
5
Timing Analysis Methodology

Vincent Nélis, Patrick Meumeu Yomsi and Luís Miguel Pinho

CISTER Research Centre, Polytechnic Institute of Porto, Portugal

This chapter focuses on the analysis of the timing behavior of software
applications that expose real-time (RT) requirements. The state-of-the-art
methodologies to timing analysis of software programs are generally split
into four categories, referred to as static, measurement-based, hybrid, and
probabilistic analysis techniques. First, we present an overview of each of
these methodologies and discuss their advantages and disadvantages. Next,
we explain the choices made by our proposed methodology in Section 5.2
and present the details of the solution in Section 5.3. Finally, we conclude the
chapter in Section 5.4 with a summary.

5.1 Introduction

Most of the timing analysis tools focus only on determining an upper-bound
on the Worst-Case Execution Time (WCET) of a program or function code
that runs in isolation and without interruption. In other words, these tools
do not consider all the interferences that the execution of the analyzed code
may suffer when it runs concurrently with other tasks or programs on the
same hardware platform. They typically ignore all execution interferences
due to the contention for shared software resources (e.g., data shared between
several tasks) and shared hardware resources (e.g., shared interconnection
network)1 [1]. Interferences from the operating system (OS) which frequently
re-schedules and interrupts the programs are also ignored by WCET ana-
lyzers. All these interactions between the analyzed task, the OS, and all the

1Note that the OTAWA timing analysis tool is able to analyze parallel code with
synchronization primitives [1].

113

114 Timing Analysis Methodology

other tasks running in the system are assessed separately and sometimes they
are incorporated into a higher-level schedulability analysis. For the timing
requirements to be fulfilled, it is neither acceptable nor realistic to ignore
these sources of contention and interference at the schedulability-analysis
level.

WCET analysis can be performed in a number of ways using different
tools, but the main methodologies employed can be classified into four
categories:

1. Static analysis techniques
2. Measurement-based analysis techniques
3. Hybrid analysis techniques
4. Measurement-based probabilistic analysis techniques

Note that the first three methodologies are usually acknowledged as equally
important and efficient as they target different types of applications. In
addition, they are not comparable in the sense that one technique has not
been proven to dominate the others. The fourth technique is more recent and
thus fewer results are available.

Measurement-based techniques are suitable for software that is less time-
critical and for which the average-case behavior (or a rough WCET estimate)
is more meaningful or relevant than an accurate estimate like, for example,
in systems where the worst-case scenario is extremely unlikely to occur. For
highly time-critical software, where every possible execution scenario must
be covered and analyzed, the WCET estimate must be as reliable as possible
and static or hybrid methods are therefore more appropriate. Measurement-
based probabilistic analysis techniques are also designed for safety-critical
systems to derive safe estimated execution time bounds, but they are not yet
sufficiently mature to report on their efficiency and applicability. Indeed, a
consensus is still to be reached in the research community on this matter.

For the execution time of a single sequential program run in isolation,
Figure 5.1 shows how different timing estimates relate to the WCET and best-
case execution time (BCET). The example program has a variable execution
time that depends on (1) its input parameters and (2) its interactions with the
system resources. The darker curve shows the actual probability distribution
of its execution time; its minimum and maximum are the BCET and WCET
respectively. The lower grey curve shows the set of execution times that
have been observed and measured during simulations, which is a subset
of all executions; its minimum and maximum are the minimal measured
time and maximal measured time, respectively. For both static analysis tools

5.1 Introduction 115

Figure 5.1 Example distribution of execution time (picture taken from [2]).

and measurements-based tools, in most cases the program state space and
the hardware complexity are too large to exhaustively explore all possible
execution scenarios of the program. This means that the measured times are
likely to be optimistic and the estimated times are likely to be pessimistic –
i.e., the measured times will in many cases overestimate the actual BCET
and underestimate the actual WCET, while the approximated estimated times
will in many cases underestimate the actual BCET and overestimate the actual
WCET.

The next four subsections introduce each of the four timing-analysis
methodologies and discuss their potential advantages and disadvantages.

5.1.1 Static WCET Analysis Techniques

Static WCET analysis is usually performed in three conceptual and possibly
overlapping phases.

1. A flow analysis phase in which information about the possible program
execution paths is derived. This step builds a control flow-graph from
the given program with the aim of identifying the worst path (in terms
of execution time).

2. A low-level analysis phase during which information about the execu-
tion time of atomic parts of the code (e.g., instructions, basic blocks, or
larger code sections) is obtained from a model of the target architecture.

3. A final calculation phase in which the derived flow and timing informa-
tion are combined into a resulting WCET estimate.

Flow analysis mostly focuses on loop bound analyses, hence upper-bounds
on the number of iterations in each looping structure must be known to
derive WCET estimates. Similarly, recursion depth must also be bounded.

116 Timing Analysis Methodology

Automatic methods to find these bounds have been proposed by the research
community but for many available tools, some annotations on the maximum
number of iterations in a loop must be provided manually in the code of
the tasks by the application developer. Another purpose of flow analysis is
to identify infeasible execution paths, which are paths that are executable
according to the control-flow graph but are not feasible when considering
the semantics of the program and the possible input data values. Discarding
unfeasible paths at an early stage of the analysis considerably reduces the
search space when trying to identify the longest path.

Low-level analysis methods typically use models of all the hardware
components and their arbitration policies, including CPU caches, cache
replacement policies, write policies, instruction pipeline, memory bus and
their arbitration policies, etc. These models are typically expressed in the
form of complex mathematical abstractions for which a worst-case operation
can be estimated.

Pros: There are a few advantages of using static analysis techniques that rely
on mathematical models.

• It eliminates the need for having the actual hardware available, which
removes the cost of acquiring and setting up the target platform.

• It enables safe WCET upper-bounds to be derived without running the
program on the target platform while still considering the influence of
the state changes in the underlying hardware [3]. State changes include,
e.g., a cache line being evicted, a pipeline being totally flushed out, etc.

Cons: On the downside, we shall note the following drawbacks.

• These approaches rely heavily on having an accurate model of the
timing behavior of all the target hardware components and manage-
ment policies, including modeling features like pipelines and caches
that substantially affect the execution time of the task being executed.
Although the embedded market used to be traditionally dominated by
simple and predictable processors (which used to be moderately “easy”
to model and allowed for deriving safe and tight bounds), with the
increased computational needs of modern embedded systems, designers
have moved to more complex processors which are now mainly designed
for performance and not for predictability. For this new generation of
processors, designing an accurate hardware model is very challenging,
as all the intricacies contributing to the variation in the task execution
times (e.g., caches, pipelines, out-of-order execution, branch prediction,

5.1 Introduction 117

automatic hardware prefetching, etc.) should be captured by the model to
provide safe and sufficiently tight bounds. Because it is hardly feasible to
accurately model all these acceleration mechanisms and their operation,
static methods typically forbid their use and are struggling to adapt to
modern hardware architectures.

• Besides the difficulty of modeling all these performance-enhancement
hardware features, it must also be noted that generally, chip manufactur-
ers do not publish the details of their internal workings, which further
complicates/makes impossible the design of an accurate model.

• Although static approaches have the advantage of providing safe WCET
bounds, they can be very pessimistic at times. This is because generally,
each hardware resource is modeled separately, and all the worst-case
estimates are then composed together to form the final WCET bound.
However, at runtime, it is often impossible for all these individual worst-
case scenarios to happen at the same time.

