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This chapter presents how the P-SOCRATES framework addresses the issue
of scheduling multiple real-time tasks (RT tasks), made of multiple and
concurrent non-preemptable task parts. In its most generic form, the schedul-
ing problem in the architectural framework is a dual problem: scheduling
task-to-threads, and scheduling thread-to-core replication.

4.1 Introduction

In our framework, we assume threads in the same OpenMP application are
statically pinned to the available cores in the platforms1. This approach has
two advantages: (i) the lower layer of the software stack, namely the runtime
and the operating system (OS) support, are much simpler to design and
implement; and (ii) we remove one dimension from the scheduling problem,
that is, we only need to solve the problem of assigning tasks (in our case,
OpenMP task parts) to threads/cores. For this reason, and limited to this
chapter, we use the words “mapping” and “scheduling” interchangeably. As
explained in Chapter 3, when a task encounters a task scheduling point (TSP),
program execution branches into the OpenMP runtime, where task-to-thread
mapping can: (1) begin the execution of a task region bound to the current
team or (2) resume any previously suspended task region bound to the current

1Still, to enable multitasking at the OS level, the OS can preempt threads from one OpenMP
application in favour of another OpenMP application.
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team, as defined by the parallel OpenMP construct. Note that, the order in
which these two actions are applied is not specified by the standard. An ideal
task scheduler will schedule tasks for execution in a way that maximizes
concurrency while accounting for load imbalance and locality to facilitate
better performance.

The following part of the chapter describes the design of a simple parti-
tioned scheduler, detailing how to enforce a limited-preemption scheduling
policy to limit the overhead related to context switches whenever higher-
priority instances arrive while the cores are busy executing lower-priority
workload. It is also called static approach.

Then, we introduce the so-called dynamic approach, where scheduling
happens with the adoption of a global queue where all tasks are inserted, and
from where they can potentially be fetched by any worker in the system. We
also show how it can be enhanced to support task migration across computing
threads and cores, in a work-conservative environment.

In the following part, we describe our overall framework for the schedu-
lability analysis, and then we specialize it for static/partitioned approach and
dynamic/global approach, respectively.

We then briefly discuss the scheduling problem in the multi-core system
that powers the four I/O clusters present in the fabric.

4.2 System Model

In the framework, an application may consist of multiple RT task instances,
each one characterized by a different period or minimum inter-arrival time,
deadline and execution requirement (see Figure 4.1). Each RT task starts
executing on the host processor and may include (OpenMP-compliant)
parallel workloads to be offloaded to the many-core accelerator. Such a
parallel workload needs then to be scheduled on the available processing
elements (PEs).

The parallel execution of each RT task is represented by a direct acyclic
graph (DAG) composed of a set of nodes representing task parts. Nodes
are connected through edges that represent precedence constraints among
different task parts of the same offload. A task part can be executed only if all
nodes that have a precedence constraint over it have already been executed.

To comply with the OpenMP semantics, an RT task is not directly
scheduled on the PEs. Instead, its parallel workload is first mapped to
several OS threads (up to the number of PEs available), and then these
OS threads are scheduled onto the available cores. Figure 4.2 summarizes
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Figure 4.1 An application is composed of multiple real-time tasks.

Figure 4.2 RT tasks are mapped to OS threads, which are scheduled on the processing
elements.

the mapping/scheduling framework. Here, only partitioned/static approach
is shown, where there is one task queue for each worker thread. In a fully
dynamic/global approach, there is only one queue for every RT task, where
all threads push and fetch work.

The number of OS threads onto which an RT task is mapped depends
on mapping decisions. If the RT task does not present a large parallelism,
it makes no sense to map it onto more than a limited number of threads.
If instead the RT task has massively parallel regions, it may be useful to
map it to a higher number of threads, up to the number of PEs in the many-
core accelerator. A correct decision should consider the trade-off between



66 Mapping, Scheduling, and Schedulability Analysis

the OS overhead implied by many threads and the speed-up obtainable with
a larger run-time parallelism. Note that creating a larger number of threads
than necessary may impose a significant burden to the OS, which needs to
maintain the context of these threads, schedule, suspend, and resume them,
with an obvious increase in the system overhead.

The architectural template targeted in the project (described in Chapter 2)
is a many-core platform where cores are grouped onto clusters. The testbed
accelerator, Kalray MPPA of the “Bostan” generation, has 256 cores grouped
into 16 clusters of 16 cores each. We consider only the threads offloaded
to the same cluster. Note that the intra-cluster scheduling problem is the
main problem to solve in our scheduling framework. The reason is that
P-SOCRATES adopts an execution model, where the context of each RT task
that may need to be accelerated is statically offloaded to the target clusters
before runtime.

For the above reasons, the main problem is therefore how to efficiently
activate and schedule the threads associated with the different RT tasks that
have been offloaded to the same cluster. The threads of each RT task will
contend to execute on the available PEs with the threads of the other RT
tasks. A smart scheduler will therefore need to decide which thread, or set of
threads, to execute at any time in each PE of the considered cluster, such that
all scheduling constraints are met. Depending on the characteristics of the
running RT tasks (priority, period, deadline, etc.) the scheduler may choose
to preempt an executing thread or set of threads, to schedule a different set of
threads belonging to a higher priority (or more urgent) RT task.

4.3 Partitioned Scheduler

In a traditional partitioned scheduler, OS threads are statically assigned to
cores, so that no thread may migrate from one core to another. The scheduling
problem then reduces to the design of a single-core scheduler. We start from
this approach and design our task-to-thread scheduler.

4.3.1 The Optimality of EDF on Preemptive Uniprocessors

The earliest deadline first (EDF) scheduling algorithm assigns scheduling
priority to jobs according to their absolute deadlines: the earlier the deadline,
the greater the priority (with ties broken arbitrarily). EDF is known to be
optimal for scheduling a collection of jobs upon a preemptive uniprocessor
platform, in the sense that if a given collection of jobs can be scheduled
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to meet all deadlines, then the EDF-generated schedule for this collection
of jobs will also meet all deadlines [1]. To show that a system is EDF-
schedulable upon a preemptive uniprocessor, it suffices to show the existence
of a schedule meeting all deadlines — the optimality of EDF ensures that it
will find such a schedule. Unfortunately, most of the commercial RTOSes do
not implement the EDF scheduling policy. The main reasons are found in the
added complexity of the scheduler, requiring timers to keep track of the thread
deadlines, and in the agnostic behavior with respect to higher-priority work-
load. This last concern is particularly important for industrial applications that
have a set of higher-priority instances whose execution cannot be delayed.
With an EDF scheduler, a lower-priority instance overrunning its expected
budget may end up causing a deadline miss of a higher priority instance that
has a later deadline. Instead, with a Fixed Priority (FP) scheduler, higher-
priority jobs are protected against lower-priority overruns, because they will
always be able to preempt a misbehaving lower-priority instance. This makes
FP scheduling more robust for mixed-criticality scenarios where RT tasks of
different criticality may contend for the same PEs. For the importance of FP
scheduling, we decided to implement a partitioned scheduler based on this
policy.

4.3.2 FP-scheduling Algorithms

In an FP-scheduling algorithm, each thread is assigned a distinct priority (as
in P-SOCRATES scheduling model) and every instance (a.k.a. job/RT task
instance) released by the thread inherits the priority of the associated thread.

The rate-monotonic (RM) scheduling algorithm [1] is an FP-scheduling
algorithm in which the priorities of the tasks are defined based on their period:
tasks with a smaller period are assigned greater priority (with ties broken
arbitrarily). It is known [1] that RM is an optimal FP-scheduling algorithm
for scheduling threads with relative deadlines equal to their minimum inter-
arrival times upon preemptive uniprocessors: if there is any FP-scheduling
algorithm that can schedule a given set of implicit-deadline threads to always
meet all deadlines of all jobs, then RM will also always meet all deadlines of
all jobs.

The deadline monotonic (DM) scheduling algorithm [2] is another
FP-scheduling algorithm in which the priority of a task is defined based on
its relative deadline parameter rather than its period: threads with smaller
relative deadlines are assigned greater priority (with ties broken arbitrarily).
Note that RM and DM are equivalent for implicit deadline systems, since
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all threads in such systems have their relative deadline parameters equal to
their periods. It has been shown in [2] that DM is an optimal FP-scheduling
algorithm for scheduling sets of constrained-deadline threads upon preemp-
tive uniprocessors: if there is any FP-scheduling algorithm that can schedule
a given constrained-deadline system to always meet all deadlines of all jobs,
then DM will also always meet all deadlines of all jobs. DM is, however,
known to not be optimal for systems where threads may have a deadline larger
than their period.

4.3.3 Limited Preemption Scheduling

Preemption is a key concept in real-time scheduling, since it allows the OS
to immediately allocate the processor to threads requiring urgent service. In
fully preemptive systems, the running thread can be interrupted at any time
by another thread with higher priority and be resumed to continue when all
higher priority threads have completed. In other systems, preemption may
be disabled for certain intervals of time during the execution of critical
operations (e.g., interrupt service routines, critical sections, etc.). In other
situations, preemption can be completely forbidden to avoid unpredictable
interference among threads and achieve a higher degree of predictability
(although higher blocking times).

The question of whether to enable or disable preemption during thread
execution has been investigated by many authors under several points of view
and it is not trivial to answer. A general disadvantage of the non-preemptive
discipline is that it introduces additional blocking time in higher-priority
threads, thereby reducing schedulability. On the other hand, preemptive
scheduling may add a significant overhead due to context switches, sig-
nificantly increasing the worst-case execution time. Both situations are
schematized in Figure 4.3. CRPD in the figure stands for Cache-Related
Preemption Delay, that is, the time overhead added to tasks’ execution time
due to cache cooling after a preemption.

There are several advantages to be considered when adopting a non-
preemptive scheduler. Arbitrary preemptions can introduce a significant
runtime overhead and may cause high fluctuations in thread-execution times,
which degrades system predictability. Specifically, at least four different types
of costs need to be considered at each preemption:

1. Scheduling cost: It is the time taken by the scheduling algorithm to
suspend the running thread, insert it into the ready queue, switch the
context, and dispatch the new incoming thread.
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Figure 4.3 Fully preemptive vs. non-preemptive scheduling: preemption overhead and
blocking delay may cause deadline misses.

2. Pipeline cost: It accounts for the time taken to flush the processor
pipeline when the thread is interrupted, and the time taken to refill the
pipeline when the thread is resumed.

3. Cache-related cost: It is the time taken to reload the cache lines evicted
by the preempting thread. The WCET increment due to cache inter-
ference can be very large with respect to the WCET measured in
non-preemptive mode.

4. Bus-related cost: It is the extra bus interference for accessing the next
memory level due to the additional cache misses caused by preemption.

In order to predictably bound these penalties without sacrificing schedula-
bility, we decided to adopt a limited preemption scheduler, which represents
a trade-off between fully preemptive and non-preemptive scheduling. Note
that this seamlessly integrates into the standard OpenMP tasking/execution
model, where tasks can be preempted only at well-defined TSPs. See also
Chapter 3.

