g., POSIX threads [6] and OpenMP [7]. This approach
allows flexibility and expressiveness, while decoupling design from
implementation.

Considering the vast amount of parallel programming models available,
there is a noticeable need to unify programming models to exploit the
performance benefits of parallel and heterogeneous architectures [9]. In that
sense, OpenMP has proved many advantages over its competitors to enhance
productivity. The next sections introduce the main characteristics of the most
relevant programming models, and conclude with an analysis of the main
benefits of OpenMP.

3.1.1 Introduction to Parallel Programming Models

The multitude of parallel programming models currently existing makes it
difficult to choose the language that better fits the needs of each particular
case. Table 3.1 introduces the main characteristics of the most relevant
programming models in critical embedded systems. The features considered
are the following: performance (based on throughput, bandwidth, and other
metrics), portability (based on how straight-forward it is to migrate to dif-
ferent environments), heterogeneity (based on the support for cross-platform
applications), parallelism (based on the support provided for data-based
and task-based parallelism), programmability (based on how easy it is for
programmers to get the best results), and flexibility (based on the features for
parallelizing offered in the language).
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Table 3.1 Parallel programming models comparison
Pthreads OpenCL CUDA Cilk Plus TBB OpenMP

Performance X X XX XX X X
Portability X X × × × XX
Heterogeneity × X X × X XX
Parallelism data/task data/task data data/task task data/task
Programmability × × × XX X X
Flexibility X X × × X XX

3.1.1.1 POSIX threads
POSIX threads (Portable Operating System Interface for UNIX threads), usu-
ally referred to as Pthreads, is a standard C language programming interface
for UNIX systems. The language provides efficient light-weight mechanisms
for thread management and synchronization, including mutual exclusion and
barriers.

In a context where hardware vendors used to implement their own pro-
prietary versions of threads, Pthreads arose with the aim of enhancing the
portability of threaded applications that reside on shared memory platforms.
However, Pthreads results in very poor programmability, due to the low-level
threading model provided by the standard, that leaves most of the imple-
mentation details to the programmer (e.g., work-load partitioning, worker
management, communication, synchronization, and task mapping). Overall,
the task of developing applications with Pthreads is very hard.

3.1.1.2 OpenCLTM

OpenCLTM (Open Computing Language) is an open low-level application
programming interface (API) for cross-platform parallel computing that runs
on heterogeneous systems including multicore and manycore CPUs, GPUs,
DSPs, and FPGAs. There are two different actors in an OpenCL system:
the host and the devices. The language specifies a programming language
based on C99 used to control the host, and a standard interface for parallel
computing, which exploits task-based and data-based parallelism, used to
control the devices.

OpenCL can run in a large variety of devices, which makes portability
its most valuable characteristic. However, the use of vendor-specific features
may prevent this portability, and codes are not guaranteed to be optimal
due to the important differences between devices. Furthermore, the language
has an important drawback: it is significantly difficult to learn, affecting the
programmability.
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3.1.1.3 NVIDIA R© CUDA
NVIDIA R© CUDA is a parallel computing platform and API for exploiting
CUDA-enabled GPUs for general-purpose processing. The platform provides
a layer that gives direct access to the GPU’s instruction set, and is accessible
through CUDA-accelerated libraries, compiler directives (such as OpenACC
[10]), and extensions to industry-standard programming languages (such as
C and C++).

The language provides dramatic increases of performance when exploit-
ing parallelism in GPGPUs. However, its use is limited to CUDA-enabled
GPUs, which are produced only by NVIDIA R©. Furthermore, tuning applica-
tions with CUDA may be hard because it requires rewriting all the offloaded
kernels and knowing the specifics of each platform to get the best results.

3.1.1.4 Intel R© CilkTM Plus
Intel R© Cilk Plus [11] is an extension to C/C++ based on Cilk++ [12] that has
become popular because of its simplicity and high level of abstraction. The
language provides support for both data and task parallelism, and provides
a framework that optimizes load balance, implementing a work-stealing
mechanism to execute tasks [13].

The language provides a simple yet efficient platform for implementing
parallelism. Nonetheless, portability is very limited because only Intel R© and
GCC implement support for the language extensions defined by Cilk Plus.
Furthermore, the possibilities available with this language are limited to tasks
( cilk spawn, cilk sync), loops ( cilk for), and reductions (reducers).

3.1.1.5 Intel R© TBB
Intel R© TBB is an object-oriented C++ template library for implementing
task-based parallelism. The language offers constructs for parallel loops,
reductions, scans, and pipeline parallelism. The framework provided has
two key components: (1) compilers, which optimize the language templates
enabling a low-overhead form of polymorphism, and (2) runtimes, which
keep temporal locality by implementing a queue of tasks for each worker,
and balance workload across available cores by implementing a work-stealing
policy.

TBB offers a high level of abstraction in front of complicated low-level
APIs. However, adapting the code to fit the library templates can be arduous.
Furthermore, portability is limited, although the last releases support Visual
C++, Intel R© C++ compiler, and the GNU compiler collection.
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3.1.1.6 OpenMP
OpenMP, the de-facto standard parallel programming model for shared
memory architectures in the high-performance computing (HPC) domain, is
increasingly adopted also in embedded systems. The language was originally
focused on a thread-centric model to exploit massive data-parallelism and
loop intensive applications. However, the latest specifications of OpenMP
have evolved to a task-centric model that enables very sophisticated types
of fine-grained and irregular parallelism, and also include a host-centric
accelerator model that enables an efficient exploitation of heterogeneous
systems. As a matter of fact, OpenMP is supported in the SDK of many of the
state-of-the-art parallel and heterogeneous embedded processor architectures,
e.g., Kalray MPPA [14], and TI Keystone II [16].