• The hardware model must be thoroughly verified to ensure that it indeed
reflects the target hardware; failing to capture inherent performance
enhancing features may result in overestimations of the execution times,
whereas capturing all system states in a complex machine may lead
to unacceptably long analysis times. Building and verifying the timing
model for each processor variant is expensive, time consuming, and
error prone. Custom variants and different versions of processors often
have subtly different timing behaviors, rendering timing models either
incorrect or unavailable.

It is very important to stress at this point that static analysis techniques
have been designed primarily to analyze simple software codes meant to
run on simple and predictable hardware architectures. These targeted codes
are typically implemented by using high-level programming languages and
by obeying strict and specific coding rules to reduce the likelihood of
programmer error.

The modeling framework adopted by static analysis lends itself to formal
proofs which help in establishing whether the obtained results are safe. Today,
there are several static WCET tools that are commercially available, including
aiT [4] and Bound-T [5]. Note that Bound-T is no longer actively developed
due to both commercial and technical reasons. We redirect the interested
reader to their website (http://www.bound-t.com/) for further details on this
matter. There also exist several research prototypes, including Chronos [6],
developed at National University of Singapore, Heptane [7], developed at

118 Timing Analysis Methodology

the French National Institute for Research in Computer Science and Control
(INRIA) IRISA in France, SWEET [8], developed at Mälardalen Real-Time
Research Center (MRTC) in Sweden, and OTAWA [9] from IRIT in France.

5.1.2 Measurement-based WCET Analysis Techniques

The traditional and most common method in the industry to determine pro-
gram timing is by measurements. The basic principle of this method follows
the mantra that “the processor is the best hardware model.” The program is
executed many times on the actual hardware, with different inputs and in
isolation, and the execution time is measured for each run by instrumenting
the source code at different points [10]. Each measurement run exercises only
one execution path throughout the program, and thus for the same set of input
values, several thousands of program runs must be carried out to capture
variations in execution time due to the fluctuation in system states. For those
measurement-based approaches, the main challenge is essentially to identify
the set of input arguments of the application that leads to its WCET.

Pros:

• Measurements are often immediately at the disposal of the programmer,
and are useful mainly when the average case-timing behavior or an
approximate WCET value is of interest.

• Most types of measurements have the advantage of being performed
on the actual hardware, which avoids the need to construct a hardware
model and hence reduces the overall cost of deriving the estimates.

Cons:

• Measurements require that hardware is available, which might not be the
case for systems for which the hardware is developed in parallel with the
software.

• It may be problematic to set up an environment which acts like the final
system.

• The integrity of the actual code to be deployed in the target hardware is
somehow depleted by the addition of the intrusive instrumentation code
to measure the time, i.e., the measurements themselves add to the execu-
tion time of the analyzed program. This problem can be reduced, e.g., by
using hardware measurement tools with no or very small intrusiveness,
or by simply letting the added measurement code (and thus the extra
execution time) remain in the final program. When doing measurements,

5.1 Introduction 119

possible disturbances, e.g., interrupts, also have to be identified and
compensated for.

• For most programs, the number of possible execution paths is too large
to do exhaustive testing and therefore, measurements are carried out
only for a subset of the possible input values, e.g., by giving potential
“nasty” inputs which are likely to provoke the WCET, based on some
manual inspection of the code. Unfortunately, the measured times will
in many cases underestimate the WCET, especially when complex soft-
ware and/or hardware are being analyzed. To compensate for this, it is
common to add a safety margin to the worst-case measured timing, in
the hope that the actual WCET lies below the resulting WCET estimate.
The main issue is whether the extra safety margin provably provides a
safe bound, since it is based on some informed estimates. A very high
margin will result in resource over-dimensioning, leading to very low
utilization while a small margin could lead to an unsafe system.

5.1.3 Hybrid WCET Techniques

Hybrid approaches, as the name implies, present the advantages of both static
and measurement-based analysis techniques. Firstly, they borrow the flow-
analysis phase from static methods to construct a control flow-graph of the
given program and identify a set of feasible and potentially worst execution
paths (in terms of execution time). Next, unlike static methods that use mathe-
matical models of the hardware components, hybrid tools borrow their second
phase from measurement-based techniques and determine the execution time
of those paths by executing the application on the target hardware platform
or by cycle-accurate simulators. To do so, the source code of the application
is instrumented with expressions (instrumentation points) that indicate that
a specific section of code has been executed. These instrumentation points
are typically placed along the paths identified in the first phase as leading to
a WCET. The application is then executed on the target hardware platform
or on the simulator to collect execution traces. These traces are a sequence
of time-stamped values that show which parts of the application has been
executed. Finally, hybrid tools produce performance metrics for each part of
the executed code and, by using the performance data and knowledge of the
code structure, they estimate the WCET of the program.

Pros:

• Hybrid approaches do not rely on complex abstract models of the
hardware architecture.

120 Timing Analysis Methodology

• They generally provide safe WCET estimates (i.e., higher than the actual
WCET) and those are very often tighter than the estimates returned by
static approaches (i.e., closer to the actual WCET).

Cons:

• The uncertainty of covering the worst-case behavior by the measurement
remains since it cannot be guaranteed that the maximum interference and
the worst-case execution scenario has been experienced when collecting
the traces during the second phase.

• It is required to instrument the application source code, which poses
the same issue of intrusiveness as in measurement-based approaches.
Example tools include Rapitime [11] and MTime [12].

5.1.4 Measurement-based Probabilistic Techniques

With the current hardware designs, the execution time of a given application
depends on the states of the hardware components, and those states depend
in turn on what has been executed previously. A classic example of such
a tight relationship between the application and the underlying hardware
architecture is the execution time discrepancy that can be observed when a
program executes on a processor equipped with a cache subsystem. During
the first execution of the program, every request to fetch instructions and data
results in a cache miss and must be loaded from the main memory. At the
second execution, this information is already in the cache and need not be
reloaded from the memory, which results in an execution time considerably
shorter than during the first run. Because of this dependence to past events, the
set of measured execution times of the same program cannot be seen as a set
of IID (independent and identically distributed) random variables and most
statistical tools cannot be applied to analyze the collected execution traces.

The objective of measurement-based probabilistic techniques is to break
this dependence on past events, so that one can sample the execution behavior
of an application and then derive from the sample probabilistic estimates (of
any parameter) that apply to its overall behavior, under all circumstances
and in all situations. To achieve this goal, researchers are nowadays working
on modifying the hardware components and their arbitration policies to
make them behave in a stochastic manner, without losing too much of their
performance. For example, by replacing the traditional Least Recently Used
(LRU) or Pseudo-LRU (PLRU) cache-replacement policy for a policy that
randomly chooses the cache line to be evicted (and assuming that every cache

5.2 Our Choice of Methodology for WCET Estimation 121

line has the same probability of getting evicted), the time overhead due to
cache penalties and cache line evictions can be analyzed as an IID random
variable with a known distribution. If every source of interference exhibits a
randomized behavior with a known distribution, then the execution time itself
can be analyzed statically.

The current trend in probabilistic approaches is to apply results from the
extreme value theory (EVT) framework to the WCET estimation problem
[12, 13]. In a nutshell, these EVT-based solutions first sample the execution
time of an application by running it over multiple sets of input arguments
on a randomized architecture that is designed to confer a stochastic behavior
on the application runtime. Then, these EVT-based solutions organize the
sample into multiple groups/intervals, analyze the distribution of the local
maxima within these intervals and then estimate how far the execution time
may deviate from the average of that “distribution of the extremes.”

Although considerably new, measurement-based probabilistic techniques
have been the object of tremendous research efforts in the last few years,
most of the breakthroughs in that discipline have been made in the scope of
the European projects PROARTIS [14] and PROXIMA [15].