4.3.4 Limited Preemption Schedulability Analysis

As in the fully preemptive case, the schedulability analysis of limited pre-
emptive scheduling can be done analyzing the critical instant that leads to
the worst-case response time of a given thread. However, differently from
the fully preemptive case, the critical instant is not given by the synchronous
arrival sequence, where all threads arrive at the same time, and all successive
instances are released as soon as possible. Instead, in the presence of non-
preemptive regions, the additional blocking from lower priority threads must
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be taken into account. Hence, the critical instant for a thread τi occurs when
it is released synchronously and periodically with all higher priority threads,
while the lower priority thread that is responsible of the largest blocking time
of τi is released one unit of time before τi.

However, the largest response time of a thread is not necessarily due to
the first job after a critical instant but might be due to later jobs. Therefore,
as shown in [3], the schedulability analysis needs to check all τi’s jobs within
a given period of interest that goes from the above described critical instant
until the first idle instant of τi. Let Ki be the number of such jobs.

When analyzing the schedulability of limited preemptive systems, a key
role is played by the last non-preemptive region. Let qlasti be the length of
the last non-preemptive region of thread τi. When such a value is large, the
response time of τi may decrease because the execution of many higher-
priority instances is postponed after the end of τi, thus not interfering
with τi. This allows improving the schedulability over the fully preemptive
approach.

The blocking tolerance βi of thread τi is defined as the maximum block-
ing that τi can tolerate without missing its deadline. Such a value may be
computed by the following pseudo-polynomial relation:

βi = min
k∈[1,Ki]

max
t∈Πi,k

t− kCi + qlasti −
i−1∑
j=1

⌈
t

Tj

⌉
Cj


where Πi,k is the set of release times of jobs within the period of interest. The
maximum allowed non-preemptive region of a τk is then given by:

NPRmax
k ← min

i<k
{βi}

Such a value determines the maximum spacing between two consecutive
preemption points for each thread τk.

4.4 Global Scheduler with Migration Support

4.4.1 Migration-based Scheduler

The scheduling problem for single-core systems has already been solved with
optimal priority assignments and scheduling algorithms back in the 1970s.
In particular, RM assigning priorities with decreasing task periods, and DM
assigning priorities with decreasing relative deadlines, are optimal priority
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assignments for sporadic systems with, respectively, implicit and constrained
deadlines. This means that if a sporadic or synchronous periodic task system
can be scheduled with fixed priorities on a single processor, then it can also
be scheduled using RM (for implicit deadlines) [4] or DM (for constrained
deadlines) [2]. Also, the EDF — that schedules at each time-instant the ready
job with the earliest absolute deadline — is an optimal scheduling algorithm
for scheduling arbitrary collections of jobs on a single processor [3, 4].
Therefore, if it is possible to schedule a set of jobs such that all deadlines are
met, then the same collection of jobs can be successfully scheduled by EDF
as well. These observations allowed us to optimally select the scheduling
policies for the partitioned scheduler that we will describe shortly.

When allowing tasks to migrate among different cores, such as in the
case of OpenMP untied task model (see Chapter 3 for further information),
things are much more complicated: EDF, RM, and DM are no more optimal
and can fail even at very low utilizations (arbitrarily close to one) due to
the so-called Dhall’s effect [5]. Still, these are unlucky corner cases which
do not often recur in practice. The alternative approaches that allow higher
schedulability ratios are dynamic algorithms that however lead to a higher
number of preemptions and migrations, allowing the priority of a job to
change multiple times. Examples are Pfair [6, 7], BF [8], LLREF [9], EKG
[10], E-TNPA [11], LRE-TL [12], DP-fair [13], BF2 [14, 15], and RUN
[16]. The optimality of the above algorithms holds under very restrictive
circumstances, i.e., neglecting preemption and migration overhead, and for
sequential sporadic tasks with implicit deadlines. In this case, they are able
to reach a full schedulable utilization, equal to the number of processors.
Instead, they are not optimal when tasks may have deadlines different from
periods (it has been shown in [17] that an optimal scheduler would require
clairvoyance), for more general task models including parallel regions, lim-
ited preemptions, and/or DAG-structures, as with the task models adopted in
the P-SOCRATES project.

The additional complexity inherent to the implementation, runtime over-
head, scheduling and schedulability analysis of dynamic scheduling algo-
rithms, as well as in the lack of optimality properties with relation to the
task model adopted in the project, made their applicability to the considered
setting questionable. For this reason, we decided to opt for the static priority
class of scheduling algorithms, which is far more used in a practical setting
due to some particularly desired features. Systems scheduled with static
priority algorithms are rather easy to implement and to analyze; they allow
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reducing the response time of more critical tasks by increasing their priori-
ties; they have a limited number of preemptions (and therefore migrations),
bounded by the number of jobs activations in a given interval; they allow
selectively refining the scheduling of the system by simply modifying the
priority assignment, without needing to change the core of the scheduling
algorithm (a much more critical component); they are easier to debug, sim-
plifying the understanding of system monitoring traces and making it more
intuitive to figure out why/when each task executes on which core; they are
far more composable, i.e., changing any timing parameter of a lower-priority
task does not alter the schedule of a higher-priority one, avoiding the need to
recheck and re-validate the whole system.

4.4.2 Putting All Together

In our scheduling framework, the global scheduler will therefore consist of a
fixed-priority scheduling algorithm. Each RT task is assigned a fixed priority,
which is inherited by each one of its threads (there are at most m threads
for each RT task). Threads that are ready to execute are ordered according
to their priority in a global queue (“ready queue”) from which the scheduler
selects the m highest priority ones for execution, being m the number of
available cores. These executing threads are popped from the queue and
they change their state to running. New thread activations and incoming
offloads are queued in the ready queue, based on their priorities. A blocked
queue is also maintained with all suspended or waiting threads. Whenever a
waiting thread is awakened, e.g., because the condition it was waiting for was
satisfied, it is removed from the blocked queue and re-inserted into the ready
queue according to its priority.

If the newly activated thread has a priority higher than one of the m
running tasks, a preemption may take place, depending on the adopted pre-
emption policy. With a fully preemptive scheduler, the preemption takes place
immediately, as soon as the thread is (re-)activated. With a non-preemptive
policy, the preemption is postponed until one of the running tasks finishes
its execution. For this framework, we decided to adopt a limited preemption
policy. According to this policy, threads are non-preemptively executed until
they reach one of the statically defined preemption points, where they can
be preempted if a higher priority thread is waiting to execute. This policy
allows decreasing the preemption and migration overhead of fully preemptive
policies, without imposing the excessive blocking delays experienced with
non-preemptive approaches.
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The problem with adopting a limited preemption scheduling policy is
that it is necessary to define at which points to allow a preemption for each
thread. Since requiring the programmer to manually insert suitable context-
switch locations overly increases the programming complexity, we decided
to automate the process by using meaningful information coming from the
OpenMP mapping layer. In particular, the concept of TSP will be exposed to
the scheduling layer in order to take informed decisions on when and where
to allow a preemption. We will now detail this strategy.

4.4.3 Implementation of a Limited Preemption Scheduler

Arbitrary preemptions can introduce a significant runtime overhead and high
fluctuations in thread-execution times, which degrades system predictability.
These variations are due to multiple factors, including the time taken by
the scheduling algorithm to suspend the running thread, insert it into the
ready queue, switch the context, and dispatch the new incoming thread;
the time taken to reload the cache lines evicted by the preempting thread;
and the extra bus interference for accessing the next memory level due to
the additional cache misses caused by preemption. Conversely, completely
forbidding preemptions may cause an intolerable blocking to higher priority
threads, potentially affecting their schedulability. For example, consider a
system where a low-priority activity offloaded a parallel workload executing
on all available cores. If a higher priority RT task now requests a subset of
the cores to execute more important activities, it will need to wait until the
low-priority ones are finished, eventually leading to a deadline miss. Such a
miss could have been easily avoided by allowing preemptions.

With the limited preemption scheduling model adopted in the project,
threads will execute non-preemptively until they reach a TSP. At these points,
the execution control is moved back to the OpenMP runtime to decide which
task (part) to map on that thread. Essentially, the mapper will fetch one of
the tasks (belonging to the offload associated to the considered thread) that
are ready to execute and map it to that thread. These are points that mark an
interruption in the task-execution flow, potentially leading to context switches
and/or some memory locality loss. In other words, TSPs are good candidate
to be selected for potential preemption points, since they may represent a
discontinuity in the continuous execution of a task, potentially requiring a
new task to load new data to local memory. Taking advantage of these points
seems reasonable to guarantee a reduced pollution of cache locality of an
executing task, allowing a thread context switch only when a preemption
causes less harm.
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However, it remains to be shown how the information from the OpenMP
runtime is to be propagated to the RTOS scheduling layer. Note that every
RT task that is offloaded to the accelerator is managed by an instance of
custom OpenMP runtime. This instance, among the other tasks, keeps track
of the dependencies among the nodes of the RT task (the OpenMP task
parts), and schedules for execution only those nodes whose dependencies
have been satisfied. When a thread fetches a task from the pool for execution,
it will continue uninterruptedly until it reaches a TSP. At this point, the
runtime regains control, and it may decide to invoke the OS scheduler using
a simple function call. The scheduler can then check whether there are new
offload requests pending and/or there are blocked tasks that have been awak-
ened. Potential higher-priority threads arrivals will then trigger a preemption,
saving the context of the preempted thread and scheduling the higher
priority one.

In this way, the OpenMP semantics of TSPs are propagated at RTOS
scheduling level, allowing smarter decisions on the preemption locations. The
timing analysis will also be significantly easier, since it will be sufficient to
analyze the worst-case execution requirements of each task part, knowing
that such code blocks will be executed without interruptions. The timing
characterization of each task part will factor in the worst-case delay related to
interfering instances, assuming each task part needs to (re-)load all required
data from scratch. This makes the analysis robust and tractable, without
requiring the timing analyzer to consider all possible instructions as potential
preemption points but characterizing only the worst-case timing parameters
of each individual task part. In Chapter 5, it is described how to obtain
the maximum execution time of a task part, with and without including the
additional time-penalty due to interference with other applications running
concurrently. These two timing estimates are added to the characterization
of every task part in the TDG produced by the compiler. This new TDG
annotated with timing information is called the OpenMP-TDG and serves
as input to our schedulability analysis.

Still, one may further reduce the number of potential preemption points,
by not invoking the OS scheduler at each TSP. For example, with a Breadth-
First mapping model, a task creating additional tasks will continue executing
on its thread, without leading to a (task-level) context switch. In this case, it
may be better not to invoke the OS scheduler at TSPs coinciding with task-
creation directives, since the original task may continue executing without
any discontinuity in the local context. A smarter option can be to invoke the
OS scheduler only when the runtime decides to map a different task next
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(e.g., because the current one is finished, or due to a work-first strategy, or
because of a taskwait directive). These TSPs are more likely to lead to a
cache locality loss, reducing the additional impact due to preemptions.

That said, in order to simplify the schedulability analysis and avoid long
non-preemptive regions, we decided to invoke the scheduler at each TSP.
Although it may be beneficial to reduce the number of preemption points, we
opted for the simplest solution that allows us to provide a proof of concept
of the proposed approach. In the evaluation phase, we will then identify the
impact of the preemption points to the scheduling overhead.