Different evaluations demonstrate that OpenMP delivers tantamount per-
formance and efficiency compared to highly tunable models such as TBB
[17], CUDA [18] and OpenCL [19]. Moreover, OpenMP has different
advantages over low-level libraries such as Pthreads: on one hand, it offers
robustness without sacrificing performance [21] and, on the other hand,
OpenMP does not lock the software to a specific number of threads. Another
important advantage is that the code can be compiled as a single-threaded
application just disabling support for OpenMP, thus easing debugging and so
programmability.

Overall, the use of OpenMP presents three main advantages. First, an
expert community has constantly reviewed and augmented the language for
the past 20 years. Second, OpenMP is widely implemented by several chip
and compiler vendors from both high-performance and embedded computing
domains (e.g., GNU, Intel R©, ARM, Texas Instruments and IBM), increasing
portability among multiple platforms from different vendors. Third, OpenMP
provides greater expressiveness due to years of experience in its development;
the language offers several directives for parallelization and fine-grained
synchronization, along with a large number of clauses that allow it to
contextualize concurrency and heterogeneity, providing fine control of the
parallelism.

3.2 The OpenMP Parallel Programming Model

3.2.1 Introduction and Evolution of OpenMP

OpenMP represents the computing resources of a parallel processor archi-
tecture (i.e., cores) by means of high-level threads, named OpenMP threads,
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upon which programmers can assign units of code to be executed. During the
execution of the program, the OpenMP runtime assigns these threads to low-
level computing resources, i.e., the operating system (OS) threads, which are
then assigned to physical cores by the OS scheduler, following the execution
model defined by the OpenMP directives. Figure 3.1 shows a schematic view
of the stack of components involved in the execution of an OpenMP program.
OpenMP exposes some aspects of managing OpenMP threads to the user
(e.g., defining the number of OpenMP threads assigned to a parallel execution
by means of the num threads clause). The rest of components are transparent
to the user and efficiently managed by the OpenMP runtime and the OS.

Originally, up to OpenMP version 2.5 [22], OpenMP was traditionally
focused on massively data-parallel, loop-intensive applications, following the
single-program-multiple-data programming paradigm. In this model, known
as thread model, OpenMP threads are visible to the programmer, which are
controlled with work-sharing constructs that assign iterations of a loop or
code segments to OpenMP threads.

The OpenMP 3.0 specification [23] introduced the concept of tasks by
means of the task directive, which exposes a higher level of abstraction to
programmers. A task is an independent parallel unit of work, which defines
an instance of code and its data environment. This new model, known as
tasking model, provides a very convenient abstraction of parallelism as it is
the runtime (and not the programmer) the responsible for scheduling tasks to
threads.

Figure 3.1 OpenMP components stack.
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With version 4.0 of the specification [24], OpenMP evolved to consider
very sophisticated types of fine-grained, irregular and highly unstructured
parallelism, with mature support to express dependences among tasks. More-
over, it incorporated for the first time a new accelerator model including
features for offloading computation and performing data transfers between
the host and one or more accelerator devices. The latest version, OpenMP 4.5
[25], enhances the previous accelerator model by coupling it with the tasking
model.

Figure 3.2 shows a time-line of all existent releases of OpenMP, since
1997, when the OpenMP Architecture Review Board (ARB) was formed.
The next version, 5.0 [26–28], is planned for November 2018.

3.2.2 Parallel Model of OpenMP

This section provides a brief description of the OpenMP parallel program-
ming model as defined in the latest specification, version 4.5.

3.2.2.1 Execution model
An OpenMP program begins as a single thread of execution, called the initial
thread. Parallelism is achieved through the parallel construct, in which a
new team of OpenMP threads is spawned. OpenMP allows programmers to
define the amount of threads desired for a parallel region by means of the
num threads clause attached to the parallel construct. The spawned threads
are joined at the implicit barrier encountered at the end of the parallel region.
This is the so-called fork-join model. Within the parallel region, parallelism
can be distributed in two ways that provide tantamount performance [29]:

1. The thread-centric model exploits structured parallelism distributing
work by means of work-sharing constructs (e.g., for and sections
constructs). It provides a fine-grained control of the mapping between

Figure 3.2 OpenMP releases time-line.
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work and threads, as well as a coarse grain synchronization mechanism
by means of the barrier construct.

2. The task-centric model, or simply tasking model, exploits both
structured and unstructured parallelism distributing work by means
of tasking constructs (e.g., task and taskloop constructs). It pro-
vides a higher level of abstraction in which threads are mainly
controlled by the runtime, as well as fine-grained synchronization
mechanisms by means of the taskwait construct and the depend
clause that, attached to a task construct, allow the description of
a list of input and/or output dependences. A task with an in, out
or inout dependence is ready to execute when all previous tasks
with an out or inout dependence on the same storage location
complete.

Figure 3.3 shows the execution model of a parallel loop implemented with the
for directive, where all spawned threads work in parallel from the beginning
of the parallel region as long as there is work to do. Figure 3.4 shows the
model of a parallel block with unstructured tasks. In this case, the single
construct restricts the execution of the parallel region to only one thread until
a task construct is found. Then, another thread (or the same, depending on the
scheduling policy), concurrently executes the code of the task. In Figure 3.3,
the colours represent the execution of differents iterations of the same parallel
loop; in Figure 3.4, colours represent the parallel execution of the code
included within a task construct.

3.2.2.2 Acceleration model
OpenMP also provides a host-centric accelerator model in which a host
offloads data and code to the accelerator devices available in the same

Figure 3.3 Structured parallelism. Figure 3.4 Unstructured parallelism.
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processor architecture for execution by means of the target construct. When a
target directive is encountered, a new target task enclosing the target region
is generated. The target task is completed after the execution of the target
region finishes. One of the most interesting characteristics of the accelerator
model is its integration with the tasking model. Note that each accelerator
device has its own team of threads that are distinct from threads that execute
on another device, and these cannot migrate from one device to another.

