
6
OpenMP Runtime

Andrea Marongiu1,2, Giuseppe Tagliavini2 and Eduardo Quiñones3

1Swiss Federal Institute of Technology in Zürich (ETHZ), Switzerland
2University of Bologna, Italy
3Barcelona Supercomputing Center, Spain

This chapter introduces the design of the OpenMP runtime and its key
components, the offloading library and the tasking runtime library. Start-
ing from the execution model introduced in the previous chapters, we first
abstractly describe the main interactions among the main actors involved in
program execution. Then we focus on the optimized design of the offload-
ing library and the tasking runtime library, followed by their performance
characterization.

6.1 Introduction

The model assumed in the previous chapters considers the existence of
multiple applications, starting execution on the host processor, and each
one is composed of multiple real-time (RT) tasks which can be sent to the
accelerator with the aim to speed up their execution. This paradigm, com-
monly referred to as offloading, has been widely adopted in many computing
domains from embedded systems to HPC [1, 2]. In the context of the Kalray
architecture (described in Chapter 2), IO cores take on the host role while the
clusters are used as accelerators. Accordingly, an OpenMP-based software
stack with offloading support must leverage both host and acceleration roles.
On the host side, an OpenMP directive (#pragma omp target) is used to
specify a region of code which can be offloaded. Inside a cluster, a pool
of threads is dedicated for the execution of the offloaded workload and the
RTOS (introduced in Chapter 7) is in charge of scheduling the execution of
the threads on the available cores.

145

146 OpenMP Runtime

The complete software stack to handle the described execution model
is composed of an offloading library and a tasking runtime library. The
offloading library executes on the host and is in charge of initiating offload
sequences to the accelerator. On the accelerator side, the request manager
(RM) is the component in charge to collect offload requests and create pools
of threads (hereafter called jobs as in the OS terminology) to execute them.
Depending on runtime design and hardware specific features, the RM can be
implemented as an RT task (a software component) or may be mapped to a
dedicated core (a hardware component). The tasking runtime library provides
an optimized support for task parallelism on the accelerator and runs on top
of the RTOS. It is further divided into a low-level library (or LL-RTE) [3],
where all the tightly coupled interactions with the RTOS are implemented,
plus a high-level library, where all the management of the tasking constructs
resides.

6.2 Offloading Library Design

Figure 6.1 summarizes the timing diagram (time flows from top to bottom
on the vertical axis) and the interactions between the software blocks pro-
viding the offload support. At the higher level of abstraction, the host sends
request to the RM, which orchestrates the execution of the workload on the
processing elements (PEs).

The host support is implemented as a user-level library that interfaces
OpenMP offloads (expressed at the application level with a target directive)
to the computing clusters. The key features of this library can be summarized
as follows:

• Low-cost offload: As initializing the communication channels between
the host and the offload manager and loading into the cluster shared
memory the binary file containing the OpenMP library (high-level
library + LL-RTE) are costly operations, the host offload library imple-
ments it as a one-time operation that happens at system startup (the
GOMP_init method). Every time the host program encounters a target
directive, this is translated into a call to the GOMP_target function,
which sends a control packet to the offload manager of the target cluster
and then triggers the copy of input data. This handshake procedure is
streamlined to guarantee minimum overhead.

• Asynchronous offload: The offload procedure is asynchronous. After
sending the offload request to the cluster, GOMP_target immediately

6.2 Offloading Library Design 147

Figure 6.1 Timing diagram of an offloading procedure.

returns to the caller (with the exception of the multi-offload
case described below). The result of the offload computation
can be retrieved by calling a blocking synchronization primitive
(GOMP_target_wait).

• Multi-cluster support: An application can perform offloads on differ-
ent clusters, from 1 up to 16. The initialization is required for each
cluster that is used by the current application. The cluster is specified
by the programmer using the OpenMP syntax (i.e., the device clause of
a target directive).

• Multi-offload support: An application can perform multiple offloads on
the same cluster. At the same time, multiple offloads can coexist on the
same cluster at different priority levels1. The priority level is specified
by the programmer using the OpenMP syntax (i.e., the priority clause),
and it is propagated to the runtime using a parameter of GOMP_target.

The function calls to the offloading runtime are not invoked directly by
the developer, as the OpenMP syntax is used to identify the code and data to
be offloaded. The compiler transforms the offloading OpenMP directives as

1Focusing on the MPPA-256 platform, currently two levels are supported on RTEMS hosts
and four on Linux hosts

148 OpenMP Runtime

defined in its accelerator model (i.e., target and declare target directives) to
the corresponding offloading runtime calls, as described in Chapter 3.

In our design, the RM is implemented as a persistent RTOS task to be
executed on the accelerator side (i.e., by one of the cluster cores). The RTOS
leverages the notion of a task scheduling point (TSP) to check the availability
of a new offload request and perform the requested actions. At each such
scheduling point, the RTOS can (re)start the execution of the RM itself (if
a new offload has arrived in the meantime and needs to be enqueued to the
ready job list) or another job in the queue, depending on the synchronization
policy adopted. TSPs are naturally identified as synchronization points in
an OpenMP program (see Chapter 3 for more details). The OS provides
synchronization primitives (described in Chapter 7) which can be used to
block one (or more) thread(s) within a job on a certain wait condition, and
the OpenMP runtime invokes these primitives to enforce synchronization.

To reduce the runtime overheads, the metadata for all the supported RTOS
jobs on a cluster (one per priority level) are created and initialized upon the
first call to the RM. The activated jobs execute the GOMP_main function
of the runtime library to initialize the offload support on the cluster side.