4.5 Overall Schedulability Analysis

We now will describe the overall schedulability analysis of systems executing
within the P-SOCRATES framework. The analysis is based on the computa-
tion of the worst-case response time of RT tasks concurrently executing on a
given cluster of cores. Two different analyses are presented, depending on the
mapping/scheduling mechanisms supported by the framework: (i) a dynamic
solution based on a global scheduler allowing a work-conserving behavior,
and (ii) a fully static solution based on a partitioned scheduler and a fixed
task-to-thread mapping.

4.5.1 Model Formalization

On our overall framework, an OpenMP program is composed of recurring
instances of a RT task (identified with a target OpenMP construct), which in
turn is composed of task parts. Without loss of generality, in this paragraph,
we consider [18] a set τ = {τ1, . . . , τn} of n sporadic conditional parallel
tasks (cp-tasks) that execute upon a platform consisting ofm identical proces-
sors. Each cp-task τk releases a potentially infinite sequence of jobs. Each job
of τk is separated from the next by at least Tk time-units and has a constrained
relative deadline Dk <= Tk. Moreover, each cp-task τk is represented as a
directed acyclic graph Gk = (Vk, Ek), where Vk = {vk,1, . . . , vk,nk} is a set
of nodes (or vertices) and Ek is a set of directed arcs (or edges), as shown
in Figure 4.4. Each node vk,j represents a sequential chunk of execution
(or “sub-task”) and is characterized by a worst-case execution time Ck,j.
Preemption and migration overhead is assumed to be integrated within the
WCET values, as given by the timing analysis. Arcs represent dependencies
between sub-tasks, that is, an edge (vk,1, vk,2) means that vk,1 must complete
before vk,2 can start executing. A node with no incoming arcs is referred to as
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Figure 4.4 A sample cp-task. Each vertex is labeled with the WCET of the corresponding
sub-task.

a source, while a node with no outgoing arcs is referred to as a sink. Without
loss of generality, each cp-task is assumed to have exactly one source vsource

k
and one sink node vsink

k . If this is not the case, a dummy source/sink node with
zero WCET can be added to the DAG, with arcs to/from all the source/sink
nodes. The subscript k in the parameters associated with the task τk is omitted
whenever the reference to the task is clear in the discussion.

In the cp-task model, nodes can be of two types:

1. Regular nodes, represented as rectangles, allow all successor nodes to
be executed in parallel;

2. Conditional nodes, coming in pairs and denoted by diamonds and cir-
cles, represent the beginning and the end of a conditional construct,
respectively, and require the execution of exactly one node among the
successors of the start node.

Please note that this is a general solution for scheduling parallel recurring
RT-Dags. In the specific domain of this project, where OpenMP is used as a
frontend to specify DAGS, it may occur that the compiler cannot fully extract
the DAG because there are conditionals that cannot be statically solved.
See Section 3.4.3.2, “Missing information of the DAG”, in Chapter 3, for
a discussion about this issue.

To properly model the possible execution flows, a further restriction is
imposed to the connections within a conditional branch. That is, a node
belonging to a branch of a conditional statement cannot be connected to nodes
outside that branch (including other branches of the same statement). This is
formally stated in the following definition.

Definition 4.1. Let (v1, v2) be a pair of conditional nodes in a DAG
Gk = (Vk, Ek). The pair (v1, v2) is a conditional pair if the following holds:
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1. If there are exactly q outgoing arcs from v1 to nodes s1, s2, . . . , sq, for
some q > 1, then there are exactly q incoming arcs into v2 in Ek, from
some nodes t1, t2,. . . , tq.

2. For each l ε {1, 2, . . . , q}, let Vl’El’ denote all the nodes and arcs on
paths reachable from sl that do not include node v2. By definition, sl is
the sole source node of the DAG Gl’:= (Vl’El’). It must hold that tl is
the sole sink node of Gl’.

3. It must hold that Vl’ and Vj’ have a null intersection, for all l 6= j.
Additionally, with the exception of (v1, sl) there should be no arcs in
Ek into nodes in Vl’ from nodes not in Vl’, for each l in {1, 2, . . . , q}.

A chain or path of a cp-task τk is a sequence of nodes λ= (vk,a,. . . ,vk,b) such
that (vk,j,vk,j+1) ε Ek, for all j ε [a,b]. The length of a chain of τk, denoted
by len(λ), is the sum of the WCETs of all its nodes. The longest path of a
cp-task is any source-sink path of the task that achieves the longest length.

Definition 4.2. The length of a cp-task τk, denoted by Lk, is the length of any
longest path of τk.

Note that Lk also represents the minimum worst-case execution time
of cp-task τk, that is, the time required to execute it when the number of
processing units is sufficiently large (potentially infinite) to allow the task
to always execute with maximum parallelism. A necessary condition for the
feasibility of a cp-task τk is that Lk ≤ Dk.

In the absence of conditional branches, the classical sporadic DAG task
model defines the volume of the task as the worst-case execution time needed
to complete it on a dedicated single-core platform. This quantity can be
computed as the sum of the WCETs of all the sub-tasks, that is

∑
vk,j∈Vk Ck,j .

In the presence of conditional branches, assuming that all sub-tasks are
always executed is overly pessimistic. Hence, the concept of volume of a
cp-task is generalized by introducing the notion of worst-case workload.

Definition 4.3. The worst-case workload Wk of a cp-task τk is the maximum
time needed to execute an instance of τk on a dedicated single-core platform,
where the maximum is taken among all possible choices of conditional
branches.

Section 4.5 will explain in detail how the worst-case workload of a task
can be computed efficiently.

The utilization Uk of a cp-task τk is the ratio between its worst-case
workload and its period, that is, Uk = Wk/Tk. For the task-set τ , its total
utilization U is defined as the sum of the utilizations of all tasks. A simple
necessary condition for feasibility is U ≤ m.
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Figure 4.4 illustrates a sample cp-task consisting of nine sub-tasks (nodes)
V = {v1,. . . ,v9} and 12 precedence constraints (arcs). The number inside
each node represents its WCET. Two of the nodes, v2 and v6, form a condi-
tional pair, meaning that only one sub-task between v3 and v4 will be executed
(but never both), depending on a conditional clause. The length (longest path)
of this cp-task is L = 8, and is given by the chain (v1, v2, v4, v6, v7, v9). Its
volume is 14 units, while its worst-case workload must take into account that
either v3 or v4 are executed at every task instance. Since v4 corresponds to
the branch with the largest workload, W = 11.

To further clarify the restrictions imposed to the graph structure, note that
v4 cannot be connected to v5, because this would violate the correctness of
conditional constructs and the semantics of the precedence relation. In fact, if
they were connected and v3 were executed, then v5 would wait forever, since
v4 is not executed. For the same reason, no connection is possible between
v4 and v3, as they belong to different branches of the same conditional
statement.

In the following sections, we will consider the dynamic approach consist-
ing of a best-effort mapper, coupled with a fixed priority global scheduler. RT
tasks are indexed according to their priorities, being τ1 the highest priority
one. For details on the scheduling algorithm and mapping, please refer to
P-SOCRATES project’s Deliverable D3.3.2 [19]. To understand the following
analysis, it is sufficient to observe that the adopted scheduler allows a work-
conserving behavior, never idling a core whenever there is some pending
workload to execute.

4.5.2 Critical Interference of cp-tasks

We now present a schedulability analysis for cp-tasks globally scheduled
by any work-conserving scheduler. The analysis is based on the notion of
interference. In the existing literature for globally scheduled sequential task
systems, the interference on a task τk is defined as the sum of all intervals
in which τk is ready, but cannot execute because all cores are busy executing
other tasks. We modify this definition to adapt it to the parallel nature of
cp-tasks, by introducing the concept of critical interference.

Given a set of cp-tasks τ and a work-conserving scheduler, we define the
critical chain of a task as follows.

Definition 4.4. The critical chain λ∗k of a cp-task τk is the chain of nodes of
τk that leads to its worst-case response-time Rk.
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The critical chain of cp-task τk is in principle determined by taking the
sink vertex vsink

k of the worst-case instance of τk (i.e., the job of τk that has the
largest response-time in the worst-case scenario), and recursively pre-pending
the last to complete among the predecessor nodes (whether conditional or
not), until the source vertex vk,1 has been included in the chain.

A critical node of task τk is a node that belongs to τk’s critical chain.
Since the response-time of a cp-task is given by the response-time of the sink
vertex of the task, the sink node is always a critical node. For deriving the
worst-case response-time of a task, it is then sufficient to characterize the
maximum interference suffered by its critical chain.

Definition 4.5. The critical interference Ik on task τk is defined as the
cumulative time during which some critical nodes of the worst-case instance
of τk are ready, but do not execute because all cores are busy.

Lemma 4.1. Given a set of cp-tasks τ scheduled by any work-conserving
algorithm on m identical processors, the worst-case response-time of each
task τk is

Rk = len(λ∗k) + Ik. (4.1)

Proof. Let rk be the release time of the worst-case instance of τk. In the
scheduling window [rk, rk+Rk], the critical chain will require len(λ∗k) time-
units to complete. By Definition 4.5, at any time in this window in which
τk does not suffer critical interference, some node of the critical chain is
executing. Therefore Rk − Ik = len(λ∗k).

The difficulty in using Lemma 4.1 for schedulability analysis is that the
term Ik may not be easy to compute. An established solution is to express
the total interfering workload as a function of individual contributions of the
interfering tasks, and then upper-bound such contributions with the worst-
case workload of each interfering task τk.

In the following, we explain how such interfering contributions can be
computed, and how they relate to each other to determine the total interfering
workload.

Definition 4.6. The critical interference Ii,k imposed by task τi on task τk
is defined as the cumulative workload executed by sub-tasks of τk while a
critical node of the worst-case instance of τk is ready to execute but is not
executing.

Lemma 4.2. For any work-conserving algorithm, the following relation
holds:

Ik =
1

m

∑
τi∈T

Ii,k. (4.2)
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Proof. By the work-conserving property of the scheduling algorithm, when-
ever a critical node of τk is interfered, all m cores are busy executing other
sub-tasks. The total amount of workload executed by sub-tasks interfering
with the critical chain of τk is then mIk. Hence,∑

τi∈T
Ii,k = mIk.

By reordering the terms, the lemma follows.
Note that when i = k, the critical interference Ik,k may include the

interfering contributions of non-critical subtasks of τk on itself, that is,
the self-interference of τk. By combining Equations (4.1) and (4.2), the
response-time of a task τk can be rewritten as:

Rk = len(λ∗k) +
1

m
Ik,k +

1

m

∑
τi∈T ,i 6=k

Ii,k. (4.3)

In the following, we will show how to provide upper bounds on the unknown
terms of Equation (4.3) for systems adopting a global fixed-priority scheduler
with preemption support.

4.5.3 Response Time Analysis

In this section, we derive an upper-bound on the worst-case response-time
of each cp-task using Equation (4.3). To this aim we need to compute the
interfering contributions Ii,k. In the sequel, we first consider the inter-task
interference (i 6= k) and then the intra-task interference (i = k).