Pros:

• Provide safe and potentially tighter WCET estimates than static and
hybrid techniques.

• Provide information not only on the WCET of a program but on the
complete spectrum of the distribution of its execution time.

Cons:

• Require modifying the hardware to ensure that the components exhibit
a stochastic behavior.

• As the IID requirement is hardly verified in currently available platforms
(especially COTS platforms), the applicability of measurement-based
probabilistic techniques is limited.

5.2 Our Choice of Methodology for WCET Estimation

As seen in the previous section, there exist several methodologies to estimate
the WCET of an application, each with its own advantages and disadvantages.
Those methodologies fall into the following main categories, namely static,
measurement-based, and hybrid. Here we would like to briefly re-iterate on
why among those four methodologies we decided to use a measurement-
based approach.

122 Timing Analysis Methodology

There is currently an evident clash of opinions in the research community
about which methodology prevails over the others. During the last two years
we had the opportunity to debate with partisans of each of these approaches.
It is important to stress that we do not mean to take a side in this book, simply
because we recognize that each approach comes with its own set of strengths
and weaknesses. Our methodology simply uses the one whose downsides
impede as little as possible our objectives. The following subsections summa-
rize our opinion on the matter and present the observations that have driven
our choice towards using a measurement-based technique.

5.2.1 Why Not Use Static Approaches?

In this section, we present some of the reasons why we did not choose static
approaches to timing analysis, but rather opted for a measurement-based
approach. Before going into the details, it is worth mentioning that recent
COTS manycore platforms present complex and sophisticated architectures
such that it is very challenging at design time, if not impossible, to come up
with an accurate model for all the behavioral implications associated with the
possible operational decisions that the system can take at runtime. This claim
holds true even for the most experienced systems designers.

By using hardware platforms such as the Kalray MPPA-256, or
any other platform designed to provide high performance, we argue
that it is practically infeasible to derive WCET estimates by using
static timing analysis techniques.

In theory, it is always possible to extract safe and reliable timing models
and define mathematical abstractions to study the behavior of a deterministic
system. However, we argue that it is practically challenging to define and use
static mathematical models of the considered platforms, mainly because of:

The inherent system complexity: Typical COTS hardware components
are extremely complex. Currently the market of embedded and electronic
components is unarguably driven by the ever-increasing need for higher
performance. The only way to constantly enhance the performance is to
optimize the produced chips and boards by adding all sorts of optimization
features. Optimization is achieved by allowing the system to take and revise
its operational decisions on-the-fly, at runtime, based on the current workload
of the system or any informational data collected about the running appli-
cation and its environment. Since those decisions are taken at runtime, it is
impossible to predict the exact behavior of the system at the analysis time.

5.2 Our Choice of Methodology for WCET Estimation 123

The only option for static tools is to assume that the system will most of the
time be in a worst-case situation, in which the optimization features will have
very little or no effect. This makes static models pessimistic and the produced
timing estimates may not reflect accurately the actual timing behavior of the
system.

The human resources required: An increased system complexity leads to a
longer time-to-model. Developing a draft model of a platform may take up to
several years to reach the desired level of accuracy and be validated. Besides
this fact, our software stack and methodology aim at being platform agnostic
and therefore be applicable to a large set of hardware platforms. To this end,
they should provide a generic abstraction between the application logic and
the system interfaces so that the development costs and efforts are always
reasonable and limited. This is an objective for which the inherent portability
of measurement-based solutions appears to be more appropriate.

Portability: The “rigidity” of static approaches: Using static timing anal-
ysis techniques goes against our goal of developing a flexible and generic
framework which can be “easily” ported to different platforms from various
vendors. This has been a key driver in the development of our timing anal-
ysis methods, in order to increase the exploitation opportunities in multiple
application domains.

The non-availability of the specification details: To devise accurate models,
all the information about the target platform must be available and accurate.
This is not the case in practice. Chip manufacturer generally keep most
information secret, unfortunately.

The complexity of the execution environment: Static timing analysis tools
are designed primarily to focus on applications executed sequentially in
safety-critical embedded systems. Those systems generally provide a very
time-predictable and “inflexible” runtime environment in which every map-
ping and scheduling decision is statically taken at design-time and is then
final. Unlike those systems, the software stack considered in this book offers a
much more complex and dynamic runtime environment composed of multiple
conceptual layers: the code of the RT tasks is executed in parallel by being
fractioned into OpenMP tasks, those tasks are mapped to clusters, then to
threads inside the clusters, and then these threads are scheduled statically or
dynamically on the cores. The dynamicity of the processor resource usage
ensures a decent application throughput (by maximizing the utilization of

124 Timing Analysis Methodology

the available computing resources) but it naturally impacts adversely on its
time-predictability.

Traditional hybrid approaches are also not applicable as the com-
plexity of the software stack makes the static control-flow analysis
step impossible.

Since the RT tasks execute in parallel, and even using static mapping
approaches, the total order of execution of task-parts is only determined at
runtime, it is thus infeasible to investigate all possible scenarios at design-
time to identify the worst-case execution flow/path. It is important to re-iterate
that traditional timing analysis techniques have been designed primarily to
analyze “simple” software codes executed on “simple” and predictable hard-
ware architectures, typically implemented by using low-level programming
languages and by obeying strict and specific coding rules to reduce program-
mer’s errors. The framework presented in this book clearly targets much more
complex software applications that exhibit a high degree of flexibility and
dynamicity in their execution.

5.2.2 Why Use Measurement-based Techniques?

In measurement-based approaches, WCET estimations are derived
from values that have been observed during the experimentation.
What about the values that have not been observed? How can we
account for them and be sure that the WCET estimates are reliable?

Critics of measurement-based approaches for estimating the WCET of an
application make a simple yet very valid point. The actual WCET is unknown
and is very likely not to be experienced during testing. Even worse, it is not
even possible to know whether the worst case has been observed or not.
In short, this means that there is no guarantee that such an approach can
forecast the exact value of the WCET. All measurement-based techniques
implicitly infer a WCET from values for which the “distance” from the
actual worst-case is unknown. A direct consequence is that, although those
techniques make predictions based on sophisticated and elaborate computa-
tions, formally speaking, they can never guarantee that their predictions are
100% “safe”. This may be problematic for applications requiring hard RT
guarantees, typically in safety-critical systems for instance.

However, one can note that in many application domains, certifiable
guarantees based on unquestionable and provable arguments are not required.

5.2 Our Choice of Methodology for WCET Estimation 125

For instance, many applications need only “reliable” estimations, in the
sense that one must be able to rely on those values and measure the risk
of them being wrong (through confidence levels provided by the analysis, for
example).

Estimations of the trustworthiness of the produced values (i.e., the con-
fidence in those values) can be expressed through probabilities derived by
statistical tools. Specifically, in our approach, the traces of execution times
collected at runtime are fed into a statistical framework, called DiagXtrm, in
which they are subjected to a set of tests to verify basic statistic hypothe-
ses, such as stationarity, independence, extremal independence, execution
patterns/modes, etc. Depending on the results of those tests, it is determined
whether the EVT can be applied to those traces. If the tests are successful,
the EVT is used to “extrapolate” the recorded execution times and accurately
identify the higher values that have not been observed during testing, but for
which the likelihood of occurrence is not statistically impossible. Besides
this, our framework also provides techniques to assess how “trustworthy”
those EVT estimations really are. This last step is of fundamental importance
to evaluate the quality of the estimations and find out whether confidence can
be placed into the analysis.