In case the accelerator device is not available or even does not exist (this
may occur when the code is ported from one architecture to another) the
target region is executed in the host. The map clause associated with the
target construct specifies the data items that will be mapped to/from the target
device. Further parallelism can be exploited within the target device.

3.2.2.3 Memory model
OpenMP is based on a relaxed-consistency, shared-memory model. This
means there is a memory space shared for all threads, called memory. Addi-
tionally, each thread has a temporary view of the memory. The temporary
view is not always required to be consistent with the memory. Instead, each
private view synchronizes with the main memory by means of the flush
operation, which can be implicit (due to operations causing a memory fence)
or explicit (using the flush operation). Data cannot be directly synchronized
between two different threads temporary view.

The view of each thread has of a given variable is defined using data-
sharing clauses, which can determine the following sharing scopes:

• private: a new fresh variable is created within the scope.
• firstprivate: a new variable is created in the scope and initialized with

the value of the original variable.
• lastprivate: a new variable is created within the scope and the original

variable is updated at the end of the execution of the region (only for
tasks).
• shared: the original variable is used in the scope, thus opening the

possibility of data race conditions.

The use of data-sharing clauses is particularly powerful to avoid unnecessary
synchronizations as well as race conditions. All variables appearing within
a construct have a default data-sharing defined by the OpenMP specifica-
tion ([25] Section 2.15.1). These rules are not based on the use of the
variables, but on their storage. Thus, users are duty-bound to explicitly
scope many variables, changing the default data-sharing values, in order to
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fulfill correctness (e.g., avoiding data races) and enhance performance (e.g.,
avoiding unnecessary privatizations).

3.2.3 An OpenMP Example

Listing 3.1 illustrates an OpenMP program that uses both the tasking and
the accelerator models. The code enclosed in the parallel construct (line
4) defines a team of four OpenMP threads on the host device. The single
construct (line 6) specifies that only one thread starts executing the associated
block of code, while the rest of threads in the team remain waiting. When the
task regions are created (lines 9 and 11), each one is assigned to one thread in
the team (may be the same thread), and the corresponding output dependences
on variables x and y are stored. When the target task (lines 13:14) is created,
its dependences on x and y are checked. If the tasks producing these variables
are finished, then the target task can be scheduled. Otherwise, it must be
deferred until the tasks from which it depends have finished. When the target
task is scheduled, the code contained in the target region and the variables
in the map(to:) clause (x and y) are copied to the accelerator device. After
its execution, the res variable is copied back to the host memory as defined
by the map(from:) clause. The presence of a nowait clause in the target task
allows the execution on the host to continue after the target task is created.

Listing 3.1 OpenMP example of the tasking and the accelerator models combined
1 i n t foo ( i n t a , i n t b )
2 {
3 i n t r e s ;
4 #pragma omp p a r a l l e l num threads ( 4 ) shared ( r e s ) f i r s t p r i v a t e ( a , b )
5 {
6 #pragma omp s i n g l e shared ( r e s ) f i r s t p r i v a t e ( a , b )
7 {
8 i n t x , y ;
9 #pragma omp task shared ( x ) f i r s t p r i v a t e ( a ) depend ( out : x )

10 x = a∗a ;
11 #pragma omp task shared ( y ) f i r s t p r i v a t e ( b ) depend ( out : y )
12 y = b∗b ;
13 #pragma omp t a r g e t map ( to : x , y ) map ( from : r e s ) nowait \
14 shared ( r e s ) f i r s t p r i v a t e ( x , y ) depend ( in : x , y )
15 r e s = x + y ;
16 }
17 re turn r e s ;
18 }
19 }
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All OpenMP threads are guaranteed to be synchronized at the implicit barrier
included at the end of the parallel and single constructs (lines 16 and 19
respectively). A nowait clause could be added to the single construct to avoid
unnecessary synchronizations.

3.3 Timing Properties of the OpenMP Tasking Model

The tasking model of OpenMP not only provides a very convenient abstrac-
tion layer upon which programmers can efficiently develop parallel appli-
cations, but also has certain similarities with the sporadic direct acyclic
graph (DAG) scheduling model used to derive a (worst-case) response time
analysis of parallel applications. Chapter 4 presents in detail the response
time analyses that can be applied to the OpenMP tasking model. This section
derives the OpenMP-DAG upon which these analyses are applied.

3.3.1 Sporadic DAG Scheduling Model of Parallel Applications

Real-time embedded systems are often composed of a collection of periodic
processing stages applied on different input data streaming coming from
sensors. Such a structure makes the system amenable to timing analysis
methods [30].

The task model [31], either sporadic or periodic, is a well-known model
in scheduling theory to represent real-time systems. In this model, real-time
applications are typically represented as a set of n recurrent tasks τ =
{τ1, τ2, .., τn}, each characterized by three parameters: worst-case execution
time (WCET ), period (T ) and relative deadline (D). Tasks repeatedly emit
an infinite sequence of jobs. In case of periodic tasks, jobs arrive strictly
periodically separated by the fixed interval time T . In case of sporadic tasks,
jobs do not have a strict arrival time, but it is assumed that a new job released
at time t must finish before t + D. Moreover, a minimum interval of time T
must occur between two consecutive jobs from the same task.