4.5.3.1 Inter-task interference
We divide the contribution to the workload of an interfering task τI in a
window of interest between carry-in, body, and carry-out jobs. The carry-
in job is the first instance of τi that is part of the window of interest and has
release time before and deadline within the window of interest. The carry-
out job is the last instance of τi executing in the window of interest, having
a deadline after the window of interest. All other instances of τi are named
body jobs. For sequential task-sets, an upper-bound on the workload of an
interfering task τi within a window of length L occurs when the first job of
τi starts executing as late as possible (with a starting time aligned with the
beginning of the window of interest) and later jobs are executed as soon as
possible (see Figure 4.5).
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Figure 4.5 Worst-case scenario to maximize the workload of an interfering task τi in the
sequential case.

For cp-task systems, it is more difficult to determine a configuration that
maximizes the carry-in and carry-out contributions. In fact:

1. Due to the precedence constraints and different degree of parallelism
of the various execution paths of a cp-task, it may happen that a larger
workload is executed within the window if the interfering task is shifted
left, i.e., by decreasing the carry-in and increasing the carry-out contri-
butions. This happens for example when the first part of the carry-in job
has little parallelism, while the carry-out part at the end of the window
contains multiple parallel sub-tasks.

2. A sustainable schedulability analysis [10] must guarantee that all tasks
meet their deadlines even when some of them execute less than the
worst-case. For example, one of the sub-tasks of an execution path of a
cp-task may execute for less than its WCET Ci,j. This may lead to larger
interfering contributions within the window of interest (e.g., a parallel
section of a carry-out job is included in the window due to an earlier
completion of a preceding sequential section).

3. The carry-in and carry-out contribution of a cp-task may correspond
to different conditional paths of the same task, with different levels of
parallelism.

To circumvent the above issues, we consider a scenario in which each interfer-
ing job of task τi executes for its worst-case workload Wi, i.e., the maximum
amount of workload that can be generated by a single instance of a cp-task.
We defer the computation of Wi to Section 4.5.3. The next lemma provides a
safe upper-bound on the workload of a task τi within a window of interest of
length L.

Lemma 4.3. An upper-bound on the workloads of an interfering task τi in a
window of

Wi(L) =

⌊
L+Ri −Wi/m

Ti

⌋
Wi

+ min(Wi,m · ((L + Ri −Wi/m) mod Ti)).

length L is given by
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Figure 4.6 Worst-case scenario to maximize the workload of an interfering cp-task τi.

Proof. Consider a situation in which all instances of i execute for their
worst-case workload Wi. The highest workload within a window of length
L for such a task configuration is produced when the carry-in and carry-out
contributions are evenly distributed among all cores, as shown in Figure 4.6.
Note that distributing the carry-in or carry-out contributions on a smaller
number of cores may not increase the workload within the window. Moreover,
other task configurations with a smaller workload for the carry-in or carry-out
instance cannot lead to a higher workload in the window of interest: although
a reduced carry-in workload may allow including a larger part of the carry-
out (as in shifting right the window of interest by Wi = m in the figure), the
carry-out part that enters the window from the right cannot be larger than the
carry-in reduction.

An upper-bound on the number of carry-in and body instances that may
execute within the window is⌊

L+Ri −Wi/m

Ti

⌋
,

each one contributing for Wi. The portion of the carry-out job included in
the window of interest is (L + Ri − Wi/m) mod Ti. Since at most m cores
may be occupied by the carryout job within that interval, and the carry-out
job cannot execute for more than Wi units, the lemma follows.

4.5.3.2 Intra-task interference
We now consider the remaining terms of Equation (4.3), which take into
account the contribution of the considered task to its overall response-time,
and we compute an upper-bound on

Zk
def
= len(λ∗k) +

1

m
Ik,k.
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Lemma 4.4. For a constrained deadline cp-task system scheduled with any
work-conserving algorithm, the following relation holds for any task τk:

Zk = len(λ∗k) +
1

m
Ik,k ≤ Lk +

1

m
(Wk − Lk). (4.4)

Proof. Since we are in a constrained deadline setting, a job will never be
interfered with by other jobs of the same task. Wk being the maximum
possible workload produced by a job of cp-task τk, the portion that may
interfere with the critical chain λk is Wk−len(λ∗k). Then, Ik,k ≤Wk−len(λ∗k).
Hence,

len(λ∗k) +
1

m
Ik,k ≤ len(λ∗k) +

1

m
(Wk − len(λ∗k)). (4.5)

Since len(λ∗k) ≤ Lk and m ≥ 1, the lemma follows.
Since Zk includes only the contribution of task τk, one may think that

the sum [len(λ∗k) + 1/m Ik,k] is equal to the worst-case response-time
of τk when it is executed in isolation on the multi-core system (i.e., the
makespan of τk).

However, this is not true. For example, consider the case of a cp-task
τk with only one if-then-else statement; assume that when the “if” part is
executed, the task executes one sub-task of length 10; otherwise, the task
executes two parallel sub-tasks of length 6 each. When τk is executed in
isolation on a two-core platform, the makespan is clearly given by the “if”
branch, i.e., 10. When instead τk can be interfered with by one job of a task
τi which executes a single sub-task of length 6, the worst-case response time
of τk occurs when the “else” branch is executed, yielding a response time
of 12. The share of the response time due to the term len(λ∗k) + 1/m Ik,k

in Equation (4.3) is 6 + (1 = 2)6 = 9, which is strictly smaller than the
makespan. Note that len(λ∗k) + 1/m Ik,k does not even represent a valid lower
bound on the makespan. This can be seen by replacing the “if” branch in the
above example with a shorter subtask of length 8, giving a makespan of 8.
For this reason, one cannot replace the term len(λ∗k) + 1/m Ik,k in Equation
(4.4) with the makespan of τk.

The right-hand side of Equation (4.4) (Lk + 1/m(Wk – Lk)) has been
therefore introduced to upper-bound the term len(λ∗k)+1/m Ik,k. Interestingly,
this quantity does also represent a valid upper-bound on the makespan of τk,
so that it can be used to bound the response time of a cp-task executing in
isolation. We omit the proof that is identical to the proofs of the given bounds,
considering only the interference due to the task itself.
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4.5.3.3 Computation of cp-task parameters
The upper-bounds on the interference given by Lemmas 4.3, 4.4, and 4.5
require the computation of two characteristic parameters for each cp-task τk:
the worst-case workload Wk and the length of the longest chain Lk. The
longest path of a cp-task can be computed in exactly the same way as the
longest path of a classical DAG task, since any conditional branch defines
a set of possible paths in the graph. For this purpose, conditional nodes can
be considered as if they were simply regular nodes. The computation can be
implemented time linearly in the size of the DAG by standard techniques, see
e.g., Bonifaci et al. [11] and references therein.

The computation of the worst-case workload of a cp-task is more
involved. We hereafter show an algorithm to compute Wk for each task
τk in time quadratic in the DAG size, whose pseudocode is shown in
Algorithm 4.1.

The algorithm first computes a topological order of the DAG2. Then,
exploiting the (reverse) topological order, a simple dynamic program can
compute for each node the accumulated workload corresponding to the
portion of the graph already examined. The algorithm must distinguish the
case when the node under analysis is the head of a conditional pair or not.

Algorithm 4.1 Worst-case Workload Computation
1: procedure WCW(G)
2: σ ← TOPOLOGICALORDER(G)

3: S(vsink)← {vsink}
4: for vi ∈ σ from sink to source do
5: if SUCC(vi) 6= ∅ then
6: if ISBEGINCOND(vi) then
7: v∗ ← argmaxv∈SUCC(vi)

C(S(v))

8: S(vi)← {vi} ∪ S(v∗)
9: else

10: S(vi)← {vi} ∪
⋃
v∈SUCC(vi)

S(v)

11: end if
12: end if
13: end for
14: return C(S(vsource))
15: end procedure

2A topological order is such that if there is an arc from u to v in the DAG, then u appears
before v in the topological order. A topological order can be easily computed in time linear in
the size of the DAG (see any basic algorithm textbook, such as [17]).
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If this is the case, then the maximum accumulated workload among the
successors is selected; otherwise, the sum of the workload contributions of
all successors is computed.

Algorithm 4.1 takes as input the graph representation of a cp-task G and
outputs its worst-case workload W. In the algorithm, for any set of nodes S,
its total WCET is denoted by C(S). First, at line 2, a topological sorting of
the vertices is computed and stored in the permutation. Then, the permutation
is scanned in reverse order, that is, from the (unique) sink to the (unique)
source of the DAG. At each iteration of the for loop at line 4, a node vi is
analyzed; a set variable S(vi) is used to store the set of nodes achieving the
worst-case workload of the subgraph including vi and all its descendants in
the DAG. Since the sink node has no successors, S(vsink) is initialized to
{vsink}at line 3. Then, the function SUCC(vi) computes the set of successors
of vi. If that set is not empty, function ISBEGINCOND(vi) is invoked to
determine whether vi is the head node of a conditional pair. If so, the node
v* achieving the largest value of C(S(v)), among v in SUCC(vi), is computed
(line 7). The set S(v*) therefore achieves the maximum cumulative worst-
case workload among the successors of vi, and is then used to create S(vi)
together with vi. Instead, whenever vi is not the head of a conditional pair, all
its successors are executed at runtime. Therefore, the workload contributions
of all its successors must be merged into S(vi) (line 10) together with vi. The
procedure returns the worst-case workload accumulated by the source vertex,
that is C(S(vsource)).

The complexity of the algorithm is quadratic in the size of the input DAG.
Indeed, there are O(|E|) set operations performed throughout the algorithm,
and some operations on a set S (namely, the ones at line 7) also require
computing C(S), which has cost O(|V|). So, the time complexity is O(|V| |E|).
To implement the set operations, set membership arrays are sufficient.

One may be tempted to simplify the procedure by avoiding the use of
set operations, keeping track only of the cumulative worst-case workload
at each node, and allowing a linear complexity in the DAG size. However,
such an approach would lead to an overly pessimistic result. Consider a
simple graph with a source node forking into multiple parallel branches
which then converge on a common sink. The cumulative worst-case workload
of each parallel path includes the contribution of the sink. If we simply
sum such contributions to derive the cumulative worst-case workload of the
source, the contribution of the sink would be counted multiple times. Set
operations are therefore needed to avoid accounting multiple times each node
contribution.
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We now present refinements of Algorithm 4.1 in special sub-cases of
interest.

4.5.4 Non-conditional DAG Tasks

The basic sporadic DAG task model does not explicitly account for con-
ditional branches. Therefore, all vertices of a cp-task contribute to the
worst-case workload, which is then equal to the volume of the DAG task:

Wk =
∑

vk,j∈Vk

Ck,j .

In this particular case, the time complexity to derive the worst-case workload
of a task (quadratic in the general case), becomes O(|V|), i.e., linear in the
number of vertices.

4.5.5 Series–Parallel Conditional DAG Tasks

Some programming languages yield series–parallel cp-tasks, that is, cp-tasks
that can be obtained from a single edge by series composition and/or parallel
composition. For example, the cp-task in Figure 4.5 is series–parallel, while
the cp-tasks in Figures 4.2 and 4.6 are not. Such a structure can be detected in
linear time [13]. In series–parallel graphs, for every head si of a conditional
or parallel branch there is a corresponding tail ti. For example, in Figure 4.5,
the tail corresponding to parallel branch head v2 is v9. Algorithm 4.1 can be
specialized to series–parallel graphs. For each vertex u, the algorithm will
simply keep track of the worst-case workload of the subgraph reachable from
u, as follows. For each head vertex si of a parallel branch, the contribution
from all successors should be added to si’s WCET, subtracting, however, the
worst-case workload of the corresponding tail ti a number of times equal to
the out-degree of si minus 1; for each head vertex si of a conditional branch,
only the maximum among the successors’ worst-case workloads is added to
si’s WCET. Finally, for all non-head vertices add the worst-case workload
of their unique successor to their WCET. The complexity of this algorithm
reduces then to O(|E|), i.e., it becomes linear in the size of the graph.