Despite all the interesting features provided by the application of EVT
to the WCET determination problem, it has been widely criticized in the
research community. The main argument against it is that the process of
creating the traces (i.e., the execution of an application’s code by a given
hardware platform) is known to be a process which is neither independent nor
identically distributed, which is a prerequisite to the application of the EVT
to a data sample. We believe that this argument, although correct because the
process is de facto not inherently IID, does not allow to conclude on the non-
applicability of the EVT. In our view, being an IID process is not necessary,
provided that the said process behaves as if it were. This is why the EVT has
been applied in so many application domains where it is today recognized to
provide helpful and satisfactory results. EVT is used for instance to predict
the probability distribution of the amount of large insurance losses, day-to-
day market risk, and large wildfires. Needless to say, none of these processes
are truly IID.

Whether this is right or not is disputable and we do not intend to close the
discussion in this chapter. However, we believe that the doubt this casts on
the applicability of the EVT makes this framework worth being investigated
further and hopefully will unveil its true potential. In case we are wrong, we
will hopefully discover why it is not applicable and close the debate that has
been going on already for several years.

126 Timing Analysis Methodology

In measurement-based approaches, the integrity of the actual code
to be deployed in the target hardware is somehow depleted by the
addition of the intrusive instrumentation code to measure the time;
in other words, the measurements themselves add an overhead to
the execution time of the analyzed program.

This problem can be reduced, e.g., by using hardware measurement tools with
no or very small intrusiveness, or by simply letting the added measurement
code (and thus the extra execution time) remain in the final program. When
doing this, possible disturbances like interrupts also have to be identified and
compensated for. The intrusiveness of the instrumentation code is discussed
in Section 5.3.5 and we provide efficient solutions to deal with it.

Nearly all the embedded platforms, like the MPPA-256 platform consid-
ered in our experimentations, provide a lightweight and non-intrusive trace
system that enables the collection of execution traces in predefined time
bounds. By using this trace system, we are able to collect meaningful traces
of execution without generating too many disturbances in the regular timing
behavior of the analyzed application. Based on all the experiments conducted
on the Kalray board, we concluded that the time necessary to record a time
stamp is 52 clock cycles. By placing “trace-points” (points in the program
where the current time is recorded) at well-defined places, we can thus easily
subtract the overhead associated with measuring the time itself.

Wrapping things up:

The best candidates for the worst-case timing analysis of the type of work-
loads considered in this book are the measurement-based approaches. Thus,
our proposed methodology relies on timing-related data collected by running
the application on the target hardware. This way, we avoid both the burden of
modeling the various hardware components (which takes considerable effort
and time), as in static timing analysis tools; and the pitfalls and pessimism
associated with the over-approximations resulting from the confidentiality,
and thus the non-availability, of specific information related to the internal
configuration of the components. In addition, the fact that our approach is
not tied to specific hardware infrastructures and application designs allows it
to benefit from a higher flexibility and portability than static timing analysis
methods, and it considerably reduces the time-to-model and time-to-result.
In the next sections, we will discuss the specifics of our method and how
we propose to overcome or at least mitigate the negative aspects inherent to
measurement-based techniques.

5.3 Description of Our Timing Analysis Methodology 127

5.3 Description of Our Timing Analysis Methodology

5.3.1 Intrinsic vs. Extrinsic Execution Times

The execution time of any piece of code, e.g., a basic block, a software
function, or an OpenMP task-part, can be seen as composed of two main
terms: the intrinsic execution time spent executing the instructions of the
code, and the stalling time, i.e., the time spent waiting for a shared software
or hardware resource to become available. To understand how timing analysis
is performed in this book, it is fundamental to understand the difference
between these two components. If the analyzed software function does not
have a functional random behavior (i.e., the outcome of evaluating a condition
is never the result of an operation involving randomly generated numbers),
then any input dataset always produces one output (and this output remains
the same no matter how many times the function is executed on the same
input). Further, for a given input dataset, the execution path taken throughout
the function’s code will always be the same. That is, under this assumption
of not involving randomness in the control flow of the analyzed function,
running it over a given set of input data over and over again always results in
executing the exact same sequence of instructions and eventually, it always
produces the same output.

For a given input dataset, we call the “intrinsic execution time” of a func-
tion the time that it takes to produce its output, assuming that all software and
hardware services provided by the execution environment and shared among
different cores are always available, and thus the core running that function
never stalls waiting for one of these resources to become available. That is,
the intrinsic execution time of a function is its execution time when it runs in
isolation, i.e., with no interference whatsoever with the rest of the system on
the shared resources. On a perfectly predictable hardware architecture where
every instruction takes a constant number of cycles to execute, running the
same function in isolation over the same set of input arguments should always
results in the exact same execution time. Although this may sound like a
very strong assumption, we will see that on a platform such as the Kalray
MPPA-256 this property is satisfied. By running a preliminary set of tests
with the same program an arbitrary number of times over the same inputs, we
experienced a variation of its execution time of typically less than 0.1% of
the maximum observed.

For a given input dataset, we call the “extrinsic execution time” of a
function the time that it takes to produce its output, assuming a maximum
interference on all the shared resources. That is, the extrinsic execution time

128 Timing Analysis Methodology

of a function is its execution time assuming that all the software and hardware
services provided by the execution environment and shared among the cores
are constantly saturated by concurrent requests from other system compo-
nents. Contrary to the intrinsic execution time, on mainstream multicore
architectures the extrinsic execution time is subject to huge variabilities due
to the high number of processor resources shared amongst software functions.

5.3.2 The Concept of Safety Margins

When testing an application and measuring its execution time, it is very likely,
if not certain, that the (usually very rare) situation where the application
takes its maximum execution time does not occur. This is due to either of
the following reasons:

1. The testing process failed to identify the set of input arguments that takes
the longest execution path throughout the program’s code, i.e., the path
that leads to the WCET.

2. The testing process found the execution path(s) leading to the WCET
but did not generate the maximal possible interference while exercising
those paths. This means that the actual WCET is not observed only
because the interference patterns generated during testing did not put
the application into the worst execution conditions.

Regarding the first case, for most programs, the number of possible execution
paths (in comparison to the high number of possible inputs) is too large to
make exhaustive testing possible and/or realistic. Therefore, measurements
are carried out only for a subset of input values. Typically, the testing process
starts with the identification of a set of potentially “nasty” inputs that are
likely to make the program take the longest execution path throughout its
code and provoke its WCET. This step is typically supervised and based on
some manual inspection of the code. Note that powerful tools exist such as
the Rapita Verification Suite (RVS) that incorporates a code-coverage tool
(RapiCover [16]) to test all parts of a given code and guarantee its full
coverage during testing. We believe that such tools may be employed to help
system designers identify the “worst” input datasets.

The problem of defining the worst input dataset(s) is thus not new, and
to some extent it is independent of the underlying hardware architecture. Of
course, the execution time of a given path depends on the execution time of
each instruction in that path, and therefore is dependent on the architecture,
but the method to search the space of all possible inputs and identify those that

5.3 Description of Our Timing Analysis Methodology 129

lead to the longest execution path is platform-agnostic. Since the problem was
already there on single-core architectures, with mature solutions for it, we do
not focus, in this book, on improving this part of the process.