6.3 Tasking Runtime

The OpenMP tasking model has been introduced in Chapter 3. Task-based
parallelism offers a powerful conceptual framework to exploit irregular par-
allelism in target applications, and several works have demonstrated the
effectiveness of tasking [4–7]. However, the sophisticated semantics of the
OpenMP tasking execution model are translated into a complex control
code that has to be executed in addition to the application code itself. This
ultimately results in significant time overheads, if the application tasks are not
large enough to hide such overheads. Thus, a performance-efficient design of
a tasking runtime environment (RTE) targeting low-end embedded manycore
accelerators is a challenging task, as embedded parallel applications typically
exhibit very fine-grained parallelism [6, 8], and are thus very sensitive to
time overheads. Moreover, memory overheads are also very relevant in this
context, as embedded architectures feature very limited amounts of fast, on-
chip memory. Allocating runtime support metadata in such memories reduces
time overheads, as the control code executes faster, but reduces the space
available for program data. As the metadata for a tasking runtime might
consume a significant amount of memory, it is necessary to find a good
tradeoff between the implied space and time overheads.

6.3 Tasking Runtime 149

The applicability of the tasking approach to embedded applications and
embedded manycore accelerators is often limited to coarse-grained parallel
tasks, capable of tolerating the high overheads typically implied in a task-
ing runtime. State-of-the-art tasking runtimes for embedded manycores [6]
succeed in achieving low overheads and enabling high speedups for very
fine-grained tasks, but only for simple flat parallel patterns (i.e., where all
the tasks are created from the same parent task). The main reason for this
limitation lies in a key design choice: only tied tasks are supported by most
RTEs, whereas untied tasks are not supported. If a tied task is suspended (due
to synchronization, creation of another task, etc.), only the thread that initially
owned it is allowed to resume its execution. This clearly significantly limits
the available parallelism when more sophisticated (and realistic) parallel exe-
cution patterns are considered, like nested tasking (for instance, in programs
that use recursion).

Scheduling policies: Another limitation that follows from supporting only
tied tasks is the restricted set of scheduling policies available. Breadth-
first scheduling (BFS) and work-first scheduling (WFS) are the two most
widely used policies for distributing tasks among available threads. Upon
encountering a task creation point: (i) BFS will push the new task in a queue
and continue execution of the parent task and (ii) WFS will suspend the parent
task and start execution of the new task. BFS tends to be more demanding
in terms of memory, as it creates all tasks before starting their execution
(and thus all tasks coexist simultaneously). This is an undesirable property in
general and in particular for resource-constrained embedded systems, which
would make WFS a better candidate. WFS also has the nice property of
following the execution path of the original sequential program, which tends
to result in better data locality [5]. However, when tied tasks are used, BFS is
the only choice in practice, as WFS leads to a complete serialization of task
executions when nested parallelism is adopted. Moreover, it has been shown
that the use of untied tasks significantly reduces the worst case response time
analysis [9].

Task queue: The most widespread design solution to support the OpenMP
tasking execution model is to rely on a centralized task queue. This minimizes
memory footprint for runtime support metadata, which is a must in the
context of embedded platforms. The basic building block of the proposed
design focuses on lightweight support for push and pop operations on such a
centralized queue (upon task creation and extraction, respectively), relying on

150 OpenMP Runtime

fine-grained locking mechanisms. TSPs are implemented using lightweight
events, which avoids the massive contention implied by active polling (idle
threads on the TSP are put into sleep mode). When a task is created (i.e.,
pushed in the queue), the creator thread sends a signal which wakes up a sin-
gle thread (selected using round-robin). After completing the task execution,
the thread returns into sleeping mode. The described queue is implemented
with a doubly linked list. This data structure allows to push and pop tasks
from the queue and also remove a task in any position of the queue. This is
key for low overhead, as tasks are not constrained to execute in-order (except
when dependencies are specified), so their completion and removal from the
queue is independent of their position. Note that a simple linked list does not
allow this operation.

Untied tasks: The described support is sufficient to show excellent perfor-
mance in the presence of simple flat parallel patterns, where all the tasks
are created from within a single level (i.e., a single parent task), but lacks
the capability of supporting more sophisticated forms of parallelism, like
nested parallel patterns found in programs that use recursion, and for which
the tasking model was originally proposed. Consequently, untied tasks are
not supported by using this basic implementation. Due to the limitations of
tied tasks described previously, the scheduling policy relies on BFS, and
WFS is not supported. In the following, we describe how we extend this
baseline implementation to fully support nested parallel patterns and untied
tasks, while keeping the implementation lightweight and not too memory-
hungry. These both are the key requirements for any implementation suitable
for embedded manycore accelerators. Our main goal is to achieve a compa-
rable efficiency in terms of task granularity (the finer the better) for which
near-ideal speedups are achieved.

Figure 6.2 shows how task suspension works in most implementations
supporting tied tasks (WFS is assumed). The thread on which the code shown
in the figure is executing has an associated stack (depicted on the left). When
a task directive is encountered, the thread jumps to a runtime function that
manages the creation of a new task from the enclosed code region. Because
WFS is considered, the thread encountering the new task executes the code
encapsulated within the task region, and the parent task is suspended (as it is
a tied task and so cannot migrate to a different thread). A new stack frame
is activated for this task, like in every regular function call. The same thing
happens at every nested task directive. When a task is completed, the stack

6.3 Tasking Runtime 151

int i;
…

#pragma omp task
{

float a;
int b;
#pragma omp task
{

int c;
int d;
do_work(c, d)

}
...
do_work(a, b)

}
…

c
d

thread
STACK

a
b

i
thread 0

a
b

c
d

a
b

SUSPEND
T0

RESUME
T0

i

T0

T1

a
b

i

T1

T0

T0

Figure 6.2 Task suspension in the baseline implementation (considering tied tasks and
WFS).

pointer is reset to the top of the previous active frame. Since the semantics of
tied task scheduling ensure that suspension/resumption can happen only on
the same thread, no explicit bookkeeping to save/restore the context of a task
is required.

The key extension required to support untied tasks is the capability of
allowing to resume a suspended task on a different thread than the one that
started and suspended it. To achieve this goal, we rely on lightweight co-
routines [10]. Co-routines rely on cooperative tasks that publicly expose their
code and memory state (register file, stack), so that different threads can take
control of the execution after restoring the memory state. Every time that a
thread suspends or resumes a suspended cooperative task, a context switch is
performed. We place the required metadata to support task contexts (TCs) in
the shared multi-bank memory and we use inline assembly to minimize the
cost of the routines to save and restore the architectural state.