4.5.6 Schedulability Condition

Lemmas 4.3 and 4.4 and the bounds previously computed allow for proving
the following theorem.
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Theorem 4.1. Given a cp-task-set globally scheduled with global FP on m
cores, an upper-boundRubk on the response-time of a task τk can be derived by
the fixed-point iteration of the following expression, starting with Rubk = Lk:

Rubk ← Lk +
1

m
(Wk − Lk) +

 1

m

∑
∀ i 6=k

XALGi

 , XFPi

where:

XFPi =

{
Wi(R

ub
k ), ∀i < k

0, otherwise
;

because the interference from lower priority tasks can be neglected assuming
a fully preemptive scheduler.

The schedulability of a cp-task system can then be simply checked using
Theorem 4.1 to compute an upper-bound on the response-time of each task.
In the FP case, the bounds are updated in decreasing priority order, starting
from the highest priority task. In this case, it is sufficient to apply Theorem 4.1
only once for each task.

4.6 Specializing Analysis for Limited Pre-emption
Global/Dynamic Approach

The response time analysis in Equation (4.3) can be easily extended [20] to
incorporate the impact of the limited pre-emption strategy on DAG-based
task-sets3. To do so, the factor that computes the inter-task interference
must be augmented to incorporate the impact of lower-priority interference.
Overall, the response time upper-bound can be computed as follows:

Rubk ← Lk +
1

m
(vol(Gk)− Lk) +

⌊
1

m
(I
lp
k + I

hp
k )

⌋
With LP, tasks are not only interfered with by higher-priority tasks, but also
by already started lower-priority tasks whose execution has not reached a pre-
emption point yet, and so cannot be suspended. In the worst-case scenario,
when a high-priority task τk is released, all the m processors have just started
executing the m largest NPRs of m different lower priority tasks. After τk
started executing, it could be blocked again by at most m − 1 lower priority

3This section only considers LP with eager approach. In [28], we develop the analysis
for Lazy approach as well. Interested readers are encouraged to refer to it for the complete
analysis.
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tasks at each pre-emption point. Therefore, for sequential task-sets, the lower
priority interference is upper-bounded considering: (1) the set of the longest
NPR of each lower-priority task and then (2) the sum of the m and m − 1
longest NPRs of this set, as computed in [21]. This no longer holds for
DAG-based task-sets, because multiple NPRs from the same task can execute
in parallel. Next, we present two methods to compute the lower-priority
interference in DAG-based task-sets.

4.6.1 Blocking Impact of the Largest NPRs (LP-max)

The easiest way of deriving the lower-priority interference is to account for
the m and m− 1 largest NPRs among all lower-priority tasks:

∆m
k =

∑ m
max
τi∈lp(k)

(
m

max
1≤j≤qi+1

Ci,j

)
∆m−1
k =

∑ m−1
max
τi∈lp(k)

(
m−1
max

1≤j≤qi+1

Ci,j

)
where

∑
maxmτi∈lp(k) and

∑
maxm−1

τi∈lp(k) denote the sum of them andm− 1

largest values among the NPRs of all tasks τi ε lp(k) respectively, while
maxm1≤j≤qi+1

and maxm+1
1≤j≤qi+1

denote the m and m − 1 largest NPRs of a
task τi. Despite its simplicity, this strategy is pessimistic because it considers
that the largest m and m − 1 NPRs can execute in parallel, regardless of the
precedence constraints defined in the DAG.

4.6.2 Blocking Impact of the Largest Parallel NPRs (LP-ILP)

The edges in the DAG determine the maximum level of parallelism a task
may exploit on m cores, which in turn determines the amount of blocking
impacting over higher-priority tasks. This information must therefore be
incorporated in the analysis to better upper-bound the lower-priority inter-
ference. To do so, we propose a new analysis method that incorporates
the precedence constraints among NPRs, as defined by the edges in the
DAG, into the LP response-time analysis. Our analysis uses the following
definitions:

Definition 4.7: The LP worst-case workload of a task executing on c cores is
the sum of the WCET of the c largest NPRs that can execute in parallel.
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Definition 4.8. The overall LP worst-case workload of a set of tasks executing
on m cores is the maximum time used for executing this set in a given
execution scenario, i.e. fixing the number of cores used for each task.

Given a task τk, our analysis derives the lower-priority interference of
lp(k) by computing new ∆m

k and ∆m+1
k factors in a three-step process:

1. Identify the LP worst-case workload of each task in lp(k) when execut-
ing on 1 to m cores;

2. Compute the overall LP worst-case workload of lp(k) for all possible
execution scenarios;

3. Select the scenario that maximizes the lower-priority interference.

In order to facilitate the explanation of the three steps, the next sections con-
sider an lp(k) composed of four DAG-tasks {τ1, τ2, τ3, τ4} (see Figure 4.7),
executed on an m = 4 core platform.

The nodes (NPRs) of τi are labeled as vi,j with their WCET (Ci,j) between
parenthesis.

4.6.2.1 LP worst-case workload of a task executing on c cores
Given a task τi, this step computes an array µi of size m, which includes the
worst-case workload of τi when NPRs are distributed over c cores, being

Figure 4.7 DAGs of lp(k) tasks; the Ci,j of each node vi,j is presented in parenthesis.
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c = {1,. . . ,m} the index inside µi. Each element µi[c] is computed as
follows:

µi[c] =
∑ parallel

max
c
{Ci,j}

where maxparallelc is the sum of the c largest NPRs of τi that can execute in
parallel, maximizing the interference when using c cores. To this aim, the sum
must consider the edges of τi’s DAG to determine which NPRs can actually
execute in parallel. Section 4.7.3 presents the algorithm that derives, for each
NPR of τi, the set of NPRs from the same task that can potentially execute in
parallel with it.

Table 4.1 shows the array µi for each of the tasks shown in Figure 4.7 with
m = 4. For example, the worst-case workload µ4 [2] occurs when NPRs v4,3

and v4,4 execute in parallel, with an overall impact of 9 time units. τ2 has a
maximum parallelism of 2, so µ2 [3] and µ2 [4] are equal to 0.

4.6.2.2 Overall LP worst-case workload
The lower-priority interference depends on how the execution of lp(k) is
distributed across the m cores. We define em = {s1,. . . ,sp(m)} as the set of
different execution scenarios (and so interference scenarios) of lp(k) running
on m cores. p(m) is equal to the number of partitions4 of m, and can be
computed with the pentagonal number theorem from Euler’s formulation:∑

q

(−1)qp

(
m− q(3q − 1)

2

)
where the sum is over all nonzero integers q (positive and negative) [22].

Table 4.1 Worst-case workloads of tasks in Figure 4.7
µ1[c] µ2[c] µ3[c] µ4[c]

C1,6 or C1,8 = 3 C2,2 = 4 C3,1 = 6 C4,1 or C4,4 = 5

C1,6 + C1,7 = 5 C2,2 + C2,3 = 7 C3,3 + C3,4 = 7 C4,4 + C4,3 = 9

C1,6 + C1,4 +
C1,5 = 6

0 C3,3 + C3,4 + C3,2

or C3,5 = 9
C4,4 + C4,3 +
C4,5 = 12

C1,2 + C1,3 +
C1,4 + C1,5 = 5

0 C3,2 + C3,3 +
C3,4 + C3,5 = 11

0

4In number theory and combinatory, a partition of a positive integer m is a way of writing
m as a sum of positive integers. Two sums that differ only in the order of their summands are
considered the same partition.
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Table 4.2 the five possible execution scenarios assuming four cores [e4,
p(4) = 5]. The number of tasks being executed in each execution scenario sl

in em is given by its cardinality, i.e., |sl|.
Each execution scenario sl in em has an associated overall worst-case

workload, computed as:

ρk[sl] =
∑ sl

max
|sl|
{µi}

Where the right-hand side represents the sum of the |sl| largest combina-
tions of µi that fits in the scenario sl, and so maximizes the interference.
Section 4.7.3 formulates the above equation as an ILP.

Table 4.3 shows the ρk[sl] of each execution scenario and the µi[c]
considered in Table 4.1 and 4.2. For instance, the overall worst-case workload
of s3, ρk[s3] = 19 results when τ4 executes on two cores (µ4 [2] = 9), and τ2

and τ3 execute on one core each (µ2 [1] = 4 and µ3 [1] = 6).

4.6.2.3 Lower-priority interference
Finally, given the overall worst-case workload for each scenario µk[sl], the
lower-priority interference of lp(k) can be reformulated as the maximum
overall worst-case workload among all scenarios:

∆m
k = max

sl∈em
ρk[sl]

∆m−1
k = max

sl∈em−1
ρk[sl]

Table 4.2 Five possible scenarios of taskset in Figure 4.7, assuming a four core system
sp ∈ e4 |sp| Execution scenario description
s1 = {1, 1, 1, 1} 4 Each task runs in 1 core
s2 = {2, 2} 2 Each task runs in 2 cores
s3 = {2, 1, 1} 3 1 task runs in 2 cores and 2 task in 1 cores each
s4 = {3, 1} 2 1 task runs in 3 cores and 1 task in 1 core
s5 = {4} 1 1 task runs in 4 cores

Table 4.3 Computed worst-case workload for each of the scenarios in Table 4.2
sl ρk[sl]

s1 µ1[1] + µ2[1] + µ3[1] + µ4[1] = 18
s2 µ2[2] or µ3[2] + µ4[2] = 16
s3 µ4[2] + µ2[1] + µ3[1] = 19
s4 µ4[3] + µ3[1] = 18
s5 µ3[4] = 11
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where the right-hand sides provide the maximum worst-case workload among
em and em−1 scenarios.

The lower-priority interference of lp(k) is given by the maximum ρk[sl],
i.e., ∆4

k = 19. On the contrary, the pessimistic approach selects the
sum of the m largest NPRs among all lower-priority tasks, i.e., ∆4

k =
C3,1 + C4,1 + C4,4 + C2,2 = 20. The pessimism comes from the fact
that nodes v4,1 and v4,4 cannot be executed in parallel. Similarly, ∆3

k = 15,
while the pessimistic approach gives ∆3

k = 16.
Clearly, LP-ILP allows computing a tighter lower-priority interference, at

the cost of increasing the complexity of deriving it, compared to the LP-max
approach.

4.6.3 Computation of Response Time Factors of LP-ILP

We showed that the schedulability of a DAG-based task-set under LP-ILP can
be checked in pseudo-polynomial time if, beside deadline and period, we can
derive: (1) the worst-case workload generated by each lower-priority task τi
(i.e., µi), and (2) the overall worst-case workload of lower-priority tasks for
each execution scenario sl in em (i.e., ρm[sl]). The former can be computed
at compile-time for each task, and it is independent from the task-set; the
latter requires the complete task-set knowledge, and is computed at system
integration time. In this section, we present the algorithms to compute these
factors.