Regarding the second point, it is always assumed that the worst-case
interference is not observed during testing and therefore the maximum exe-
cution time recorded is an under-approximation of the actual WCET. To
compensate for this, it is common to add a safety margin to the measured
WCET, in the hope that the actual WCET lies below the resulting augmented
estimation. The main question that remains open is whether the extra safety
margin provably provides a safe bound, since it is based on some informed
estimates. In principle, a very high margin yields an upper-bound on the
execution time that is likely to be safe (i.e., greater than the actual WCET), but
results in an over-dimensioned system with a low utilization of its resources,
whereas a small margin may lead to an under-estimation of the actual system
(worst-case) needs.

Traditionally, the magnitude of the safety margin applied to the maxi-
mum measured execution time is based on an estimation of the maximum
interference (from the system or from other applications) that has not been
observed during the testing phase but that the analyzed application could
potentially incur at runtime. For single-core systems, this estimation of the
worst-case interference is usually built on past experience. For example, in the
IEC 61508 standard [17] related to functional safety of electrical/electronic/
programmable electronic safety-related systems, to ensure that the working
capacity of the system is sufficient to meet the specified requirements, it is
mentioned that:

“For simple systems an analytic solution may be sufficient, while
for more complex systems some form of simulation may be more
appropriate to obtain accurate results. Before detailed modeling,
a simpler ‘resource budget’ check can be used which sums the
resources requirements of all the processes. If the requirements
exceed designed system capacity, the design is infeasible. Even
if the design passes this check, performance modeling may show
that excessive delays and response times occur due to resource
starvation. To avoid this situation, engineers often design systems
to use some fraction (for example 50%) of the total resources so
that the probability of resource starvation is reduced.”

As explained above, it is a common practice to simply add a margin of 50%
(or any other percentage depending on the user’s preferences and his level

130 Timing Analysis Methodology

of confidence in those margins) to the maximum execution time observed.
Unfortunately, on multicore and manycore architectures, experts are not yet
able to safely estimate reliable margins, as there is no prior experience to be
relied upon. Hence, we must build a new body of knowledge and investigate
novel approaches to produce reliable timing estimates and margins, and we
must motivate these estimations and justify why we believe they are reliable.
Our move towards this ambitious goal is described in short in the following
subsection.

5.3.3 Our Proposed Timing Methodology at a Glance

In this book, we devised methods to extract both the intrinsic and extrinsic
execution times. The overall timing analysis methodology consists of four
steps:

Step 1: Extraction of the maximum intrinsic execution time

To measure the maximum intrinsic execution time (MIET), we run the
analyzed task sequentially on one core and we configure the execution envi-
ronment in such a way that no other tasks can interfere with its execution.
That is, everything is done to nullify the interference with other applications
or with the system itself. This way we put the analyzed task in “ideal”
execution conditions in which, in the absence of interference, the time taken
to execute its code can be assumed to be due solely to the execution of its
instructions (without any stalling time). In these conditions, the task to be
analyzed is run multiple times, non-preemptively, over a finite set of input
data. These input data have been pre-selected and identified as particularly
“nasty”, i.e., very likely to make the task take its longest execution path
throughout its code and provoke its WCET. We do not elaborate on how to
select those inputs.

Step 2: Extraction of the maximum extrinsic execution time

The maximum extrinsic execution time (MEET), on the contrary, is obtained
by measuring the time taken to execute the analyzed task in conditions of
“extreme” interference. That is, everything is done to maximize the inter-
ference with other applications and with the system itself. Measuring the
execution time of the analyzed task in those “worst” conditions and over the
“worst” input datasets give an estimation of the maximum execution time that
the task may experience in the presence of other tasks running concurrently.

5.3 Description of Our Timing Analysis Methodology 131

Step 3: Extract the execution time after deployment

The MIET and MEET can be considered as lower and upper bounds on the
actual WCET of the analyzed task, since they estimate the WCET in con-
ditions of no and extreme interference, respectively. These two estimations
are useful to the system designers to understand the impact that tasks may
have on each other’s timing behavior. For instance, it may be desirable to
derive a static mapping of the task-parts to the cores in which the task-parts
(the portions of code for which the executions are timed or measured) that
are highly sensitive to interference (i.e., the difference between their MEET
and MIET is large) are mapped to specific cores in a way that they cannot
interfere with each other at runtime.

After taking mapping and scheduling decisions based on the values of the
MIET and MEET, these decisions are implemented and the whole system is
run in its final configuration. Measures are taken again, this time to estimate
the execution time of the tasks in its “final” execution environment, i.e.,
the environment corresponding to the “after-deployment”. Timed traces are
recorded like in the previous step and are passed to step 4.

Step 4: Estimate a worst-case execution time

The traces collected in Step 3 reflect the actual execution time of every task-
part, and from those their individual WCET can be derived or estimated. The
simplest way to proceed is to retain the maximum execution time observed
as the actual WCET. For safety purpose, an arbitrary extra “safety margin”
can be added to that WCET estimation to make it even safer. The magnitude
of the margin depends on how much “safer” the system designers want to be,
but we would recommend using a margin that does not exceed the MEETs of
the tasks (because the MEETs represent the WCET of the tasks in execution
conditions that are unlikely to happen at runtime).

However, instead of arbitrarily choosing a margin, we advocate the use of
statistical methods to analyze the traces and make a more “educated” choice
driven by mathematical assumptions and computations rather than just a “gut
feeling”. In this book, we use DiagXtrm, a complete framework to analyze
timed traces and derive pWCET estimates.

In the next subsections, we describe every step of our methodology.

5.3.4 Overview of the Application Structure

Before we go to the details, let us briefly recall the type of workloads that we
are handling in this book and recap what exactly needs to be measured.

132 Timing Analysis Methodology

In the considered system model, the application comprises all the soft-
ware parts of the systems that operate at the user-level and that have been
explicitly defined by the user. The application is the software implementa-
tion (i.e., the code) of the functionality that the system must deliver to the
end-user. It is organized as a collection of RT tasks.

An RT task is a recurrent activity that is a part of the overall system func-
tionality to be delivered to the end-user. Every RT task is implemented and
rendered parallelizable using OpenMP 4.5, which supports very sophisticated
types of dynamic, fine-grained, and irregular parallelisms.

An RT task is characterized by a software procedure that must carry out
a specific operation such as processing data, computing a specific value,
sampling a sensor, etc. It is also characterized by a few (user-defined or
computed) parameters related to its timing behavior such as its WCET, its
period, and its deadline. Every RT task comprises a collection of task regions
whose inter-dependencies are captured and modeled by a directed acyclic
graph, or DAG.

A task region is defined at runtime by the syntactic boundaries of an
OpenMP task construct. For example:

#pragma omp task
{

// The brackets identify the boundaries of the task region
}

Hence, hereafter we refer to task regions as OpenMP tasks. The OpenMP
tasking and acceleration models are described in detail in Chapter 3.

An OpenMP task-part (or simply, a task-part) is a non-preemptible por-
tion of an OpenMP task. Specifically, consecutive task scheduling points
(TSP) such as the beginning/end of a task construct, the synchronization
directives, etc., identify the boundaries of an OpenMP task-part. In the plain
OpenMP task scheduler, a running OpenMP task can be suspended at each
TSP (not between any two TSPs), and the thread previously running that
OpenMP task can be re-scheduled to a different OpenMP task (subject to
the task scheduling constraints).

The DAG of task regions can therefore be further expanded to form
a typically bigger DAG of task-parts. This new graph of task-parts is
called the extended task dependency graph (eTDG) of the RT task.
Figure 5.2 shows the eTDG of an example application. Our objective is to
annotate every node, i.e., task-part, of the eTDG with an estimation of its
WCET and then perform a schedulability analysis of the entire graph to verify
that all the end-to-end timing requirements were met.