Figure 6.3 shows how task suspension works in our approach for untied
tasks (WFS is assumed). Initially, the thread on which the code shown in the
figure is executing uses its own private stack (in gray). When the outermost
task region (T0) is encountered, the context of the current task is saved in the

152 OpenMP Runtime

int i;
…

#pragma omp task \\
{ untied

float a;
int b;
#pragma omp task \\
{ untied

int c;
int d;
do_work(c, d)

}
...
do_work(a, b)

}
…

c
d

thread
STACK

task 0
STACK
a
b

i

task 1
STACK

thread 0 thread 1

a
b

c
d

a
b

SUSPEND
T0

RESUME
T0

i i

T0

T1

T1

T0

T0

Figure 6.3 Untied task suspension with task contexts and per-task stacks.

TC (including the current SP, that is, the task pointer register), then the thread
is rescheduled to execute the new task T0. The SP of the thread is updated
to the stack of T0 (in blue) and the new task is started. When the creation
point of the innermost task T1 is reached, an identical procedure is followed.
The context of T0 is saved in its TC, which is pushed back in the queue, then
thread 0 is pointed to the stack of T1 (in red). Now the suspended T0 can
be pulled out of and restarted by thread 1. On top of this basic mechanism,
a number of other design choices were made to minimize the cost of our
runtime support, which we describe in the following.

Task hierarchy: Supporting nested tasks requires to keep in the runtime a
data structure (a tree) that represents the hierarchy of multiple task regions.
A parent task has a link to its children and vice versa, to facilitate exchange
of information about execution status. For example, a parent task needs
to be informed about the execution completion of its children to support
the semantics of the taskwait directive. When a parent task completes its
execution, its children become orphans and should not care to inform the
parent. The fastest solution to handle parent task termination in terms of
bookkeeping would be not to delete the descriptor, but just to maintain the
task in a zombie status until all children have completed. This operation
would require a simple update to the descriptor, which can be executed in
a very short time. However, this solution brings to a memory occupation that

6.3 Tasking Runtime 153

is not acceptable for our constrained platform. Thus, we opt for a costlier
removal of the descriptor from the tree. As a consequence, all child tasks must
receive an update from the parent to avoid dangling pointers to a deallocated
descriptor.

Taskwait construct: Task-level synchronization is widely used in recursive-
based parallel patters. Here typically a fixed number of tasks are created at
every recursion level, and their execution is synchronized with a taskwait
directive. When a parent task encounters a taskwait, it should wait until
all the children (first-level descendants) have completed, but typically for
performance the thread hosting the parent task is allowed to switch to execut-
ing one of the children tasks. In the baseline implementation, this feature is
supported by just traversing the list of children tasks in the tree data structure
and inspecting their status to verify that it is set to WAITING. We changed
this mechanism to rely on two queues per task, to directly reference children
in the WAITING and RUNNING states, respectively. Upon creation, a task
is inserted in the WAITING queue. Every time that a task starts to execute,
the runtime moves this task from the WAITING queue to the RUNNING
queue, and vice versa in case of suspension. Decoupling waiting and running
tasks require a costlier bookkeeping upon task insertion and extraction, but
allow faster support for taskwait as it is no longer required to search the tree
for WAITING tasks. While the benefit brought by this implementation is not
evident in the presence of flat parallel patterns, as the taskwait is virtually
useless in this case, in recursive parallel patterns, it is extensively used and
this design choice pays off.

Task dependencies: In the presence of recursive parallel patterns, it is impor-
tant to distinguish between suspended tasks that could be resumed at any time
and tasks that are suspended due to a scheduling constraint that needs to be
unblocked. A typical example is, again, tasks suspended upon a taskwait
or due to a data dependence. As already mentioned, recursive parallelism
extensively relies on such a form of synchronization, thus hosting this type
of suspended tasks in the same queue that also hosts ready-to-execute tasks
used to lead to a situation where we would repeatedly pop from there a task
just to realize that the scheduling constraint was still unsatisfied. We would
then have to push back the task in the queue and retry. Checking the status of
the task before extracting it does not entirely solve the problem, as it requires
time-consuming search operations. To deal with this problem, we changed
the implementation to avoid re-inserting in the queue suspended tasks with

154 OpenMP Runtime

unresolved dependencies. Such tasks are kept floating instead, and it is up
to the task that will eventually resolve the dependence to push them back
into the queue. This modification requires some additional checks to deal
with the above-mentioned case, but greatly improves the performance of
recursive parallel programs.

Allocation of runtime metadata: To minimize the overhead for dynamic
resource allocation (memory, locks, task descriptors, etc.), we have exten-
sively used pools of pre-allocated resources. This is significantly faster than
malloc-like primitives and does not require lock-protected operations, as we
adopt thread-private resources. The downside is memory occupation. Since
the targeted architecture relies on a shared cluster memory with a limited size,
we have to wisely use the available space. A reasonable design solution would
be to dedicate roughly 5–10% of this memory to hosting tasking support data
structures. The original task descriptor has a size of 174 bytes, while the
extensions that we introduced require another 98 bytes for the contexts, plus
the stacks. Private thread stacks are configured to be 1 KB (a common choice
for embedded systems), while task stacks are by default 1/4 of that size.
Clearly, all those values are parameters in our design, and can be changed
depending on specific application requirements.

Despite the increment of runtime memory requirements, the use of pre-
allocated resources enables to exploit finer grained parallelism, which is
paramount in current and future embedded systems. Next, we describe solu-
tions to reduce memory pressure and runtime overhead.