With the introduction of multi-core processors, new scheduling models
have been proposed to better express the parallelism that these architectures
offer. This is the case of the sporadic DAG task model [32–36], which allows
the exploitation of parallelism within tasks. In the sporadic DAG task model
each task (called DAG-task) is represented with a directed acyclic graph
(DAG) G = (V,E), T and D. Each node υ ∈ V denotes a sequential
operation characterized by a WCET estimation. Edges represent dependences
between nodes: if e = (υ1, υ2) : e ∈ E, then the node υ1 must complete
its execution before node υ2 can start executing. In other words, the DAG
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captures scheduling constraints imposed by dependences among nodes and it
is annotated with the WCET estimation of each individual node.

Overall, the DAG represents the main formalism to capture the properties
of a real-time application. In that context, although the current specification
of OpenMP lacks any notion of real-time scheduling semantics, such as dead-
line, period, or WCET, the structure and syntax of an OpenMP program have
certain similarities with the DAG model. The task and taskwait constructs,
together with the depend clause, are very convenient for describing a DAG.
Intuitively, a task describes a node in V in the DAG model, while taskwait
constructs and depend clauses describe the edges in E. Unfortunately, such
a DAG would not convey proper information to derive a real-time schedule
that complies with the semantics of the OpenMP specification.

In order to understand where the difficulties of mapping an OpenMP
program onto an expressive task graph stem from, and how to overcome
them, the next section further delves into the details of the OpenMP execution
model.

3.3.2 Understanding the OpenMP Tasking Model

When a task construct is encountered, the execution of the new task region
can be assigned to one of the threads in the current team for immediate
or deferred execution, with the corresponding impact on the overall timing
behaviour. Different clauses allow defining how a task, its parent task and its
child tasks will behave at runtime:

• The depend clause allows describing a list of input (in), output (out), or
input-output (inout) dependences on data items. Dependences can only
be defined among sibling tasks, i.e., first-level descendants of the same
parent task.
• An if clause whose associated expression evaluates to false forces the

encountering thread to suspend the current task region. Its execution
cannot be resumed until the newly generated task, defined to be an
undeferred task, is completed.
• A final clause whose associated expression evaluates to true forces all

its child tasks to be undeferred and included tasks, meaning that the
encountering thread itself sequentially executes all the new descendants.
• By default, OpenMP tasks are tied to the thread that first starts their

execution. If such tasks are suspended, they can only be resumed by
the same thread. An untied clause forces the task not to be tied to any
thread; hence, in case it is suspended, it can later be resumed by any
thread in the current team.
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Listing 3.2 OpenMP example of task scheduling clauses
1 #pragma omp p a r a l l e l
2 {
3 #pragma omp s i n g l e nowait / / T0

4 {
5 . . . / / t p 00

6 #pragma omp task depend ( out : x ) un t i e d f i n a l ( t r u e ) / / T1

7 {
8 . . . / / t p 10

9 #pragma omp task / / T4

10 { . . . } / / t p 4

11 . . . / / t p 11

12 }
13 . . . / / t p 01

14 #pragma omp task depend ( in : x ) / / T2

15 { . . . } / / t p 2

16 . . . / / t p 02

17 #pragma omp t a s k w a i t
18 . . . / / t p 03

19 #pragma omp task / / T3

20 { . . . } / / t p 3

21 . . . / / t p 04

22 }
23 }

Listing 3.2 shows an example of an OpenMP program using dif-
ferent tasking features. The parallel construct creates a new team of
threads (since num threads clause is not provided, the number of threads
associated is implementation defined). The single construct (line 3) gen-
erates a new task region T0, and its execution is assigned to just
one thread in the team. When the thread executing T0 encounters its
child task constructs (lines 6, 14, and 19), new tasks T1, T2, and
T3 are generated. Similarly, the thread executing T1 creates task T4
(line 9).

Tasks T1 and T2 include a depend clause both defining a dependence on
the memory reference x, so T2 cannot start executing until T1 finishes. T4
is defined as an included task because its parent T1 contains a final clause
that evaluates to true, so T1 is suspended until the execution of T4 finishes.
All tasks are guaranteed to have completed at the implicit barrier at the end
of the parallel region (line 23). Moreover, task T0 will wait on the taskwait
(line 17) until tasks T1 and T2 have completed before proceeding.

OpenMP defines task scheduling points (TSPs) as points in the program
where the encountering task can be suspended, and the hosting thread can be
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rescheduled to a different task. TSPs occur upon task creation and completion
and at task synchronization points such as taskwait directives or explicit and
implicit barriers1.

Task scheduling points divide task regions into task parts executed unin-
terruptedly from start to end. Different parts of the same task region are
executed in the order in which they are encountered. In the absence of task
synchronization constructs, the order in which a thread executes parts of
different tasks is unspecified. The example shown in Figure 3.2 identifies
the parts in which each task region is divided: T0 is composed of task parts
tp00, tp01, tp02, tp03, and tp04; T1 is composed of task parts tp10, and tp11;
and T2, T3, and T4 are composed of task part tp2, tp3, and tp4, respectively.

When a task encounters a TSP, the OpenMP runtime system may either
begin the execution of a task region bound to the current team, or resume any
previously suspended task region also bound to it. The order in which these
actions are applied is not specified by the standard, but it is subject to the
following task scheduling constraints (TSCs):

TSC 1: An included task must be executed immediately after the task is
created.

TSC 2: Scheduling of new tied tasks is constrained by the set of task regions
that are currently tied to the thread, and that are not suspended in
a barrier region. If this set is empty, any new tied task may be
scheduled. Otherwise, a new tied task may be scheduled only if all
tasks in the set belong to the same task region and the new tied task
is a child task of the task region.

TSC 3: A dependent task shall not be scheduled until its task data depen-
dences are fulfilled.

TSC 4: When a task is generated by a construct containing an if clause for
which the conditional expression evaluates to false, and the previous
constraints are already met, the task is executed immediately after
generation of the task.