5.3 Description of Our Timing Analysis Methodology 133

Figure 5.2 Extended task dependency graph (eTDG) of an example application.

5.3.5 Automatic Insertion and Removal of the Trace-points

In this subsection, we discuss how to respectively insert (Subsection 5.3.5.1)
and remove (Subsection 5.3.5.2) trace-points in a given program in an
automatic manner.

5.3.5.1 How to insert the trace-points
To measure the execution time of a task-part, we insert a trace-point at its
entry and exit points. A trace-point is a call to a system function that records
the current timestamp. Therefore, the system will record the time of entering
the task-part (i.e., when its execution starts) and the time at which it exits

134 Timing Analysis Methodology

it; the difference between the two straightforwardly gives the time spent
executing the task-part.

Inserting the trace-points into the tasks’ code can easily be done by the
compiler itself, when creating the executable file. Moreover, upon compiling
the code and creating the TDG, the compiler can assign a unique Identifier
(ID) to every task-part. Overall, this ID can be used to define a trace-point
for the task-part associated with an execution time. For example, using the
trace system from the Kalray SDK, we ask the compiler to add the following
trace-points at the beginning and end of every task-part as illustrated in the
code snippet below:

#pragma omp task
{
// The brackets identify the boundaries of the task region

mppa_tracepoint (psocrates , taskpartID__in) ;
/* code of the task-part */
mppa_tracepoint (psocrates , taskpartID__out) ;

}

These trace-points indicate to the Kalray MPPA runtime environment
that a time-stamp must be recorded each time the execution meets one
of these points (together with the ID of the corresponding task-part). The
first argument (here, “psocrates”) is the name of the “trace-point provider”.
The user defines it to help him organize all its trace-points into groups.
Informally, it can be thought of as a folder name. The second argument is
the name of the trace-point. For every task-part we insert a trace-point called
“taskpartID__in” at the beginning of the task-part and another trace-point
called “taskpartID__out” at the end. We do so because the objective of our
next tool is to find every matching pair “∗__in/∗__out” of trace-points and
compute the difference of timestamps (which naturally corresponds to the
execution time of the task-part).

Once all the trace-points are correctly placed into the source code, the
compiler must create a separate header file “tracepoints.h” in which all the
trace-points are declared and then include that file in all source files in which
trace-points are used (#include “tracepoints.h”).

#ifndef _TRACEPOINTS_H_
#define _TRACEPOINTS_H_
#include "mppa_trace.h"

MPPA_DECLARE_TRACEPOINT(psocrates, taskpartID__in,())
MPPA_DECLARE_TRACEPOINT(psocrates, taskpartID__out, ())

... // more trace-points

#endif

5.3 Description of Our Timing Analysis Methodology 135

5.3.5.2 How to remove the trace-points
After the analysis step, when the system is ready to be deployed, it is
preferable to remove all the trace-points in order not to leave some “dead
code.” A code is said to be dead either if it is never executed, or when its
execution does not serve any purpose, like for example taking time-stamps
and not recording them into a file (which would happen if those trace-points
were to be left in the source code when compiling the application to be
deployed). However, removing trace-points is not a benign operation.

To illustrate the problem that may arise from removing the trace-points,
let us consider the following code.

int run_index;
for (run_index = 0 ; run_index < NB_RUNS ; run_index++) {

mppa_tracepoint(psocrates, main__in);
user_main();
mppa_tracepoint(psocrates, main__out);

}

The user_main() function is a call to the main function of the bench-
mark program “statemate.c” provided by (15). If we disable all compiler
optimizations during the compilation phase (this is important and will play
a role later) and run this code 100 times on a single core of a compute
cluster of the Kalray MPPA-256, we observe that the execution time oscillates
consistently between 88492 and 88497 cycles (see Figure 5.3, left-hand side).

Now, let us add to that code a variable x to which we assign an arbitrarily
chosen integer (here, 1587) as shown below:

int x = 1587;
int run_index;
for (run_index = 0 ; run_index < NB_RUNS ; run_index++) {

mppa_tracepoint(psocrates, main__in);
user_main();
mppa_tracepoint(psocrates, main__out);

}

Figure 5.3 Impact of an unused variable on the execution time of an example application.

136 Timing Analysis Methodology

It is important to stress that the variable x is never used in the program.
Since all compiler optimizations are disabled, the variable is not removed
from the code by the compiler and is present in the assembly code that it
produces. As seen in the Figure 5.3 (right-hand side), the execution time now
oscillates consistently between 88, 639 and 88, 636 cycles. This means that
the addition of an unused variable to a part of the code which is not even
under analysis adds around 140 cycles to the execution time of the measured
portion of the code.

This increase in the execution time stems from the fact that after the addi-
tion of the line “int x = 1587” to the source code, all subsequent instructions
got offset in the system memory by two times the length of an instruction,
i.e., the line “int x = 1587” translates to two assembly instructions: one for
allocating memory to the variable x and another one for moving the constant
“1587” into it. Therefore, the portion of the code being timed has a different
“memory layout” as it is mapped to the system memory two “instruction-
lengths” further. This in turn impacts on the way the instructions of that part
of the code are mapped at runtime to the instruction cache lines and ultimately
it results in a perceptive difference in the execution time.

A consequence of this phenomenon is that removing the trace-points
after the analysis phase may have for effect to substantially, or at least
noticeably, alter the timing behavior of the application and all its task-parts.
We came up with two potential solutions to this problem. The simpler one is
to leave the trace-points in the code when compiling it for the final release
of the application. Although it is a suitable work-around to the memory-shift
problem described above, most designers are not in favor of having a dead
portion of code, as explained above.

Our second solution is to measure the length, in number of assem-
bly instructions, of the code being executed each time the function
mppa_tracepoint(...) is called and replace every such call with an equiv-
alent number of NOPs (No Operation assembly instruction). This way neither
the semantic of the code nor the memory layout are altered when removing
the trace-points. We believe this solution to be both feasible and suitable for
use in industrial applications.

5.3.6 Extract the Intrinsic Execution Time: The Isolation Mode

In order to extract the MIET of a task-part, we must start its execution and
make sure that it is isolated from the rest of the system. That is, we must nul-
lify all external interference by turning off every other component that could

5.3 Description of Our Timing Analysis Methodology 137

potentially interfere with (and hence delay) the execution of the analyzed
task-part. This is achieved by assigning every task-part of the analyzed real-
time task to the same thread, and thus to the same core of the same cluster,
and then making sure that all the other cores are kept idle. In other words,
under this configuration, the RT task is executed sequentially in a single core.
However, the intention of this phase is to analyze the execution time of each
task-part in isolation, i.e., without suffering interferences, and not the overall
RT task execution time. We call this configuration the isolation mode; the
real-time task is then said to run in isolation.

To setup and enforce this isolation mode, we have implemented a
platform-specific API. The current version has been written for the Kalray
MPPA-256. The API provides a set of easy-to-use functions to configure the
execution environment, as well as a set of global parameters and functions
that are used to make sure that:

1. all the openMP tasks are assigned to a single thread,
2. the IO cores and the cluster cores are in sync so that the environment is

“sanitized” before and after the execution of every openMP task (nothing
runs in the background that could interfere with the execution of the
analyzed task), and

3. additional functions allow the user to perform specific operations, either
before the runtime, such as deciding the memory-mapping and cache-
management policy, or during the runtime, such as invalidating the
instruction or data caches before executing each task-part.

The main objective of the API is to create a controlled environment in which
every task-part is run over a specific set of inputs and is isolated from the rest
of the system so that it incurs minimum interference during its execution.