Cutoff mechanisms: With 10% of the cluster’s shared memory allocated
to task descriptors, the runtime can host simultaneously 750 pre-allocated
tied tasks or 400 untied tasks. If the queue of available task descriptors is
depleted during the program execution, a mechanism (known in the literature
as cutoff [11]) is triggered. When this condition is met, the creation of new
task descriptors must be suspended to avoid that runtime resources saturate
when the task production rate is greater than the execution rate. Our runtime
supports two different cutoff variants: yield and work-first. In the first case,
the producer task is stopped and pushed at the end of the READY queue, with
the aim to re-schedule the core to executing pending tasks instead of gener-
ating new ones. Using the second variant, the producer task starts working in
work-first mode by executing the new tasks in-place via a standard function
call: in this case, task descriptors are not required, as the synchronization is
enforced by serializing tasks on the same thread.

6.3 Tasking Runtime 155

Cutoff mechanisms are introduced to avoid an unbounded consumption of
runtime resources, but recursive applications can cause additional problems.
Using untied tasks, task stacks typically end up to be over-sized to fit the
worst case (i.e., the maximum recursion level reached in the cutoff state) to
the detriment of runtime memory footprint. To avoid this case, we introduced
a specific optimization for untied tasks using work-first cutoff, which forces
the producer task to swap its current stack with a special one that is the only
one dimensioned for worst case recursive execution.

Support for scheduling policies: The OpenMP runtime provides spe-
cific features to support the scheduling policies that have been defined in
Chapter 4. Two alternative implementations are selectable for task queues:
global and private queues. The global implementation defines a single task
queue for the application, and it is used to support global scheduling. The
local implementation instantiates an independent queue per thread, and it is
used to support partitioned scheduling, in which tasks are statically allocated
to threads at design time.

Adopting a limited preemption scheduler, each TSP in the runtime is
considered as a potential preemption point. This is implemented by calling
a function designed and implemented for tight integration with the RTOS.
The exact behavior depends on the current scheduling policy (global or
partitioned) selected for the application, which is totally transparent to the
runtime.

6.3.1 Task Dependency Management

The OpenMP tasking model includes a very mature support for highly
unstructured task parallelism with features to express data dependencies (on
specific data elements) between tasks. To do so, OpenMP introduces the
depend clause, which imposes an ordering relation between sibling tasks
(tasks that are child tasks of the same task region). OpenMP defines three
types of dependencies: in, out, and inout. A task with an in clause cannot
start until the set of tasks with an out or an inout clause on the same data
elements complete. This feature is in fact very relevant for embedded sys-
tems, often running real-time applications modeled as direct acyclic graphs
(DAGs)2 (see Chapter 4 for further information).

2The terms TDG and DAG are equivalent; the former is typically used when referring to
runtime methodologies; the latter is used when referring to real-time analysis.

156 OpenMP Runtime

Current implementations of the OpenMP tasking model targeting the
high-performance domain (e.g., libgomp, nanos++) track data dependencies
among tasks by building a task dependency graph (TDG) at runtime. When
a new task is created, its in and out dependencies are matched against those
of the existing tasks. To do so, each task region maintains a hash table that
stores the memory address of each data element contained within the out
and inout clauses, and the list of tasks associated to it. The hash table is
further augmented with links to those tasks depending on it, i.e., including
the same data element within the in and inout clauses. In this way, when the
task completes, the runtime can quickly identify its successors, which may be
ready to execute.

Building the TDG at runtime requires storing the hash tables in memory
until a taskwait directive is encountered. Since dependencies can be defined
only between sibling tasks, when such directives are encountered, all tasks
in their binding region are guaranteed to finish. Moreover, removing the
information of a single task at completion would result too costly, because
dependent tasks are tracked in multiple linked lists in the hash table. As a
result, the memory consumption may significantly increase as the number of
instantiated tasks increases.

Such a memory consumption is clearly not a problem in high-
performance systems, in which large amounts of memory are available.
However, this is not in general the case for parallel embedded architectures.
The MPPA processor features only 2 MB of on-chip private memory per
cluster. Therefore, it is paramount to devise data structures that reduce to
the bare minimum the memory requirements needed to implement the TDG.

To this aim, we maintain the complete OpenMP-DAG generated by the
compiler as presented in Chapter 3. Although this idea may seem counter-
intuitive, the data structures needed to store a statically generated TDG
are much lighter than those necessary to dynamically build the TDG. This
strategy results in a huge reduction of the memory used at runtime.

TDG Data Structure: A Sparse Matrix – A sparse matrix is an optimal
solution to store the TDG with minimal footprint. Figure 6.4b shows the
sparse matrix implementation of the DAG presented in Figure 6.4a. There,
each entry contains a unique task instance identifier tid, and stores in separate
arrays the tid and the number of tasks it depends on (labeled Inputs and #in
respectively in the figure), and the tid and the number of tasks depending on
it (labeled outputs and #out respectively in the figure). Moreover, the sparse
matrix is sorted using the tid, so a dichotomic search can be applied.

6.3 Tasking Runtime 157

��
��

��
��

��
����

��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

�

�

�

�

�

�

�

-

-

-

-

-

-

-
-

�
�	

.....................................	
.....................................R

@
@@R

�
��	

@
@R

.....................................R

�
�	

@
@R

��	

....................................	

?

?

? ?
..w

tid

0
1
1 1

1
1 1

1
0

1

18

Inputs Outputs#in #out
2
2

2
22

2

2
2

T4T4

T4

T4

T2T3

T2T3

T1

18

33

47

64 92

109

124

79

1
18
33
47
64
79
92

109
12464

47
64
33
47
18
1

18
1

92
79

109

1

64
33
47

79
64
92
79

109
124
109
124

(a) (b)

Figure 6.4 On the left (a), the DAG of an OpenMP program. On the right (b), the sparse
matrix data structure implementing DAG shown on the left.

tid, computed with Equation 6.1 (also presented in Chapter 3), is a key
mechanism used to identify the tasks actually instantiated at runtime with
those included in the DAG. Therefore, the same value of tid must be generated
at compile time (so each node in the DAG has a unique identifier) and at
runtime (so tasks can identify its input and output data dependencies).

tid = sidt + T ×
Lt∑
i=1

li ·M i (6.1)

where sidt is a unique task construct identifier, T is equal to the number
of task, taskwait, and barrier constructs in the source code, Lt is the total
number of nested loops involved in the execution of the task t, i refers to the
the nesting level, li is the loop unique identifier at nesting level i, and M is
maximum number of iterations of any considered loop.