3.3.3 OpenMP and Timing Predictability

The execution model of OpenMP tasks differs from the DAG model in a
fundamental aspect: a node in the DAG model is a sequential operation that

1Additional TSPs are implied at different OpenMP constructs (target, taskyield,
taskgroup). See Section 2.9.5 of the OpenMP specification [25] for a complete list of task
scheduling points.
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cannot be interrupted2. Instead, an OpenMP task can legally contain multiple
TSPs at which the task can be suspended or resumed following the TSCs.

Moreover, in order to correctly capture scheduling constraints of each task
as defined by the OpenMP specification, a DAG-based real-time scheduling
model requires to know: (1) the dependences among tasks, (2) the point in
time of each TSP, and (3) the scheduling clauses associated to the task.

This section analyses the extraction of a DAG that represents the parallel
execution of an OpenMP application upon which timing analysis can be then
applied. It focuses on three key elements:

1. How to reconstruct an OpenMP task graph from the analysis of the code
that resembles the DAG-task structure based on TSPs.

2. To which elements of an OpenMP program WCET analysis must be
applied.

3. How to schedule OpenMP tasks based on DAG-task methodologies so
that TSCs are met.

3.3.3.1 Extracting the DAG of an OpenMP program
The execution of a task part resembles the execution of a node in V , i.e., it is
executed uninterrupted. To that end, OpenMP task parts, instead of tasks, can
be considered as nodes in V .

Figure 3.5 shows the DAG (named OpenMP-DAG) corresponding to the
example presented in Listing 3.2, in which task parts form the nodes in V . T0
is decomposed into task parts tp00, tp01, tp02, tp03, and tp04, with a TSP at the
end of each part caused by the task constructs T1, T2, and T3 for tp00, tp01,
and tp03, and the taskwait construct for tp02. Similarly, T1 is decomposed
into tp10 and tp11 with the TSP corresponding to the creation of task T4 at
the end of tp10.

Depending on the origin of the TSP encountered at the end of each
task part (i.e., task creation or completion, or task synchronization) three
different types of dependences are identified: (a) control-flow dependences
(dotted arrows), which force parts to be scheduled in the same order as
they are executed within the task; (b) TSP dependences (dashed arrows),
which force tasks to start/resume execution after the corresponding TSP, and
(c) full synchronizations (solid arrows), which force the sequential execution
of tasks as defined by the depend clause and task synchronization constructs.
Note that all dependence types have the same purpose, which is to express

2This assumes the execution of a single DAG program, where a node cannot be interrupted
to execute other nodes of the same graph. In a multi-DAG execution model, nodes can be
preempted by nodes from different DAG programs if allowed by the scheduling approach.
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Figure 3.5 OpenMP-DAG composed of task parts based on the code in Listing 3.2.

a scheduling precedence constraint. As a result, the OpenMP-DAG does not
require to differentiate them.

Besides the depend clause, the if and final clauses also affect the order
in which task parts are executed. In both cases the encountering task is
suspended until the newly generated task completes execution. In order to
model the undeferred and included tasks behaviour, a new edge is introduced
in E. In Figure 3.5, a new dependence between tp40 and tp11 is inserted, so
the task region T1 does not resume its execution until the included task T4
finishes.

3.3.3.2 WCET analysis is applied to tasks and task parts
In order to comply with the DAG-model, nodes in the OpenMP-DAG must
be further annotated with the WCET estimation of the corresponding task
parts. By constructing the OpenMP-DAG based on the knowledge of TSPs
(i.e., by considering as nodes in V only those code portions that are executed
uninterruptedly from start to end) the timing analysis of each node has
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a WCET which is independent of any dynamic instance of the OpenMP
program (i.e., how threads may be scheduled to tasks and parts therein). As a
result, the timing behaviour of task parts will only be affected by concurrent
accesses to shared resources [37]. It is important to remark that the WCET
estimation is applied to a task when it is composed of a single task part. This
is the case of T2, T3, and T4 from Figure 3.5.

3.3.3.3 DAG-based scheduling must not violate the TSCs
When real-time scheduling techniques are applied to guarantee the timing
behaviour of OpenMP applications, the semantics specified by the OpenMP
TSCs must not be violated.

The clauses associated to a task construct not only define precedence
constraints, as shown in Section 3.3.3.1, but they also define the way in which
tasks, and task parts therein, are scheduled according to the TSCs defined in
Section 3.3.2. This is the case of the if, final and untied clauses, as well as
the default behaviour of tied tasks. These clauses influence the order in which
tasks execute and also how task parts are scheduled to threads. Regarding the
latter, the restrictions imposed by TSCs are the following:

• TSC 1 imposes included tasks to be executed immediately by the
encountering thread. In this case, the scheduling of the OpenMP-DAG
has to consider both the task part that encounters it and the complete
included task region as a unique unit of scheduling. In Figure 3.5, the
former case would give tp4 the highest priority, and the latter case would
consider tp10 and tp4 as a unique unit of scheduling.
• TSC 2 does not allow scheduling new tied tasks if there are other sus-

pended tied tasks already assigned to the same thread, and the suspended
tasks are not descendants of the new task. Listing 3.3 shows a fragment
of code in which this situation can occur. Let’s assume that T1, which
is not a descendent of T3, is executed by thread 1. When T1 encounters

Listing 3.3 Example of an OpenMP fragment of code with tied tasks
1 . . .
2 #pragma omp task / / T1