5.3.7 Extract the Extrinsic Execution Time: The Contention
Mode

To extract the MEET of a task-part, we start the task and interfere as much
as possible with its execution at runtime. The objective of the contention
mode is to create the “worst” execution conditions for the task-parts so
that their execution is constantly suspended due to interference with other
tasks. In this step, for each task-part, we record the maximum execution time
observed under those conditions. This gives us an estimation of the maximum
execution time of each task-part when it suffers interference from other tasks
on the shared resources.

138 Timing Analysis Methodology

This contention mode is similar to the isolation mode in that all the task-
parts of the analyzed real-time task are assigned to the same thread, and thus
to the same core within a same cluster, effectively executing the RT task
sequentially. However, contrary to the isolation mode that shuts down all the
other cores of the cluster (thereby nullifying all possible interference within
that cluster), we deploy onto all these other cores small programs called IG,
which stands for Interference Generator. Those programs are essentially tiny
pieces of code that have the sole purpose of saturating all the resources (e.g.,
interconnection, memory banks) that are shared with the task-parts under
analysis. Recall that the objective of the contention mode is to create the
worst execution conditions for the execution of the task-parts, conditions in
which their execution is slowed down as much as possible due to contention
for shared resources.

Implementing the IG that generates the worst possible interference that
a task-part could ever suffer is a very challenging, if not impossible, task.
This is because the exact behavior of the task-part to be interfered with (i.e.,
its utilization pattern of every shared resources and the exact time-instants
of accessing it) should be known, as well as all the detailed specifications
of the platform. Besides, even if that information was known, the execution
scenario causing the maximum interference may be impossible to reproduce.
Rather than concentrating our efforts on creating such a “worst IG”, we have
opted for the implementation of an IG that is “bad enough” and used it as a
proof of concept to demonstrate how large the time-overhead incurred by the
task-parts due to the interference can be.

Our implementation of the IG consists of a single function IG_main that is
executed by a thread dispatched to every core on which the task-parts are not
assigned (recall that the application under analysis is executed sequentially
in a single core). That is, every core that is not running the task-parts runs a
thread that executes IG_main. Essentially, IG_main executes three functions,
namely:

1. IG_init_inteference_process ()
2. IG_generate_interference ()
3. IG_exit_inteference_process ()

The first one is called upon deploying the IG, at the beginning of IG_main,
before the task-parts start to execute and be timed. The second one is the
main function. It creates interference on the shared resources. The call to that
function is encapsulated in a loop that terminates only when the IG_main is

5.3 Description of Our Timing Analysis Methodology 139

int* my_array;
inline void IG_init_interference_process()
__attribute__((always_inline));
inline void IG_generate_interference()
__attribute__((always_inline));
inline void IG_exit_interference_process()
__attribute__((always_inline));

explicitly told to stop. Finally, the third function is called when all the task-
parts have been timed and the analysis process is about to end.

Let us now briefly describe our implementation of the IG on the Kalray
MPPA-256. This implementation is provided in a single file, which starts with
the declaration of an array of integer called my_array and declares the three
main functions as described above. The __attribute__((always_inline))
instruction is used to enforce and oblige the compiler to use inlining for
these three methods. The inlining technique is used to waste as little time
as possible jumping from one address to another in the code, as jumping does
not create interference.

Below is a code snippet of the first function “IG_init_interference_
process().”
inline void IG_init_interference_process() {

int array_size = 1024;
// Create an array of Integers. One integer is 4 bytes
my_array = malloc(array_size * sizeof(int));
// Fill the array with numbers.
int cpt = 0;
for (cpt = 0 ; cpt < array_size ; cpt++) {

my_array[cpt] = cpt;
}

}

This function simply allocates memory to my_array (1024 integers) and
fills that memory space with arbitrary values. Note that on the Kalray MPPA-
256, a thousand integers occupy roughly half of the private data cache of a
VLIW2 core in a compute cluster.

The third function, “IG_exit_inteference_process()”, is the simplest as it
only frees the memory space held by my_array as shown below.
inline void IG_exit_interference_process() {

Free(my_array);
}

The second function, “IG_generate_interference (),” is the main one and
a snippet of its code is presented below.

2Very Long Instruction Word.

140 Timing Analysis Methodology

inline void IG_generate_interference() {
__builtin_k1_dinval();
__builtin_k1_iinval();

register int *p = my_array;
volatile register int var_read;
var_read = __builtin_k1_lwu(p[0]);
var_read = __builtin_k1_lwu(p[8]);
var_read = __builtin_k1_lwu(p[16]);
var_read = __builtin_k1_lwu(p[24]);
var_read = __builtin_k1_lwu(p[32]);
var_read = __builtin_k1_lwu(p[40]);
var_read = __builtin_k1_lwu(p[48]);
var_read = __builtin_k1_lwu(p[56]);
var_read = __builtin_k1_lwu(p[64]);
var_read = __builtin_k1_lwu(p[72]);
var_read = __builtin_k1_lwu(p[80]);
(...)
var_read = __builtin_k1_lwu(p[1007]);
var_read = __builtin_k1_lwu(p[1015]);
var_read = __builtin_k1_lwu(p[1023]);

}

The function starts by invalidating the content of the data and instruc-
tion caches. Then, it reads every element of “my_array”, starting from the
element K = 0 and moving on iteratively from element K to element ((K+8)
mod 1024), until K reaches 1023. This way, every element of the array is read
exactly once and every two consecutive readings access data that are located
exactly 8 * 4 = 32 bytes apart in the memory (the size of an integer is standard
on the Kalray, i.e., 4 bytes). This is done on purpose knowing that the private
data cache line of every VLIW core in the compute clusters of the Kalray
MPPA-256 is 32 bytes long. Consequently, every reading causes a cache miss
and the value must then be fetched from the 2 MB in-cluster shared memory,
hence it creates traffic on the shared memory communication channels and
potentially interferes with the task-part being analyzed.

By running the task-parts concurrently with these IGs, every request sent
by a task-part to read or write a data in the shared memory is very likely
to interfere with a read request from one of the IGs. We have conducted
experiments on the Kalray MPPA-256 using several use-case applications
to evaluate the magnitude of the increase in the execution time due to this
interference. Depending on the configuration of the board and the memory
footprint of the task-parts and their communication pattern with the memory,
the difference between the maximum execution time observed in isolation
mode and in contention mode is substantial as the execution time of a
task-part may be increased by a factor of 9.

5.3 Description of Our Timing Analysis Methodology 141

5.3.8 Extract the Execution Time in Real Situation:
The Deployment Mode

After determining the intrinsic and extrinsic execution times (i.e., the MIET
and the MEET), we communicate them to the mapping and scheduling
analysis tools through the annotation of the TDG of the real-time task. Once
all necessary mapping and scheduling decisions are taken, the application
is run again, but this time in its final production environment. This means
that the platform configuration and mapping and scheduling decisions are
no longer imposed and defined so as to create specific execution conditions.
Then, we collect runtime-timed traces of the task-parts in their final environ-
ment, without any supervision or any attempt to explicitly favor or curb the
execution of the application.

5.3.9 Derive WCET Estimates

As already discussed, the traces collected in the previous step reflect the
actual execution time of every task-part when they run in their final envi-
ronment, under different execution conditions. The objective of this final step
is to derive WCET estimates from those traces. The simplest solution is to
retain the maximum execution time observed during the deployment mode as
the actual WCET and, for safety purposes, add an arbitrary “safety margin”
to that maximum to make it “safer”. The magnitude of the margin depends on
how much “safer” the system designers want to be, but we would recommend
using a margin that does not exceed the MEET. However, instead of arbitrarily
choosing a margin, we advocate the use of statistical methods to analyze the
traces and make a better thought out choice.