All the information required to compute Equation 6.1 must therefore be
available at compile time. sidt is inserted by the compiler as a new parameter
in the function call of the tasking runtime in charge of creating a new OpenMP
task (named GOMP_task). In order to obtain the same li at compile-time
and at runtime, the compiler introduces a loop stack per loop statement, and
push and pop operations before the loop begins and after it ends, respectively.
At every loop iteration, the top of the stack is increased by 1. The overhead

158 OpenMP Runtime

associated to the stack is very little because it is inserted only in those loops
where tasks are created and the overhead due to the task creation dominates.
The rest of parameters, i.e., T, Lt, and M are encapsulated in the TDG data
structure.

Consider task T4, with identifier 79, in Figure 6.4a. This task instance
corresponds to the computation of the matrix block m[2, 1]. Its identifier is
computed as follows: (1) sidT4 = 4, because T4 is the fourth task found in
sequential order while traversing the source code; (2) T = 5 because there are
four task constructs and one (implicit) barrier in the source code; (3) LT4 = 2,
the two nested loops enclosing T4; (4) M = 3, the maximum number of
iterations in any of the two considered loops; and (5) l1 = 2 and l2 = 1 are
the values of the loop identifiers at the corresponding iteration. Putting all
together: T4id = 4 + 5(2 ∗ 31 + 1 ∗ 32) = 79.

Finally, with the objective of monitoring the execution state of task
instances, each entry in the sparse matrix has an associated counter (not
shown in the figure) describing its state. The counter is:

• −1 if the task has not been instantiated (created) or it has finished;
• 0 if the task is ready to run; and
• > 0 if the task is waiting its input tasks to finish. The value indicates the

number of tasks created and not completed it still depends on.

The runtime task scheduler works as follows:

• When a new task is created, the runtime checks the state of its input
tasks. If all their counters are −1, the task is ready to execute; otherwise,
the state of the counter of the new task is initialized with the number of
input tasks with a state ≥ 0.

• When a task finishes, it decrements by 1 the counters of all its output
tasks whose counter is > 0.

It is important to remark that, when the TDG contains tasks whose related
if-else statement condition has not been determined at compile time and it
evaluates to false at runtime, the value of the counter is the same as the tasks
would have already finished, i.e., −1 (see Chapter 3 for further information).

6.4 Experimental Results

In the following, we present results aimed at characterizing the overheads of
the proposed OpenMP runtime design and demonstrating the reduced impact
on the overall application performance, compared to different solutions.

6.4 Experimental Results 159

6.4.1 Offloading Library

Synchronization on the Kalray MPPA architecture has a significant impact on
the offloading cost. The preliminary implementation of the BLOCK_OS pol-
icy, which has the most complex semantics among all, required 75,500 cycles
to initialize the runtime metadata. It is possible to halve the initialization cost
by (i) replacing dynamic memory allocation of runtime data structures with
a static memory mapping and (ii) distributing between the available cores the
initialization of data structures.

As a further optimization, we implemented a lightweight runtime check
of the presence of a pending offload request to prevent the RTOS from
executing the RM when no new offload requests to process are present. This
further reduced the initialization cost to 33,250 cycles. Figure 6.5 reports
the offload cost on the cluster side for different synchronization policies. We
report minimum and maximum observed execution cycles (blue and orange
bars, respectively). The leftmost groups of bars represent the original Kalray
software infrastructure, while the three rightmost groups of bars represent
the three policies of our software infrastructure. The results for Kalray show
a very large variance between minimum and maximum observed offload
cost. Anyhow, since the analysis tools rely on worst case execution time,

Figure 6.5 Costs of offload initialization.

160 OpenMP Runtime

to all practical purposes, we must consider the maximum time, which is
around 82,000 cycles. All the three synchronization policies that we provide
exhibit a very small variance, and their cost is in all cases much smaller
than the worst case for the original Kalray SDK (roughly in line with the
best case).

This notwithstanding, the observed costs for our runtime software are still
relevant. Compared to state-of-the-art solution, we identified the main reason
of this inefficiency in the management of non-coherent caches. A flush-and-
invalidate operation on the data caches is performed at every synchronization
point (the unlock primitive). This makes each access to runtime data struc-
tures very expensive in terms of execution cycles. Replacing data caches
with L1 scratchpad memories and using these memories to store runtime data
structures allow reducing the offload cost by 20x.

6.4.2 Tasking Runtime

As already pointed out, supporting the tasking execution model is usually
subject to large overheads. While such overheads can be tolerated by large
applications exploiting coarse-grained tasks, this is usually not the case for
embedded applications, which rely on fine-grained workloads. To study this
effect, our plots show speedup (parallel execution on 16 cluster cores versus
sequential execution on a single cluster core) on the y-axis, comparing the
original Kalray runtime to our runtime support for tied and untied tasks.
For all the experiments except the one in Section 6.4.2.5, we use a set of
microbenchmarks in which tasks only consist of ALU operations (e.g., add
on local registers) and no load/store operations, which allows exploring the
maximum achievable speedups. The number of ALU operations within the
tasks can be controlled via a parameter, which allows studying the achievable
speedup for various task granularities, which we report on the x-axis of
each plot (task granularity is expressed as duration in clock cycles, roughly
equivalent to the number of ALU operations that each task contains).

We consider three variants for the synthetic benchmark: LINEAR,
RECURSIVE, and MIXED. These are representative of different task cre-
ation patterns found in real applications, and will be described in the
following subsections.