3 {
4 #pragma omp task i f ( f a l s e ) / / T2

5 { . . . }
6 }
7 #pragma omp task / / T3

8 { . . . }
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the TSP of the creation of T2, it is suspended because of TSC 4, and it
cannot resume until T2 finishes. Let’s consider that T2 is being executed
by a different thread, e.g., thread 2. If T2 has not finished when the TSP
of the creation of T3 is reached, then T3 cannot be scheduled on thread 1
because of TSC 2, even if thread 1 is idle. As a result, tied tasks constrain
the scheduling opportunities of the OpenMP-DAG.
• TSC 3 imposes tasks to be scheduled respecting their dependences. This

information is already contained in the OpenMP-DAG.
• TSC 4 states that undeferred tasks execute immediately if TSCs 1, 2, and

3 are met. Differently, untied tasks are not subject to any TSC, allowing
parts of the same task to execute on different threads, so when a task is
suspended, the next part to be executed can be resumed on a different
thread. Therefore, one possible scheduling strategy for untied tasks that
satisfies TSC 4 is not to schedule undeferred and untied task parts until
tied and included tasks are assigned to a given thread. This guarantees
that TSCs 1 and 2 are met. This is because task parts of tied and included
tasks are bound to the thread that first started their execution, which
reduces significantly their scheduling opportunities. Instead, untied and
undeferred task parts have a higher degree of freedom as they can be
scheduled to any thread of the team. Therefore, for the OpenMP-DAG
to convey enough information to devise a TSC-compliant scheduling,
each node in V must be augmented with the type of task as well (untied,
tied, undeferred and included) as shown in Figure 3.5.

Figure 3.6 shows a possible schedule of task parts in Listing 3.2, assuming
a work-conserving scheduling. T0 is a tied task, so all its task parts are
scheduled to the same thread (thread 1). T1 is an untied task so tp10 and tp10
can execute in different threads (thread 1 and 2 in the example). Note that
tp11 does not start executing until tp4 completes due to the TSP constraint.
Moreover, the execution of tp4 starts immediately after the creation of T4 on

thread 2 tp10 tp4 tp11 tp2 tp3

thread 1 tp00 tp01 tp02 tp03 tp04

T1 TSP
creation

T4 TSP
creation

T2 TSP
creation

T4 TSP
completion

T1 TSP
completion

T2 TSP
completion

taskwait 
TSP

T3 TSP
creation

T0 and T3 TSP
completion

Figure 3.6 DAG composed of task parts.
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the same thread that encounters it (thread 2). Finally, tp2 and tp3 are sched-
uled to idle threads (thread 4 and 5, respectively) once all their dependences
are fulfilled.

3.4 Extracting the Timing Information of an OpenMP
Program

The extraction of an OpenMP-DAG representing the parallel execution of
an OpenMP program in such a way that timing analysis can be performed,
requires analyzing the OpenMP constructs included in the source code, so the
nodes and edges that form the DAG can be identified. This information can be
obtained by means of compiler analysis techniques. Concretely, there exists
two different analysis stages needed to build the OpenMP-DAG G = (V,E):

1. A parallel structure stage, in which the nodes in V , i.e., tasks parts, and
edges in E, are identified based on TSPs, TSCs, and data- and control-
flow information.

Listing 3.4 OpenMP program using the tasking model
1 #pragma omp p a r a l l e l num threads ( 8 )
2 {
3 #pragma omp s i n g l e nowait / / T0

4 {
5 f o r ( i =0 ; i <=2; i ++)
6 f o r ( i n t j =0 ; j <=2; j ++) {
7 i f ( i ==0 && j ==0) { / / I n i t i a l b l o c k
8 #pragma omp task depend ( i n o u t :m[ i ] [ j ] )
9 c o m p u t e b l o c k ( i , j ) ; / / T1

10 } e l s e i f ( i == 0) { / / B l o c k s i n upper edge
11 #pragma omp task depend ( in :m[ i ] [ j −1] , i n o u t :m[ i ] [ j ] )
12 c o m p u t e b l o c k ( i , j ) ; / / T2

13 } e l s e i f ( j == 0) { / / B l o c k s i n l e f t edge
14 #pragma omp task depend ( in :m[ i −1][ j ] , i n o u t :m[ i ] [ j ] )
15 c o m p u t e b l o c k ( i , j ) ; / / T3

16 } e l s e { / / I n t e r n a l b l o c k s
17 #pragma omp task depend ( in :m[ i −1][ j ] , in :m[ i ] [ j −1] , \\
18 in :m[ i −1][ j −1] , i n o u t :m[ i ] [ j ] )
19 c o m p u t e b l o c k ( i , j ) ; / / T4

20 }
21 }
22 }
23 }
24 }
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2. A task expansion stage, in which the tasks (and task parts) that will be
actually instantiated at runtime are identified by expanding the control
flow information extracted in the previous stage.

The next subsections further describe these stages. With the objective of
facilitating the explanation of the compiler analysis techniques, Listing 3.4
introduces an OpenMP program that will be used for illustration purposes.
The code processes the elements of a blocked 2D matrix using a wave-front
parallelization strategy [38]. The parallel construct (line 1) defines a team
of 8 threads. The single construct (line 3) specifies that only one thread will
execute the associated code. The algorithm divides the matrix in 3×3 blocks,
assigning each one to a different task. Each block [i, j] consumes the previous
adjacent blocks and itself. Hence, all tasks (lines 8, 11, 14, and 17:18) have
an inout dependence on the computed block [i, j]. T2 and T3 (lines 11 and
14) compute the upper and left edges, so additionally they consume the left
[i, j − 1] and upper [i − 1, j] blocks, respectively. Finally, T4 (lines 17:18)
computes the internal blocks, hence additionally it consumes the left [i−1, j],
upper [i, j − 1], and left-upper diagonal [i − 1, j − 1] blocks. All tasks are
guaranteed to complete at the implicit barrier at the end of the parallel region
(line 24).