The objective of Measurement-Based Probabilistic Timing Analysis
(MBPTA) approaches is to characterize the variability in the execution time
of a program through probability distributions and in particular, they aim
at deriving probabilistic WCET estimates, a.k.a. pWCET. A pWCET is a
probability distribution of the WCET of a program. That is, through MBPTA,
the WCET is no longer expressed as a single value but as a range of values,
each assigned to a given probability of occurrence with the obvious relation:
the higher the value assumed to be the WCET, the lower its probability of
occurrence. Based on this framework system designers are in a position to
somewhat decide on the reliability of the final WCET estimation, simply by
ignoring all values for which the probability of observing an execution time
greater than those exceeds a pre-decided threshold. The EVT is a popular
theoretical tool used by most MBPTA approaches. The EVT aims at modeling

142 Timing Analysis Methodology

and estimating better the tail of a statistical distribution, which is de facto
what the MBPTA is trying to achieve when focusing on the pWCET.

Researchers at the French Aerospace Lab (ONERA), in France, recently
proposed a remarkable framework and tool to analyze timed traces and derive
pWCET estimates. The framework is called DiagXtrm [18] and defines a
methodology composed of three main steps:

1. Analyze the traces
2. Derive pWCET estimates using the EVT
3. Assess the quality of the estimations.

Together with the theory and the definition of the methodology, they devel-
oped a tool to diagnose execution time traces and derive safe pWCET
estimates using the EVT. However, the EVT can be applied to a given trace
only if some hypotheses are verified. Testing those hypotheses is the focus of
the first step (“Analysis of the traces”) above.

In a nutshell, for safely applying the EVT and getting reliable pWCET
estimates, one has to check a few hypotheses including for instance station-
arity, short-range dependence, and extreme independence. The stationarity
of a trace reveals whether measurements belong to the same probabilistic
law without knowing it. The independence (short-ranged or between the
extremes) analysis aims at determining whether there are obvious correlations
within the measurements. Systemic effects in a modern hardware platform are
so complex and numerous that it is quite impossible to infer the probability of
happening of an execution time knowing the value of the preceding ones, i.e.,
the execution time of an application cannot be inferred from the execution
times of its previous executions. System non-determinism, coming from
the considered system’s degree of abstraction, knowledge, and randomness
observed in a timed trace motivate the independence of the measurements that
has to be studied at “different scales” (i.e., short-range independences and
independences of the extremes). DiagXtrm implements the most advanced
tests to verify the stationarity hypothesis and measure the degree of correla-
tion between patterns of different lengths within a trace. Thus, it studies both
short-range and distant dependencies between the measurements.

If all the hypotheses are verified, then the EVT is applied to produce
pWCET estimates. These estimates are the result of sophisticated compu-
tations based on parameters that must be carefully set. The user is in charge
of setting those parameters as he wants, and thus has a great influence on the
pWCET estimation process. Note however that the DiagXtrm tool provides
helpful functions to guide the choice of many of those input parameters.

5.4 Summary 143

Finally, the tool features a set of tests to evaluate the quality of the produced
estimates, together with other tests to assess the confidence that all the
hypotheses were verified. We believe that this last phase is fundamental and
is a first step towards building confidence and assessing the reliability of the
pWCET estimates.

5.4 Summary

The analysis of the timing behavior of software applications that expose real-
time requirements and dedicated to execute on the recent COTS manycore
platforms such as the Kalray MPPA-256 raises a number of important issues.
Because a reliable and tight WCET estimation for each task running on
such a platform is a crucial input at the schedulability analysis level, we
showed that it is neither acceptable nor realistic to ignore all the interactions
between each analyzed task, the OS, and all the other tasks running in the
system. Then, depending of the type of workload that is considered, we also
showed that the choice of the methodology to be adopted must be conducted
with care. In this chapter, after presenting an overview of all the possible
methodologies, and after discussing their advantages and disadvantages, we
opted for a measurement-based approach. We explained and motivated this
choice and finally presented the details of our solution. Here, we showed that
both the intrinsic (MIET) and extrinsic (MEET) execution times of each task
are pivotal values to be extracted in order to guide the designer in deriving a
reliable and tight WCET.

References

[1] OTAWA. Available at: http://www.irit.fr/recherches/ARCHI/MARCH/
OTAWA/doku.php?id=doc:computing_a_wcet.

[2] Ermedahl, A., Engblom, J., “Execution Time Analysis for Embed-
ded Real-Time Systems,” eds. Joseph, Y-T., Leung, S. H., Son, I. L.,
Chapman and Hall/CRC – Taylor and Francis Group, 2007.

[3] Lokuciejewski, P., Marwedel, P., Worst-Case Execution Time Aware
Compilation Techniques for Real-Time Systems – Summary and Future
Work (Springer: Netherlands), pp. 229–234, 2011.

[4] AbsInt GmbH. Available at: http://www.absint.com/ait/analysis.htm.
[5] Tidorum Ltd. Available at: http://www.bound-t.com/.
[6] NUS. Available at: http://www.comp.nus.edu.sg/∼rpembed/chronos/.

144 Timing Analysis Methodology

[7] IRISA. Available at: http://www.irisa.fr/alf/index.php?option=com_
content&view=article&id=29&Itemid=&lang=fr.

[8] MRTC. Available at: http://www.mrtc.mdh.se/projects/wcet/sweet/Doc
Book/out/webhelp/index_frames.html.

[9] Kirner, R., Puschner, P., Wenzel, I., “Measurement-based worst-case
execution time analysis using automatic test-data generation.” 4th
Euromicro International Workshop on WCET Analysis, pp. 67–70, 2004.

[10] Rapita Systems Ltd. Available at: http://www.rapitasystems.com/
products/rapitime/how-does-rapitime-work.

[11] Carnevali, L., Melani, A., Santinelli, L., Lipari, G., “Probabilistic Dead-
line Miss Analysis of Real-Time Systems Using Regenerative Transient
Analysis.” In Proceedings of the 22nd International Conference on
Real-Time Networks and Systems, Versaille, pp. 299–308, 2014.

[12] Santinelli, L., Morio, J., Dufour, G., Jacquemart, D., “On the Sustain-
ability of the Extreme Value Theory for WCET Estimation.” 14th Inter-
national Workshop on Worst-Case Execution Time Analysis, Versailles,
pp. 21–30, 2014.

[13] Proartis: Probabilistically Analysable Real-Time Systems. Available at:
http://www.proartis-project.eu/.

[14] Probabilistic real-time control of mixed-criticality multicore and many-
core systems (PROXIMA). Available at: http://www.proxima-project.eu/.

[15] Rapita Systems Ltd. Available at: https://www.rapitasystems.com/
products/rapicover.

[16] The International Electrotechnical Commission. Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-Related Systems
– Part 7, 2nd Edition, Requirement C.5.20 (Performance Modeling),
Geneva, p. 99, 2010. IEC 61508.

[17] Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B., “The Mälardalen
WCET benchmarks – past, present and future.” In Proceedings of the
10th International Workshop on Worst-Case Execution Time Analysis
(WCET’2010) Brussels, Belgium, pp. 137–147, 2010.

[18] Onera. Onera – DiagXTrm, Available at: https://forge.onera.fr/projects/
diagxtrm2.

[19] MTime, Vienna real-time systems group, Available at: http://www.vmar
s.tuwientuwien.ac.at.