4.6.3.1 Worst-case workload of τ i executing on c cores: µi[c]
µi[c] is determined by the set of c NPRs of τi that can potentially execute in
parallel. As a first step, we identify for each NPR the set of potential parallel
NPRs; then, we compute the interference of parallel execution when different
numbers of cores are used.

(1) Computing the set of parallel NPRs: Given the DAG Gi = (Vi, Ei),
Algorithm 4.2 computes, for each NPR vi,j in Vi, the set of NPRs that
can execute in parallel with it.

The algorithm takes as input the DAG of task τi, the topological order of Gi,
and, for each node vi,j, the sets:

1. SIBLING(vi,j), which contains the nodes which have a common prede-
cessor with vi,j;

2. SUCC(vi,j), which contains the nodes reachable from vi,j; and
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Algorithm 4.2 Parallel NPRs of τi

Input: (1) Gi = (Vi, Ei); (2) TOPOLOGICAL-ORDER(Gi);
(3) SIBLING (vi,j), SUCC (vi,j), PRED(vi,j) ∀vi,j ∈ V i
Output: Par(vi,j), ∀vi,j ∈ V i
1: procedure PARALLEL-NPR
2: for each vi,j ∈ Vi do
3: Par(vi,j)← ∅
4: for each vi,l /∈ SIBLING (vi,j) do
5: if (vi,j , vi,l) /∈ Ei and (vi,l, vi,j) /∈ Ei then
6: Succ← SUCC (vi,l)\SUCC(vi,j)
7: Par(vi,j)← Par(vi,j) ∪ {vi,l} ∪ Succ
8: end if
9: end for
10: end for
11: for each vi,j ∈ TOPOLOGICAL-ORDER(Gi) do
12: for each vi,l ∈ PRED(vi,j) do
13: Pred← Par(vi,l)\ PRED(vi,j)
14: Par(vi,j)← Par(vi,j) ∪ Pred
15: end for
16: end for
17: end procedure

3. PRED(vi,j), which contains the nodes from which vi,j can be reached.
It outputs, for each vi,j, the set Par(vi,j), containing the nodes that can
execute in parallel with it.

The algorithm iterates twice over all nodes in Vi. The first loop (lines 2–10)
adds to Par(vi,j) (line 7) the set of sibling nodes vi,l that are not connected
to vi,j by an edge (line 5), and the nodes reachable from vi,l [SUCC(vi,l)],
discarding those connected to vi,j by an edge (line 6). The second loop (lines
11–15), which traverses Vi in topological order, adds to Par(vi,j) (line 14) the
set of nodes Par(vi,l) computed at line 7, being vi,l a node from which vi,j

can be reached [vi,l in PRED(vi,j)]. From Par(vi,l) we discard the nodes from
which vi,j can be reached (line 13).

As an example, consider node v1,3 of τ1 in Figure 4.7. The first loop
iterates over the sibling nodes v1,2, v1,4, and v1,5. None of them is con-
nected to v1,3 by an edge (lines 4 and 5); also, SUCC(v1,2) = {v1,6,v1,8},
SUCC(v1,4) = {v1,7,v1,8}, and SUCC(v1,5) = {v1,7,v1,8}. The algorithm
discards from SUCC(v1,2) nodes {v1,6,v1,8}, since they are already included
in SUCC(v1,3) (line 6). This is not the case of v1,7 in SUCC(v1,4) and
SUCC(v1,5). Hence, we obtain Par(v1,3) = {v1,2,v1,4,v1,5,v1,7}. The second
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loop does not add new nodes to Par(v1,3) because the unique node from
which v1,3 can be reached is v1,1, and Par(v1,1) is empty. When the second
loop examines node v1,7, the two sets Par(v1,4) and Par(v1,5) are considered,
since v1,4,v1,5 in PRED(v1,7). Then, nodes v1,2, v1,3, and v1,6 are included in
Par(v1,7), since none of them belongs to PRED(v1,7).

(2) Impact of parallel NPRs on c cores: For any task τi, we present an ILP
formulation to compute µi[c], i.e., the sum of the c largest NPRs in Vi

that, when executed in parallel, generate the worst-case workload.

Parameters: (1) c, i.e., the maximum number of cores used by τi; (2) vi,j in
Vi; (3) qi+1, i.e., the number of NPRs; (4) Ci,j; and (5) IsPari,j,k in {0,1},
i.e., a binary variable that takes 1 if vi,j and vi,k can execute in parallel,
0 otherwise.

Problem variables: (1) bj in {0,1}, i.e., a binary variable that takes the value
1 if vi,j is one of the selected parallel NPRs, 0 otherwise, and (2) bj,k = bj

OR bk with bj,k in {0,1}; j 6= k, i.e., an auxiliary binary variable.

Constraints:

1.
qi+1∑
j=1

bj = c, i.e., only c NPRs can be selected;

2.
qi+1∑
j=1

qk+1∑
k=j+1

bj,k IsPari,j,k = c, i.e., the selected NPRs can be executed in

parallel; and
3. bj,k ≥ bj+ bk – 1; bj,k ≤ bj; bj,k ≤ bk, i.e., auxiliary constraints used to

model the logical AND.

Objective function:
m∑
c=1

∑
∀τjεlp(k)

wciµ
c
i .

4.6.3.2 Overall LP worst-case workload of lp(k) per execution
scenario sl: ρk[sl]

Given the set lp(k) and an execution scenario sl in em, we present an ILP for-
mulation to derive ρk[sl], that is, the overall worst-case workload generated
by lp(k) under sl.

Parameters: (1) lp(k); (2) m; (3) sl; and (4) µi[c], for all τi in lp(k), for all
c = 1,. . . ,m.

Problem variable: wc
i , i.e., a binary variable that takes the value 1 on the

selected µi[c] that contributes to the worst-case workload, 0 otherwise.
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Constraints:

1.
m∑
c=1

∑
∀τjεlp(k)

wci = |sl|, i.e., the number of tasks contributing to the worst-

case workload must be equal to the size of the execution scenario;

2. For all τi in lp(k),
m∑
c=1

wci ≤ 1, i.e., each task can be considered at most

in one scenario;
3.

∑
∀τjεlp(k)

wci ≥ 1, c in sl, i.e., for each number of cores considered in sl,

there exist at least one µi[c] that is selected;

4.
m∑
c=1

∑
∀τjεlp(k)

wci c = m, the number of cores considered is m.

Objective function: max
m∑
c=1

∑
∀τjεlp(k)

wciµ
c
i .

4.6.4 Complexity

The complexity of the response time analysis is still pseudo-polynomial. We
hereafter discuss the complexity of the LP-ILP analysis.

Algorithm 4.2 requires specifying for each node in Vi the sets SIBLING,
SUCC and PRED, which can be computed in quadratic time in the number
of nodes. Similarly, the complexity of Algorithm 4.1 is quadratic in the size
of the DAG task, i.e., O(|Vk|2). The ILP formulation to compute µi[c] is
performed for each task (except for the highest-priority one), and the number
of cores ranges from 2 to m, hence the complexity cost is O(nm) O(ilpA).
It is important to remark that Algorithm 4.2 (as well as its inputs) and the
ILP that computes µi[c] are executed at compile-time for each task and are
independent of the task-set and the system where they execute.

ρk[sl] is computed for the execution scenarios em and em−1, and for each
task τk (except for the lowest-priority task τn), hence the complexity cost is:
O(n p(m)) O(ilpB) + O(n p(m−1)) O(ilpB). The cost of solving both ILP
formulations is pseudo-polynomial, if the number of constraints is fixed [23].
Our ILP formulations have fixed constraints, with a function cost of O(ilpA)
and O(ilpB) depending on |Vk| and (m n) respectively.

Therefore, the cost of computing ρk[sl] for em dominates the cost of other
operations; hence, the complexity of computing the lower priority interfer-
ence is pseudo-polynomial in the number of tasks and execution scenarios,
i.e., cores.
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4.7 Specializing Analysis for the Partitioned/Static
Approach

The use of dynamic schedulers in certain high-criticality real-time sys-
tems may be problematic. In the automotive domain, for example, the
static allocation of system components (named runnables in the AUTOSAR
nomenclature) define a valid application configuration, for which the appli-
cation is tested and validated. This configuration defines a specific data-flow,
i.e., an order in which components process data, and an end-to-end latency
between sensors and actuators, e.g., the gas pedal (sensor) and the injection
(actuator). A dynamic allocation instead generates different data-flows and
sensor-actuator latencies that may result in invalid configurations. The use
of static allocation is therefore of paramount importance for these types of
systems to guarantee the correct functionality.

In this section5, a static allocation of parallel applications is proposed
based on the OpenMP4 tasking model, in order to comply with the restrictive
predictability requirements of safety-critical domains. An optimal task-to-
thread mapping is derived based on an ILP formulation, providing the best
possible response time for a given parallel task graph.

Two different formulations are proposed to optimally deal with both the
tied and untied tasking models. Then, different heuristics are proposed for an
efficient (although sub-optimal) task-to-thread mapping, with a reduced com-
plexity. Experiments on randomly generated workloads and a real case-study
are provided to characterize the worst-case response time of the proposed
mapping strategies for each tasking model. The results show a significant
reduction in the worst-case makespan with respect to existing dynamic map-
ping methods, taking a further step towards the adoption of OpenMP in
real-time systems for an efficient exploitation of future embedded many-core
systems.

4.7.1 ILP Formulation

This section proposes an Integer Linear Programming (ILP) formulation to
solve the problem of optimally allocating OpenMP tasks to threads. The
problem is to determine the minimum time interval needed to execute a given
OpenMP application on m threads, both in the case of tied and untied tasks.
In other words, we seek to derive the optimal mapping of task (or task parts)
to threads so that the task-set makespan is minimized.

5This section was published as a conference paper at AspDAC [30].
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The system model is the same as in the previous sections, with the
following modifications needed to account for the OpenMP task semantics.
An OpenMP application is modeled as an OpenMP-DAG G composed of N
tasks τ1,. . . , τN. Each task τi is composed of ni parts Pi,1,. . . , Pi,ni. The Worst-
Case Execution Time (WCET) of part Pi,j of task τi is denoted as Ci,j. The
total number of threads where tasks can be executed on a multi-core platform
is denoted as m.

4.7.1.1 Tied tasks
The optimal allocation problem for tied tasks is modeled by starting from the
set of tasks τ1,. . . , τN and by adding a sink task τN+1 with a single task part
having null WCET (i.e., CN+1,1 = 0) and with incoming edges from the task
parts without any successors in the original OpenMP-DAG.

The starting time of τN+1 corresponds to the minimum completion time
of the considered application; hence it represents our minimization objective.

Input parameters: (1) m: number of threads available for execution;
(2) N: number of tasks in the system; (3) Ci,j: WCET of the j-th part of task τi;
(4) G = (V, E): DAG representing the structure of the OpenMP application;
(5) D: relative deadline of the OpenMP-DAG; (6) succi,j: set of immediate
successors of part Pi,j of τi; (7) reli: set of tasks having a relative relationship
with τi (either as antecedents or descendants).