3.4.1 Parallel Structure Stage

This stage identifies the TSPs surrounding tasks parts, and the corresponding
TSCs associated with each task part in order to: (1) generate a parallel control-
flow graph (PCFG) that holds all this information as well as parallel semantics
[39], and (2) analyze this graph so that the necessary information to expand a
complete DAG is obtained. With such purpose in mind the analysis performs
the following calculations:

• Generate the PCFG of the source code taking into account: (a) the
dependences introduced by any kind of TSPs (i.e., task creation, task
completion and task synchronization), as introduced in Section 3.3.3.1,
(b) the data dependences introduced by the depend clause, and (c) the if
and final clauses, hence the behaviour of undeferred and included tasks.
• On top of that, analyze the control-flow statements, i.e., selection

statements (if-else and switch) and loops that identify whether a
task is instantiated or not at runtime. To do so, three analyses are
required: induction variables [40], reaching definitions [41], and range
analysis [42]. Additionally, determine the conditions that must be
fulfilled for two instantiated tasks to depend on one another [3].
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3.4.1.1 Parallel control flow analysis
The abstract syntax tree (AST) used in the compiler to represent the source
code is used to generate the PCFG of an OpenMP program. This enriches the
classic control-flow graph (CFG) with information about parallel execution.
This process performs a conservative analysis of the synchronizations among
tasks, because the compiler may not be able to assert when two depend
clauses designate the same memory location, e.g., array accesses or pointers.
Hence, synchronization edges are augmented with predicates defining the
condition to be fulfilled for an edge to exist. In the example shown in
Listing 3.4, the dependences that matrix m originates among tasks depend
on the values of i and j.

3.4.1.2 Induction variables analysis
On top of the PCFG, the compiler evaluates the loop statements to discover
the induction variables (IVs) and their evolution over the iterations using the
common tuple representation 〈lb, ub, str〉, where lb is the lower bound, ub is
the upper bound, and str is the stride. This analysis is essential for the later
expansion of the graph, since the induction variables will determine the shape
of the iteration space for each loop statement.

3.4.1.3 Reaching definitions and range analysis
Finally, the compiler computes the values of all variables involved in the exe-
cution of any task. With such a purpose, it analyzes reaching definitions and
also extends range analysis with support for OpenMP. The former computes
the definitions reaching any point in the program. The later computes the
values of the variables at any point of the program in four steps: (1) generate
a set C of equations that constrain the values of each variable (equations are
built for each assignment and control flow statement); (2) build a constraint
graph that represents the relations among the constraints; (3) split the graph
into strongly connected components (SCCs) to avoid cycles; (4) propagate
the ranges over the SCCs in topological order. Both analyses are needed to
propagate the values of the relevant variables across the expanded code.

3.4.1.4 Putting all together: The wave-front example
The previously mentioned analyses provide the information needed to gener-
ate an initial version of the DAG, named augmented DAG (aDAG), with data
and control flow knowledge. The aDAG is defined by the tuple

aDAG = 〈N,E,C〉 (3.1)
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where:

• N = {V × TN} is the set of nodes with their corresponding type TN =
{Task, Taskwait, Barrier}.
• E = {N ×N ×P} is the set of possible synchronization edges with the

predicate P that must fulfill for the edge to exist.
• C = N × {F} is the set of control flow statements involved in the

instantiation of any task n ∈ N , where F = S × {TF }, being S the
condition to instantiate the tasks and TF = {Loop, IfElse, Switch},
the type of the structure.

Figure 3.7 shows the aDAG of the OpenMP program in Listing 3.4. The
set of nodesN includes all task constructsN = T1, T2, T3, T4 (lines 8, 11, 14,
and 17:18), all with type TN = Task. The control flow statements for each
node N , fi ∈ F are the for (lines 5 and 6) and if (lines 7, 10, 13, and 16)
statements, and include information about: (a) the IVs of each loop i, j, both
with lb = 0, ub = 2 and str = 1 (dashed-line boxes); (b) the conditions of the
selection statements enclosing each task (solid-line boxes), and (c) the ranges
of the variables in those conditions. In the figure, T3 is instantiated if i = 1
or 2 and j = 0. In the predicates p ∈ P associated to the synchronization
edges in E, the left hand side of the equality corresponds to the value of the
variable at the point in time the source task is instantiated, while the right side
corresponds to the value when the target task is instantiated. For example,
the predicate of the edge between T1 and T3 with p1((iS == iT ||iS ==
iT − 1)&&jS == jT ) evaluates to true, meaning that the edge exists when
the values of i and j in the source task T1 are iS = 0 and jS = 0, and the
values of i and j in the target task T3 are iT = 1 and jT = 0.

For simplicity, Figure 3.7 only includes the dependences that are actually
expanded in the next stage (Section 3.4.2). The actual aDAG has edges
between any possible pair of tasks because they all have inout dependences
on the element m[i][j]. Moreover, the task-parts that form the task T0 with
the corresponding task creation dependences are not included.

3.4.2 Task Expansion Stage

3.4.2.1 Control flow expansion and synchronization predicate
resolution

Based on the aDAG, this stage generates an expanded DAG (or simply DAG)
representing the complete execution of the program in two phases: (1) expand
control flow structures (i.e., decide which branches are taken for the selection
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Figure 3.7 aDAG of the OpenMP program in Listing 3.4.

statements and how many iterations are executed for the loop statements) to
determine which tasks (and so task-parts) are actually instantiated; and (2)
resolve the synchronization predicates to conclude which tasks have actual
dependences.

Control flow structures are expanded from outer to inner levels. In the
aDAG in Figure 3.7, the outer loop f1 is expanded first, and then the inner
loop f2. Finally, the if-else structures f3, f4, f5, and f6 are resolved. Each
expansion requires the evaluation of the associated expressions to determine
the values of each variable. For example, when the outer loop f1 is expanded,
each iteration is associated with the corresponding value of i.