6.4.2.1 Applications with a linear generation pattern
The LINEAR benchmark consists of N = 512 identical tasks, each with a
workload of W ALU instructions. The main task creates all the remaining

6.4 Experimental Results 161

N. . . 1 tasks from a simple loop (one task created per loop iteration) and then
performs a taskwait to ensure that all tasks have completed their execution.

f o r (i =0 ; i <N; i ++)
{

#pragma omp t a s k / / A t a s k c o n s i s t i n g
s y n t h (W) ; / / o f W ALU i n s t r u c t i o n s

}
#pragma omp t a s k w a i t

Figure 6.6 shows the results for the LINEAR benchmark. Focusing on the
results for the original Kalray SDK (“noCO KALRAY” line), ideal speedups
can be achieved only for tasks larger than 100 KCycles. For smaller tasks, the
maximum achievable speedup is 3×. In this fine-grain task area, our tasks
can consistently achieve a four times higher speedup. Since in the LINEAR
microbenchmarks, there is no task nesting, there is no significant difference
between tied (PSOC T) and untied (PSOC U) tasks. We thus explore a new
configuration where tasks are recursively created to appreciate the difference.

Figure 6.6 Speedup of the LINEAR benchmark (no cutoff).

162 OpenMP Runtime

6.4.2.2 Applications with a recursive generation pattern
Figure 6.7 shows the efficiency of our runtime for the recursive parallel pat-
tern, considering tied and untied tasks. The RECURSIVE microbenchmark
builds a binary tree of depth N = 9 (512 tasks) recursively. This is similar
to a classical Fibonacci algorithm, where each of the two recursive calls is
enclosed in a task directive. A taskwait directive is placed after the creation
of the two tasks.

#pragma omp t a s k / / The f i r s t t a s k (r o o t)
r e c (0 , 5 1 1) ;

i n t r e c (i n t l e v e l , i n t m a x l e v e l)
{

i f (l e v != m a x l e v e l)
{

#pragma omp t a s k / / F i s t c h i l d t a s k
r e c (l e v e l +1 , m a x l e v e l) ;
#pragma omp t a s k / / Second c h i l d t a s k
r e c (l e v e l +1 , m a x l e v e l) ;

}

s y n t h (W) ; / / W ALU i n s t r u c t i o n s

#pragma omp t a s k w a i t
}

The first result that we observe is that only untied tasks can achieve the
maximum speedup. Tied tasks have a maximum speedup of 8. This effect
is due to the behavior of taskwait in the presence of tied tasks. If a tied
task is stuck on a taskwait and there are no children tasks in the WAITING
state (e.g., few tasks generated at each recursion level, like in the binary
tree), that task is bound to wait until the children have finished. Using a
binary tree, this leads to exactly half of the threads getting stuck, which
explains the maximum speedup observed in this configuration. This problem
is circumvented by untied tasks, which can reschedule the threads hosting the
stuck tasks to other ready tasks. Similar considerations to what we discussed
in the previous section hold for the comparison between Kalray tasks and

6.4 Experimental Results 163

Figure 6.7 Speedup of the RECURSIVE benchmark (no cutoff).

our tied tasks (Kalray supports only tied tasks, so a comparison to our untied
tasks is not directly feasible).

In general, it is possible to see that RECURSIVE implies a much higher
overhead than LINEAR. This is justified by a significantly increased con-
tention for shared data structures (queues, trees, etc.), as in this pattern
multiple threads are concurrently creating tasks. Even if we have struggled
to make the lock-protected operations to operate on shared data struc-
tures as short as possible, their serialization over multiple requestors is
evident. As a result, it takes an order of magnitude coarser tasks (around
100 K) than in the LINEAR case to achieve nearly ideal speedups. This
is a typical situation where cutoff policies can help in significantly reduc-
ing the runtime overheads. We explore the adoption of cutoff policies in
Section 6.4.2.4.

6.4.2.3 Applications with mixed patterns
The advantage of using untied tasks is particularly evident for applications
presenting a mixed structure which includes both LINEAR and RECURSIVE
task creation patterns. The MIXED microbenchmark depicted in Figure 6.8

164 OpenMP Runtime

Figure 6.8 Structure of the MIXED microbenchmark.

is aimed at studying the behavior of such applications. A root task generates
seven tasks in a LINEAR manner, each one spawning a single child with a
long execution time and then performing a taskwait, plus another two tasks
from within RECURSIVE binary trees of depth 5.

Figure 6.9 shows the results for this benchmark. Using tied tasks, 14
threads are allocated to execute the linear part of the application, seven
of which are blocked by the taskwait directive. The ideal speedup of the
application is 2, which our tied tasks reach for granularities of around 10
Kcycles.

Using untied tasks, only seven threads are allocated to the LINEAR part,
which brings the ideal speedup to 9×. The maximum speedup achieved
by our untied tasks is 8, due to a limitation of the tracing (performance

Figure 6.9 Speedup of the MIXED benchmark.

6.4 Experimental Results 165

monitoring) of the Kalray platform. The root task of the hierarchy is the
one performing time measurement and we were forced to declare this as a
tied task to gather coherent clock values (allowing this task to migrate to
other cores results in incoherent measurement). This limits the maximum
achievable speedup to 8×, which our untied tasks achieve for granularities
above 10 Kcycles.

Overall, untied tasks enable four times faster execution than tied tasks
for application featuring mixed task creation patterns. Note that this result
holds for any runtime implementation. Our solution makes this result visible
for smaller tasks compared to other OpenMP tasking implementations. The
Kalray implementation never enables any speedup in the considered range of
task granularities (up to one million cycles) for this experiment.

6.4.2.4 Impact of cutoff on LINEAR and RECURSIVE
applications

We repeated the experiments with LINEAR and RECURSIVE microbench-
marks considering a higher number of tasks (2,048). This configuration
saturates the runtime data structures and activates cutoff mode. Figures 6.10
and 6.11 show the results for this experiment.

Figure 6.10 Speedup of the LINEAR benchmark (with cutoff).

166 OpenMP Runtime

Figure 6.11 Speedup of the RECURSIVE benchmark (with cutoff).