Problem variables: (1) Xi,k in {0,1}: binary variable that is 1 if task τi is
executed by thread k, 0 otherwise; (2) Yi,j,k in {0,1}: binary variable that is 1
if the j-th part of task τi is executed by thread k, 0 otherwise; (3) ψi,j: integer
variable that represents the starting time of part Pi,j of task τi (i.e., its initial
offset in the optimal schedule); (4) ai,j,w,z,k, bi,w,k in {0,1}: auxiliary binary
variables.

Objective function: The objective function aims to minimize the starting
time of the dummy sink task τN+1: min ψN+1,1 and represents the minimum
makespan. A scheduling can be declared feasible if the minimum makespan
is ψN+1,1 ≤ D.

Initial Assumptions: (i) The first part of the first task must begin at time
t = 0: ψ1,1 = 0; (ii) The first task is executed by thread 1:

X1,1 = 1

X1,k = 0 ∀k ∈ {2, . . . ,m}
Y1,j,1 = 1 ∀j ∈ {1, . . . , n1}

Y1,j,m = 0 ∀j ∈ {1, . . . , n1} ,∀k ∈ {2, . . . ,m}
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Constraints

1. Each task is executed by only one thread:

m∑
k=1

Xi,k = 1 ∀i ∈ {1, . . . , N}

This constraint enforces the tied scheduling clause, i.e., for each task τi,
only one binary variable Xi,k is set to 1 among the m variables referring
to the available threads.

2. All parts of each task are allocated to the same thread:

ni ·Xi,k =

ni∑
j=1

Yi,j,k ∀i ∈ {1, . . . , N} , ∀k ∈ {1, . . . ,m}

This constraint establishes the correspondence between the Xi,k and
Yi,j,k variables.

3. All precedence requirements between task parts must be fulfilled:

∀i, ω ∈ {1, . . . , N + 1} , ∀j ∈ {1, . . . , ni} ,
∀z ∈ {1, . . . , nw} |Pω,z ∈ succi,j ,

ψi,j + Ci,j ≤ ψw,z.

For each pair of task parts, if a precedence constraint connects them, then
the latter cannot start until the former has completed execution. Notice
that this constraint also applies to the sink task τN+1.

4. The execution of different task parts must be non-overlapping:

∀i, ω ∈ {1, . . . , N} ,∀j ∈ {1, . . . , ni} ,∀z ∈ {1, . . . , nw} ,
∀k ∈ {1, . . . ,m} |(ω 6= i) ∨ (j 6= z),

(Yi,j,k = 1 ∧ Yw,z,k = 1)⇒
(ψi,j + Ci,j ≤ ψw,z ∨ ψw,z + Cw,z ≤ ψi,j)

In other terms, if two task parts are allocated to the same thread, then
either one finishes before the other begins, or vice versa. This constraint
can be written as:
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∀i, ω ∈ {1, . . . , N} , ∀j ∈ {1, . . . , ni} ,∀z ∈ {1, . . . , nw} ,
∀k ∈ {1, . . . ,m} |(ω 6= i) ∨ (j 6= z),

ψi,j + Ci,j ≤ ψw,z +M(2 + aa,j,w,z,k − Yi,j,k − Yw,z,k)
ψw,z + Cw,z ≤ ψi,j +M(3− aa,j,w,z,k − Yi,j,k − Yw,z,k)

where M is an arbitrarily large constant. Indeed, if ai,j,w,z,k = 1, then
the first inequality is always inactive, while the second one is active only
if Yi,j,k = 1 and Yw,z,k = 1. Similarly, if ai,j,w,z,k = 0, then the first
inequality is active only if Yi,j,k = 1 and Yw,z,k = 1, while the second
one is always inactive.

5. The Task Scheduling Constraint 2 (TSC 2) as described in Chapter 3
must be satisfied:

∀i,ω ∈ {1, . . . , N} , i 6= w, Tw /∈ reli, ∀k ∈ {1, . . . ,m} ,
(Xi,k = 1 ∧Xw,z = 1)⇒

(ψi,ni + Ci,ni ≤ ψw,1) ∨ (ψw,nw + Cw,nw ≤ ψi,1).

This constraint imposes that one task cannot be allocated to a thread where
another task that is neither a descendant nor an antecedent of the considered
task is suspended. This is equivalent to saying that if two tasks not related
by any descendance relationship are allocated to the same thread, then one of
them must have finished before the other one begins. Therefore, the last task
part of either task plus its WCET must be smaller than or equal to the starting
time of the first task part of the other one. As for constraint (iv), it can be
rewritten as:

∀i,ω ∈ {1, . . . , N} , i 6= w, Tw /∈ reli, ∀k ∈ {1, . . . ,m} ,
ψi,ni + Ci,ni ≤ ψw,1 +M(2 + bi,w,k −Xi,k −Xw,k)

ψw,nw + Cw,nw ≤ ψi,1 +M(3− bi,w,k −Xi,k −Xw,k).

Note that all constraints [except constraint (iii)] need not be applied to τN+1.

4.7.1.2 Untied tasks
The ILP formulation proposed for tied tasks can be applied for untied tasks
with the following modifications. The initial assumption (ii) is replaced as
follows: Y1,1,1 = 1.
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Since different parts of the same task are allowed to be executed by
different threads, constraints (i) and (ii) are replaced by:

m∑
k=1

Yi,j,k = 1∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , ni}

and the variables Xi,k are no longer needed. Finally, constraint (v) does not
apply for untied tasks and thus the auxiliary variables bi,w,k are not needed.

4.7.1.3 Complexity
The problem of determining the optimal allocation strategy of an OpenMP-
DAG composed of untied tasks has a direct correspondence with the
makespan minimization problem of a set of precedence-constrained jobs (task
parts in our case) on identical processors (threads in a team in our case). This
problem, also known as job-shop scheduling, has been proven to be strongly
NP-hard by a result of Lenstra and Rinnooy Kan [18]. The complexity of the
problem for the tied tasks cannot be smaller than in the untied case. Indeed,
when each task has a single task part, the problem for tied tasks reduces to
that for untied tasks.

In the presented ILP formulations for both the tied and untied tasks, the
number of variables and the number of constraints grow asO(N2p2m), where
p = maxi=1,...,N ni.

Given the problem complexity and poor scalability of the ILP formula-
tion, the next section proposes an efficient heuristic for providing sub-optimal
solutions within a reasonable amount of time.

4.7.2 Heuristic Approaches

In the context of production scheduling, several heuristic strategies have
been proposed to solve the makespan minimization problem of precedence
constrained jobs on parallel machines [20, 24]. More specifically, different
priority rules have been proposed in the literature to sort a collection of
jobs subject to arbitrary precedence constraints on parallel machines. Such
ordering rules allow selecting the next job to be executed in the set of ready
jobs.

The ordering rules that have been shown to perform well in the context of
parallel machine scheduling are [20, 24]:

1. Longest Processing Time (LPT): The job with the longest WCET is
selected;
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2. Shortest Processing Time (SPT): The job with the shortest WCET is
selected;

3. Largest Number of Successors in the Next Level (LNSNL): The job
with the largest number of immediate successors is selected;

4. Largest Number of Successors (LNS): The job with the largest number
of successors overall is selected;

5. Largest Remaining Workload (LRW): The job with the largest work-
load to be executed by its successors is selected.

We build upon such results to make them applicable to the considered
problem. At any time instant, the set of ready jobs of a given instance of an
OpenMP-DAG corresponds to the set of task parts that have not completed
execution and whose precedence constraints are fulfilled.

This section presents an algorithm for allocating tied and untied task
parts on the different threads following one of the above-mentioned ordering
criteria, such that the partial ordering between task parts is respected.

4.7.2.1 Tied tasks
Algorithm 4.3 instantiates the procedure for the case of tied tasks, for which
existing heuristic strategies cannot be directly applied. The algorithm takes
the structure G of an OpenMP-DAG and the number of available threads
m as inputs, and it outputs a heuristic allocation of tied OpenMP tasks
to threads.

The idea behind the algorithm is to allocate ready task parts to the first
available thread, following a pre-determined criterion to choose among ready
tasks, while enforcing the specific semantics of the OpenMP tasking model.
First, a list R of ready task parts is initialized with P1,1, and an array L of
size m with null initial values is used to store the last idle time on each thread
(lines 2–3). The while loop at lines 4–25 iterates until all task parts have
been allocated, i.e., until the size of list A, which contains the allocated jobs,
reaches the total number of parts in the task-set. At each iteration, a new
task part is allocated to one of the threads. Specifically, at line 5, the index
k of the earliest available thread is determined by function FirstIdleThread.
Then, the procedure NextReadyJob returns the ready task part Pi,j selected
according to one of the ordering rules described above. The allocation of the
selected task part must always respect TSC 2. Hence, any time the first part of
a new task is selected, the function must check its descendance relationships
with the tasks currently suspended on thread k, stored in the list Sk. If Pi,j

is the first part of τi (line 7), then it is allocated on core k; otherwise, it is



102 Mapping, Scheduling, and Schedulability Analysis

Algorithm 4.3 Heuristic allocation of an OpenMP application comprising tied tasks
1: procedure HEURTIED(G,m)
2: A← ∅;R← P1,1

3: L← ARRAY (m, 0) : S ← ARRAY(m, ∅)
4: while SIZE(A)! =

∑N
i=1ni do

5: k ← FIRSTIDLETHREAD(L)
6: Pi,j ← NEXTREADYJOB(k,R, Sk, G)
7: if j == 1 then
8: θi ← k
9: if j! = ni then
10: Sk ← APPEND(i, Sk)
11: end if
12: else if j == ni then
13: Sk ← REMOVE (i, Sk)
14: end if
15: ψi,j = max(Lθi , ψi,j);Lθi ,← Lθi + Ci,j
16: A← APPEND (Pi,j , A);R← REMOVE (Pi,j , R)
17: for P k,z|(Pi,j , Pk,z) ∈ E do
18: if ψk,z < ψi,j + Ci,j then
19: ψk,z ← ψi,j + Ci,j ;Fk,z = Fk,z + 1
20: if F k,z == SIZE(INEDGESk,z) then
21: R← APPEND (Pk,z, R)
22: end if
23: end if
24: end for
25: end while
26: return maxmi=1Li
27: end procedure

allocated on thread θi, according to the tied scheduling clause. Also, if that
task part is not the final one (line 9), τi is appended to the list of tasks currently
suspended on thread k. Otherwise, if Pi,j is the final part of τi (line 12), τi can
be removed from the list of tasks currently suspended on thread k. In both
cases, the starting time of Pi,j is updated, as well as the last idle time on
thread k (line 15). In addition, Pi,j is added to the list of allocated jobs and
removed from the list of ready jobs (line 16). Once Pi,j has been allocated,
other jobs may become ready. All the successors of Pi,j are scanned and an
internal counter (Fk,z) is incremented for each vertex (for loop at lines 17–
24). Once the counter reaches the number of its immediate predecessors, the
task part may be appended to the list of ready vertices (line 21). Finally, the
makespan corresponding to the generated allocation is returned. At the end of
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the algorithm, ψi,j stores the starting time of any part Pi,j in the final schedule,
and θ stores the mapping of tasks to threads.

The algorithm runs in polynomial time in the size of the task-set;

specifically, the time complexity is O

((∑N
i=1 ni

)2
)

.