This expansion process creates two identifiers: (1) an identifier of the
loops involved in the creation of a task (li), labeling each loop expansion
step, and (2) a unique static task construct identifier (sidt), labeling each
task construct.

The process results in a temporary DAG in which all tasks instantiated
at runtime are defined, but synchronization predicates are not solved. To
do so, the value of the variables propagated in the control flow expan-
sion is used to evaluate predicates and decide which edges actually exist.
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Likewise, loop identifiers li are used to eliminate backwards dependences,
i.e., tasks instantiated in previous iterations cannot depend on tasks instanti-
ated in later iterations.

Figure 3.8 shows the final DAG of the program in Listing 3.4. It contains
all task instances with a unique numerial identifier (explained in the next
section) and all dependences that can potentially exist at runtime. Transitive
dependences (dashed arrows) are included as well, although they can be
removed because they are redundant.

3.4.2.2 tid: A unique task instance identifier
A key property of the expanded task instances is that they must include a
unique task instance identifier tid required to match the instantiated tasks
expanded at compile-time (and included in the DAG) with those instantiated
at runtime. Equation 3.2 computes tid as follows:

tid = sidt + T ×
Lt∑
i=1

li ·M i (3.2)

where sidt is a unique task construct identifier (computed during the control
flow expansion stage), T is equal to the number of task, taskwait, and
barrier constructs in the source code, Lt is the total number of nested loops
involved in the execution of the task t, i refers to the the nesting level, li
is the loop unique identifier at nesting level i (computed during the control

Figure 3.8 The DAG of the OpenMP program in Listing 3.4.
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flow expansion stage), and M the maximum number of iterations of any
considered loop.

The use of loop properties in Equation 3.2 (i.e., Lt, li, i, and M ),
guarantees that a unique task identifier for each task instance is generated,
even if they come from the same task construct. Hence, task instances from
different loop iterations result in different tid because every nesting level li is
multiplied by the maximum number of iterations M .

Consider task T4, with identifier 79, in Figure 3.8. This task instance
corresponds to the computation of the matrix block m[2, 1]. Its identifier is
computed as follows: (1) sidT4 = 4, because T4 is the fourth task found in
sequential order while traversing the source code; (2) T = 5 because there are
four task constructs and one (implicit) barrier in the source code; (3)LT4 = 2,
the two nested loops enclosing T4; (4) M = 3, the maximum number of
iterations in any of the two considered loops; and (5) l1 = 2 and l2 = 1 are
the values of the loop identifiers at the corresponding iteration. Putting them
all together: T4id = 4 + 5(2 ∗ 31 + 1 ∗ 32) = 79.

It is important to remark that tid must be computed at both compile-time
and run-time, and so all information needed to compute Equation 3.2 must be
available in both places. Chapter 6 presents the combined compiler and run-
time mechanisms needed to reproduce all the required information (including
sidt and li identifiers) at run-time.

3.4.2.3 Missing information when deriving the DAG
In case the framework cannot derive some information (mostly when control-
flow statements and dependences contain pointers that may alias or arrays
with unresolved subscripts, or the values are not known at compile-time), it
still generates a DAG that correctly represents the execution of the program.
Next, each possible case is argued:

• When an if-else statement cannot be evaluated, all its related tasks in C
are considered for instantiation, hence included in the DAG. In this case,
the DAG will include a task instance that will never exist. Chapters 4
and 6 present the mechanisms required to take this into consideration
for response time analysis and parallel run-time execution.
• If a loop cannot be expanded because its boundaries are unknown,

parallelism across iterations is disabled by inserting a taskwait at the
end of the loop. By doing so, all tasks instantiated within an iteration
must complete before the next iteration starts.
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• Lastly, dependences whose predicate cannot be evaluated are always
kept in the DAG, making the involved tasks serialized.

The situations described above will result in a bigger DAG (when if–else
conditions cannot be evaluated) or in a performance loss (when loop bounds
or synchronization predicates cannot be determined), although a correct DAG
is guaranteed. In the worst-case scenario, where no information can be
derived at compile-time, the resultant DAG corresponds to the sequential exe-
cution of the program, i.e., all tasks are assumed to be instantiated, and their
execution is to be sequentialized. It is important to remark that embedded
applications can often provide all the required information to complete the
DAG expansion, as it is required for timing analysis [43].

3.4.3 Compiler Complexity

The complexity of the compiler is determined by the complexity of the two
stages presented in Sections 3.4.1 and 3.4.2.

The complexity of the control/data flow analysis stage is dominated by
the PCFG analysis and range analysis phases. The complexity of the former
is related to the number of split constructs present in the source code, in which
the Cyclomatic Complexity [44] metric is usually used. The latter, has been
proved to have an asymptotic linear complexity [42].

The complexity of the task expansion stage is dominated by the compu-
tation of the dependences among tasks, which is performed using a Cartesian
product: the input dependence of a task can be generated by any of the
previously created task instances. As a result, the complexity is quadratic
on the number of instantiated tasks.

3.5 Summary

This chapter provided the rationale and the model for the use of fine-grained
parallelism in general, and the OpenMP parallel programming model in
particular, to support applications that require predictable performance, to
develop future critical real-time embedded systems, and analyze the time
predictable properties of the OpenMP tasking model. Based on this model,
the chapter then described the advances in compiler techniques to extract tim-
ing information of OpenMP parallel programs, and build the OpenMP DAG
required to enable predictable scheduling (described in the next chapter) and
the needed timing analysis (in Chapter 5). This OpenMP-DAG also provides



References 59

the building block for the execution of the OpenMP runtime (Chapter 6) and
Operating System (Chapter 7).
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