Focusing on the LINEAR pattern, the adoption of cutoff greatly mitigates
overhead effects, and we can achieve nearly ideal speedups for an order of
magnitude smaller tasks compared to Kalray tasks. It also has to be noted that
cutoff mode is not properly supported for LINEAR patterns in the original
Kalray runtime. Enabling cutoff mode in this configuration simply seems to
disable parallelism completely. Focusing on the RECURSIVE pattern, the use
of cutoff policies proves extremely beneficial, with nearly ideal speedups for
very fine-grained tasks (in the order of thousand cycles).

6.4.2.5 Real applications
To assess the performance of our tasking runtime on real applications, we
execute the benchmarks from the Barcelona OpenMP Task Suite (BOTS)
[12], which includes a wide set of real-life applications parallelized with
OpenMP tasks.

Figure 6.12 shows the speedup of applications for different configura-
tions, comparing the Kalray SDK (KALRAY) with different configurations
of our runtime, using tied tasks (PSOC tied), untied tasks (PSOC untied), and
untied tasks with cutoff (PSOC untied CO2).

On average, programs executing on top of our runtime show a speedup of
12×, compared to only 8× for the original Kalray SDK. The benefits of cutoff

6.4 Experimental Results 167

Figure 6.12 Speedups for the BOTS benchmarks.

here are minimal, since the bottleneck is limited parallelism in the appli-
cation rather than runtime overhead. The marginal improvements enabled
by cutoff, where present, are usually due to better memory usage (tasks in
cutoff use less memory for the runtime, which is used for application data
instead).

6.4.3 Evaluation of the Task Dependency Mechanism

This section evaluates the use of a sparse matrix to implement the TDG upon
which the task dependency mechanism is built as presented in Section 6.3.1.

Concretely, we implement our task dependency mechanism on top of the
GNU libgomp library included in GCC version 4.7.2, which supports tasks
but not dependencies, and compare it with the libgomp library included in
GCC 4.9.2, which implements a dependency checker based on a hash table
structure.

The reason to implement our mechanism on a library not supporting
dependencies is that both implementations differ only in the dependency
checker, and so being easier to incorporate a new one, rather than replacing it.
Moreover, to ensure that results are not affected by the version of the library,
we executed the applications considered in this section without dependence
clauses. Despite the incorrect result, the numbers revealed that both libraries

168 OpenMP Runtime

have the exact same memory usage and performance, demonstrating that
the memory increment is exclusively caused by using different dependency
checkers.

Moreover, we consider two applications, one from the HPC domain,
i.e., a cholesky factorization [13] used for efficient linear equation solvers
and Monte Carlo simulations, and one from the embedded domain, i.e., an
application resembling the 3D path planning [14] (r3DPP) used for airborne
collision avoidance.

For comparison purposes, the applications have been parallelized with
task dependencies, i.e., using the depend clause, and without dependencies,
i.e., using only task and taskwait directives.

6.4.3.1 Performance speedup and memory usage
Figures 6.13 and 6.14 show the performance speedup and the runtime mem-
ory usage (in KB) of the Cholesky and r3DPP, when varying the number
of instantiated tasks, ranging from 1 to 5984 and 4096, respectively, and
considering the three libgomp runtimes implementing a dependency checker
based on a hash table, on a sparse matrix, and one with not dependency
checker (labeled omp4, omp 3.1, and lightweight omp4, respectively).

The performance has been computed with the average of 100 executions.
Similarly, Figures 6.14a,b show the heap memory usage (in KB) of the
three OpenMP runtimes when executing Cholesky and r3DPP respectively
and varying the number of instantiated tasks as well. The memory usage
has been extracted using Valgrind Massif [15] tool, which allows profiling
the heap memory consumed by the runtime in which the TDG structure is
maintained.

(a) Cholesky (b) r3DPP

Figure 6.13 Performance speedup of the Cholesky (a) and r3DPP (b) running with
lightweight omp4, omp4, and omp 3.1, and varying the number of tasks.

6.4 Experimental Results 169

(a) Cholesky (b) r3DPP

Figure 6.14 Memory usage (in KB) of the Cholesky (a) r3DPP (b) running with lightweight
omp4, omp4, and omp 3.1, and varying the number of tasks.

For these experiments, we consider an Intel Xeon CPU E5-2670 proces-
sors, featuring eight cores each, with 20 MB L3. The reason is that it incor-
porates the libgomp library included in GCC 4.9.2 supporting dependency
checker based on a hash table.

We observe that both performance and memory usage depend on the
number of instantiated tasks: the higher the number of instances, the better
the performance, as the chances of parallelism increase. When the number of
tasks is too high, however, the overhead introduced by the runtime and the
small workload of each task slows down the performance.

As shown in Figure 6.13, our lightweight omp4 obtains the same per-
formance speedups as the omp4 implementation for the two applications,
and outperforms omp 3.1. However, when observing the memory usage in
Figure 6.14, it rapidly increases for omp4, requiring much more memory than
the runtime based on the sparse matrix, i.e., the lightweight omp4.

It is also interesting to observe the parallelization opportunities brought
by the depend clause, which makes the performance of Cholesky (Figure
6.13a) to increase significantly compared to not using them, with a speedup
increment from 4x to 12x when instantiating 5,984 tasks. At this point, omp4
consumes 2.5 MB while our lightweight omp4 requires less than 1.3 MB. The
memory consumed by omp3.1 is less than 100 KB (Figure 6.14a). In fact, the
omp3.1 memory consumption is similar for all the applications because no
structure for dependencies management is needed.

For the r3DPP, the depend clause achieves a performance speedup of 5.2x
and 5.8x with omp4 and lightweight omp4, respectively, when instantiating
1,024 tasks (Figure 6.13b). At this point, omp4 consumes 400 KB in front of
the 200 KB consumed by lightweight omp4 (Figure 6.14b). Not considering
dependencies, i.e., omp31, achieves a maximum performance of 4.5x when
256 tasks are instantiated (Figure 6.13b). When the number of task instances

170 OpenMP Runtime

Table 6.1 Memory usage of the sparse matrix (in KB), varying the number of tasks
instantiated

Cholesky
Tasks 4 20 120 816 5984

KB 0.11 0.59 3.80 27.09 204.19

r3DPP
Tasks 16 64 256 1024 4096

KB 00.47 1.94 7.88 31.75 127.5

increases to 4096, all runtimes suffer a significant performance degradation
because the number of instantiated tasks is too high compared to the workload
computed by each task.