4.7.2.2 Untied tasks
Algorithm 4.3 can be applied also in the case of untied tasks with some
simplifications. In particular, the function NextReadyJob does not need to
check the validity of TSC 2. Hence, the array S is not required, and all the
operations on S at lines 7–14 do not need to be performed. On the other
hand, the algorithm must keep track of the thread associated to each task part
(instead of each task).

4.7.3 Integrating Interference from Additional RT Tasks

We now generalize the static setting by considering a set of n OpenMP appli-
cations modeled as a collection of OpenMP DAGs Γ = {G1,. . . ,Gn}. Each
DAG is released sporadically (or periodically) and has a relative deadline Di,
which is constrained to be smaller than or equal to its corresponding period
(or inter-arrival time) Ti.

We assume that parts of each tasks are statically partitioned to the m
available threads. At any time instant, the scheduler selects among the ready
task parts the one that should be executed by a given thread according
to partitioned fixed-priority preemptive scheduling. In addition, we assume
that OpenMP applications are statically prioritized, i.e., each DAG Gi is
associated with a unique (fixed) priority that is used by the scheduler to select
which task parts should be executed at any time instant by any of the threads.

In order to compute an upper-bound on the response time Ri of a given
OpenMP-DAGGi, we proceed by computing an upper-bound on the response
time of each task part in the OpenMP-DAG, following a predefined order
dictated by any topological sorting of the DAG. At each step, the response
time of the considered vertex is computed considering all its immediate
predecessors, one at a time. A safe upper-bound on the response time of the
vertex under analysis will be selected as the maximum of such values. The
maximum response time among vertices without successors will be selected
as upper-bound to the response time of the DAG-task Gi.
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Figure 4.8 Tasks example.

4.7.4 Critical Instant

We hereafter prove that the synchronous periodic arrival pattern does not
represent the worst-case release sequence for the OpenMP-DAG task model
assumed. Consider a task-set composed of two OpenMP-DAG tasks G1 and
G2, whose structure and parameters are illustrated in Figure 4.8. The figure
also reports the static allocation of task parts to threads: parts P1,1, P1,2, P1,4,

and P2,1 are allocated to thread m1, while part P1,3 is allocated to thread m2.
We can immediately see that R1 = 7, as G1 is the highest priority RT

task in the system. In order to compute the response time of G2, we focus on
thread m1 and first consider the synchronous periodic arrival pattern for G1,
which produces the schedule in Figure 4.9a and yields a response time of 21
time units for G2. However, if we consider the release pattern in Figure 4.9b,
where the release of G1 has an offset of two time units, we observe that the
response time of G2 becomes equal to 23.

This example shows that it is very difficult to exactly quantify the inter-
ference a task may suffer from higher-priority tasks in the worst-case. This is
mainly due to the precedence constraints between parts of the same tasks, and
to the fact that any vertex is allowed to execute on its corresponding thread
only when all its predecessors (possibly allocated to different threads) have
completed their execution. In order to overcome these problems, we derive
a safe upper-bound on the response time of a given task by considering the
densest possible packing of jobs generated by a legal schedule in any time
interval. Specifically, we consider a pessimistic scenario (see Figure 4.9c):

• the first instance of a higher-priority task is released as late as possible;
• subsequent instances are released as soon as possible;
• higher-priority jobs are considered as if precedence constraints were

removed (their WCET is “compacted”).
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Figure 4.9 Different release patterns for the example of Figure 4.8. (a) represents the
most optimistic case, while (c) the most pessimistic, i.e., yelding to the highest WCET.
(b) represents an intermediate case.

4.7.5 Response-time Upper Bound

Algorithm 4.4 computes an upper-bound on the response time of an OpenMP-
DAG by considering the above-described pessimistic scenario leading to the
densest possible packing of higher-priority task parts:

The function SELFINTERFERENCE calculates the self-interference suf-
fered by task part Pk,i as the sum of the WCETs of all parts Pk,j belonging to
the same task and such that:

1. they are allocated to the same thread as Pk,i;
2. there is no path starting at Pk,i that can reach Pk,j ;
3. there is no path starting at Pk,j that can reach Pk,i.

With the above algorithm in place, different heuristics can be proposed to find
a feasible allocation of task parts to threads/cores. Among the ones we tried,
we found that the best schedulability performances are obtained with a Best
Fit approach that works as follows:

• It assigns RT tasks in non-increasing priority order, i.e., starting from
the highest priority task and moving towards lower priority ones.
• For each task it defines a topological order for all task parts.
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Algorithm 4.4 Upper-bound on the response time of an OpenMP-DAG by considering
the densest possible packing of higher-priority task parts

1: procedure DENSESTPACKINGALG(Gk)
2: σ→ TOPOLOGICALORDER(Gk)
3: for Pk,i ∈ σ from source to sink do
4: Rmax = maxj∈PRED(k,i)Rk,j
5: S = SELFlNTERFERENCE(k, i)
6: R← Ck,i + S
7: Rprev ← 0
8: while R 6= Rprev do
9: Rprev ← R
10: R← Ck,i + S
11: for Ph,j such that h < k and θh,j == θk,i do

12: R← R+
⌈
Rprev+Rh,j−Ch,j

Th

⌉
Ch,j

13: end for
14: end while
15: If Rmax +R > Dk then
16: sched← 0
17: break
18: else
19: sched← 1
20: Rk,i ← Rmax +R
21: end if
22: end for
23: return {sched,Rk,sink}
24: end procedure

• Following the topological order, each task part is assigned to the core
that minimizes its partial response time, i.e., the response time of the RT
task until the considered task part.
• If any of the considered task parts has a partial response time that

exceeds its relative deadline, the algorithm fails, declaring the RT
task-set not schedulable.

The partial response time of each task part can be easily computed using
Algorithm 4.4, executing the operations within the for loop at line 3. Once
the selection is made for a task part, there is no need to recheck the
schedulability of the parts already assigned belonging to higher priority
tasks, since this last assignment does not interfere with them. However, it
is necessary to reconsider the task parts belonging to the same RT task that
may experience an increase in the interference. The only task parts that may
be affected by the last task part assigned are those that have no precedence
constraints with it. For these ones, we re-compute their partial response-time
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after the new assignment. Since there is no backtracking in this case, the
complexity of the heuristic remains reasonable, at the penalty of some added
pessimism.

4.8 Scheduling for I/O Cores

This paragraph briefly describes the scheduler adopted at host level, i.e., in
the I/O cores.

According to system requirements, the OS running on the host proces-
sor must be Linux. Moreover, the Linux kernel must be patched with the
PREEMPT_RT patch6. This is an on-going project supported by the OSADL
association7 to add real-time performance to the Linux kernel by reducing the
maximum latency experienced by an application, mainly through preemptible
spinlocks and in-thread interrupt management (See also essential work in
[25–38]). The patch makes the system more predictable and deterministic;
however, it often increases the average latency. Currently, the patch only par-
tially works on the reference platform due to missing support for SMP in the
Linux kernel; full support will be added during the next months. Concerning
the scheduling policy, the OS must provide a fixed-priority preemptive FIFO-
scheduling algorithm. Therefore, the basic scheduling algorithm will be the
SCHED_FIFO policy specified by the POSIX standard. The optional require-
ment R5.21 suggests to have a Linux kernel higher than 3.14 for investigating
potential benefits given by the dynamic-priority SCHED_DEADLINE Linux
scheduler. This possibility will be explored at a later stage of the project.
Access to shared resources in the host cores is handled through the Priority
Inheritance (PI) policy provided by the Linux kernel.

4.9 Summary

In this chapter, we described the design choices related to the implementation
of a partitioned scheduler for allocating the computing resources to the
different threads in the system. In particular, we detailed the thread model
adopted in the project, and the local scheduler adopted at core level, based on
fixed thread priorities.

6PREEMPT_RT Linux patch, https://rt.wiki.kernel.org
7OSADL, Open Source Automation Development Lab, http://www.osadl.org/
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Such a scheduler has then been enhanced with the enforcement of a
limited pre-emption scheduling policy that corresponds to the execution
model supported by the OpenMP tasking model, as well as allowing increas-
ing the predictability of the analysis, without sacrificing the schedulability.
According to the limited pre-emption scheduling model, each thread can be
pre-empted only at particular pre-emption points. The framework provides
a method to compute the length of the largest non-preemptive region that
can be tolerated by each thread (at each different priority). Then, threads
execute along non preemptive regions. In a generic model such as the one
introduced in this chapter, this means inserting the minimum possible number
of preemption points such that the schedulability of higher priority thread is
not affected. Of course, specifying this model so that it adheres to OpenMP
semantics means that the identification of these preemption points exploits
information inherited from the OpenMP task semantics, i.e., OpenMP TSPs
will be used as potential candidates.

We then described the implementation of an enhanced global scheduler
with migration support. Such a scheduler is integrated with the OpenMP
dynamic mapping policy to allow for a work-conserving resource allocation
of computing resources. The scheduler adopts a cluster-wide ready queue
where threads are ordered according to their priorities. Preemptions are
allowed only at task-part boundaries when a TSP is reached. TSPs are also
natural polling points to deal with new incoming offloads without requiring
interrupts.

The task model adopted, namely the cp-task model, generalizes the classic
sporadic DAG task model by integrating conditional branches. The topologi-
cal structure of a cp-task graph has been formally characterized by specifying
which connections are allowed between conditional and non-conditional
nodes. Then, a schedulability analysis has been derived to compute a safe
upper-bound on the response-time of each task in pseudo-polynomial time.
Besides its reduced complexity, the proposed analysis has the advantage
of requiring only two parameters to characterize the complex structure of
the conditional graph of each task: the worst-case workload and the length
of the longest path. Algorithms have also been proposed to derive these
parameters from the DAG structure in polynomial time. Simulation exper-
iments carried out with randomly generated cp-task workloads and real
test-cases clearly showed that the proposed approach is able to improve over
previously proposed solutions for tightening the schedulability analysis of
sporadic DAG task systems. The first formulation of the analysis considered
a full-preemption model (see [18]). Then, it has been extended to limited
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preemptive scheduling [24], and, finally, it has been specialized also for
non-conditional DAGs [20, 29].

In this chapter, two methods have been proposed to compute the lower-
priority interference: (1) a pessimistic but easy-to-compute method, named
LP-max, which upper bounds the interference by selecting the NPRs with
the longest worst-case execution time; and (2) a tighter but computationally-
intensive method, named LP-ILP, which also takes into account precedence
constraints among DAGs nodes in the analysis. Our results demonstrate
that LP-ILP increases the accuracy of the schedulability test with respect
to LP-max when considering DAG-based task-sets with different levels of
parallelism.

The chapter then proposed an ILP formulation to derive an optimal static
allocation compliant with the OpenMP4 tied and untied tasking model. With
the objective of reducing the complexity of the ILP solver, five heuristics
have been proposed for an efficient (although sub-optimal) allocation. Results
obtained on both randomly generated task-sets and the 3DPP application
(from the avionics domain) show a significant reduction in the worst-case
makespan with respect to an existing schedulability upper-bound for untied
tasks. Moreover, the proposed heuristics perform very well, closely matching
the optimal solutions for small task-set, and outperforming the best feasible
solution found by our ILP (after running the solver for a certain amount of
time) for large task-sets and the 3DPP.
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