Table 6.1 shows the size of the sparse matrix data structure implementing
the esTDG of each application when varying the number of instantiated tasks
(the memory consumption reported in Figures 6.14a,b already includes it).

6.4.3.2 The task dependency mechanism on the MPPA
To evaluate the benefit of the task dependency mechanism on a memory
constrained manycore architecture, we evaluated it on the MPPA processor.
Figure 6.15 shows the performance speedup of Cholesky (a) and r3DPP
(b) executed in one MPPA cluster, considering the lightweight omp4 and
omp31 runtimes and varying the number of tasks. Note that omp4 runtime
experiments are not provided because MPPA does not support it. Memory
consumption is the same as the one shown in Figure. 6.14 r3DPP increases
the performance speedup from 9x to 12x when using our lightweight omp4
rather than omp3.1 and only consuming 200 KB. Cholesky presents a
significant speedup increment when instantiating 816 tasks, i.e., from 2.5x
to 9x, consuming only 220 KB.

(a) Cholesky (b) r3DPP

Figure 6.15 Performance speedup of the Cholesky (a) and r3DPP (b) running on the MPPA
with lightweight omp4, omp4, and omp 3.1, and varying the number of tasks.

References 171

6.5 Summary

This chapter has illustrated the design of the OpenMP runtime for a het-
erogeneous platform including a host processor and an embedded manycore
accelerator. The complete software stack is composed of an offloading library
and a tasking runtime library, which have been described in detail. The
OpenMP runtime provides specific features to support the scheduling policies
that have been defined in Chapter 4, and it also implements the TDG required
to support the task dependency mechanism as presented in Section 6.3.1. The
chapter has discussed how to enable maximum exploitation of the available
hardware parallelism via the untied task model, highlighting the key design
choices to achieve low overhead. Experimental results show that this enables
up to four times faster execution than tied tasks, which improves on average
by 60% over the native Kalray SDK.

References

[1] Marongiu, A., Capotondi, A., Tagliavini, G., and Benini, L., “Simplify-
ing Many-Core-Based Heterogeneous SoC Programming With Offload
Directives.” In IEEE Transactions on Industrial Informatics, vol. 11,
pp. 957–967, 2015.

[2] Mitra, G., Stotzer, E., Jayaraj, A., and Rendell, A. P., “Implementation
and optimization of the OpenMP accelerator model for the TI Key-
stone II architecture.” In International Workshop on OpenMP, Springer,
pp. 202–214, 2014.

[3] Rosenstiel, W., and Thiele, L. (editors), Design, Automation and Test
in Europe Conference and Exhibition, DATE 2012, Dresden, Germany.
IEEE, 2012.

[4] Podobas, A., Brorsson, M., and Faxén, K.-F., A comparative per-
formance study of common and popular task-centric programming
frameworks. Concurr. Comput. Pract. Exp. 27, 1–28, 2015.

[5] Duran, A., Teruel, X., Ferrer, R., Martorell, X., and Ayguade, E.,
“Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting the
Exploitation of Task Parallelism in OpenMP.” In 2009 International
Conference on Parallel Processing, pp. 124–131. IEEE, 2009.

[6] Burgio, P., Tagliavini, G., Marongiu, A., and Benini, L., “Enabling fine-
grained OpenMP tasking on tightly-coupled shared memory clusters.”
In Proceedings of the Conference on Design, Automation and Test in
Europe, DATE ’13, pp. 1504–1509. EDA Consortium, 2013.

172 OpenMP Runtime

[7] Rochange, C., Bonenfant, A., Sainrat, P., Gerdes, M., Lobo, J., et al.,
“WCET analysis of a parallel 3D multigrid solver executed on the
MERASA multi-core.” In WCET, 2010.

[8] Kumar, S., Hughes, C. J., and Nguyen, A, “Carbon: Architectural
Support for Fine-grained Parallelism on Chip Multiprocessors.” In Pro-
ceedings of the 34th Annual International Symposium on Computer
Architecture, ISCA ’07, pp. 162–173. ACM, 2007.

[9] Serrano, M. A., Melani, A., Vargas, R., Marongiu, A., Bertogna, M.,
and Quiñones, E., “Timing Characterization of OpenMP4 Tasking
Model.” In Proceedings of the 2015 International Conference on Com-
pilers, Architecture and Synthesis for Embedded Systems, CASES ’15,
pp. 157–166. IEEE Press, 2015.

[10] Marlin, C. D., Coroutines: a programming methodology, a language
design and an implementation. Number 95 in Lecture Notes in Com-
puter Science. Springer Science and Business Media, 1980.

[11] Duran, A., Corbalán, J., and Ayguadé, E., “Evaluation of OpenMP
task scheduling strategies.” In International Workshop on OpenMP,
pp. 100–110. Springer, 2008.

[12] Duran, A., Corbalan, J., and Ayguade, E., “An adaptive cut-off for task
parallelism.” In 2008 SC – International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE,
2008.

[13] Bascelija, N., Sequential and Parallel Algorithms for Cholesky Fac-
torization of Sparse Matrices. WSEAS: Mathematic. Appl. Sci. Mech.
2013.

[14] Cesarini, D., Marongiu, A., and Benini, L., “An optimized task-based
runtime system for resource-constrained parallel accelerators.” In 2016
Design, Automation and Test in Europe Conference and Exhibition,
DATE 2016, Dresden, Germany, pp. 1261–1266, 2016.

[15] Nethercote, N., et. al., “Building Workload Characterization Tools with
Valgrind.” In IISWC, 2006.

