
7
Embedded Operating Systems

Claudio Scordino1, Errico Guidieri1, Bruno Morelli1,
Andrea Marongiu2,3, Giuseppe Tagliavini3 and Paolo Gai1

1Evidence SRL, Italy
2Swiss Federal Institute of Technology in Zurich (ETHZ), Switzerland
3University of Bologna, Italy

In this chapter, we will provide a description of existing open-source
operating systems (OSs) which have been analyzed with the objective of
providing a porting for the reference architecture described in Chapter 2.
Among the various possibilities, the ERIKA Enterprise RTOS (Real-Time
Operating System) and Linux with preemption patches have been selected. A
description of the porting effort on the reference architecture has also been
provided.

7.1 Introduction

In the past, OSs for high-performance computing (HPC) were based on
custom-tailored solutions to fully exploit all performance opportunities of
supercomputers. Nowadays, instead, HPC systems are being moved away
from in-house OSs to more generic OS solutions like Linux. Such a trend
can be observed in the TOP500 list [1] that includes the 500 most powerful
supercomputers in the world, in which Linux dominates the competition.
In fact, in around 20 years, Linux has been capable of conquering all the
TOP500 list from scratch (for the first time in November 2017).

Each manufacturer, however, still implements specific changes to the
Linux OS to better exploit specific computer hardware features. This is
especially true in the case of computing nodes in which lightweight kernels
are used to speed up the computation.

173

174 Embedded Operating Systems

Figure 7.1 Number of Linux-based supercomputers in the TOP500 list.

Linux is a full-featured OS, originally designed to be used in server or
desktop environments. Since then, Linux has evolved and grown to be used
in almost all computer areas – among others, embedded systems and parallel
clusters. Linux currently supports almost every hardware processor, including
x86, x86-64, ARM, PowerPC, MIPS, SuperH, IBM S/390, Motorola 68000,
SPARC, etc. The programmability and the portability of code across different
systems are ensured by the well-known “Portable Operating System Inter-
face” (POSIX) API. This is an IEEE standard defining the basic environment
and set of functions offered by the OS to the application programs.

Hence, the main reason for this success and popularity in the HPC sector
is its excellent performance and its extreme scalability, due to very carefully
designed data structures like Linux Read-Copy Update (RCU) [2]. This
scalability, together with the high modularity, enables excellent performance
on both a powerful parallel cluster made by thousands of cores and a small
embedded microcontroller, as will be shown in the next sections.

Therefore, when designing the support for our predictable parallel pro-
gramming framework, we started selecting Linux as the basic block for
executing the target parallel applications. On the other hand, Linux alone is
not sufficient for implementing the needed runtime support on our reference
architecture: a solution needed to be found for the compute cores, where a
tiny RTOS is needed in order to provide an efficient scheduling platform to
support the parallel runtime described in Chapter 6.

This chapter in particular describes in detail how the scheduling tech-
niques designed in Chapter 4 have been implemented on the reference
architecture. The chapter includes notes about the selection of the tiny RTOS
for the compute cores, with a description of the RTOS, as well as the solutions
implemented to support Linux on the I/O cores with real-time performance.

7.2 State of The Art 175

This chapter is structured as follows. Section 7.2 describes the state of the
art of the real-time support for the Linux OS and as well for small RTOSes.
Section 7.3 describes the requirements that influenced the choice of the
RTOS, which is described in detail in Section 7.4. Section 7.5 provides some
insights about the OS support for the host processor and for the many-core
processor. Finally, Section 7.6 summarizes the chapter.

7.2 State of The Art

7.2.1 Real-time Support in Linux

As noted in the Section “Introduction,” in the last years, there has been
a considerable interest in using Linux for both HPC and real-time control
systems, from academic institutions, independent developers, and industries.
There are several reasons for this rising interest.

First of all, Linux is an Open Source project, meaning that the source code
of the OS is freely available to everybody, and can be customized according
to user needs, provided that the modified version is still licensed under the
GNU General Public License (GPL) [3]. This license allows anybody to
redistribute, and even sell, a product as long as the recipient is able to exercise
the same rights (access to the source-code included). This way, a user (for
example, a company) is not tied to the OS provider anymore, and is free
to modify the OS at will. The Open Source license helped the growth of a
large community of researchers and developers who added new features to
the kernel and ported Linux to new architectures. Nowadays, there is a huge
number of programs, libraries, and tools available as Open Source code that
can be used to build a customized version of the OS.

Moreover, Linux has the simple and elegant design of the UNIX OSs,
which guarantees meeting the typical reliability and security requirements of
real-time systems.

Finally, the huge community of engineers and developers working on
Linux makes finding expert programmers very easy.

Unfortunately, the standard mainline kernel (as provided by Linus
Torvalds) is not adequate to be used as RTOS. Linux has been designed to
be a general-purpose operating system (GPOS), and thus not much attention
has been given to the problem of reducing the latency of critical operations.
Instead, the main design goal of the Linux kernel has been (and still remains)
to optimize the average throughput (i.e., the amount of “useful work” done by
the system in the unit of time). For this reason, a Linux program may suffer a
high latency in response to critical events. To overcome these problems, many

176 Embedded Operating Systems

approaches have been proposed in the last years to modify Linux in order to
make it more “real-time.” These approaches can be grouped in the following
classes [4]:

1. Hard real-time scheduling through a Hardware Abstraction Layer
(HAL);

2. Latency reduction through better preemption mechanisms and interrupt
handling;

3. Proper real-time scheduling policies.

The following subsections describe each approach in detail.

7.2.1.1 Hard real-time support
This approach consists in creating a layer of virtual hardware between the
standard Linux kernel and the real hardware. This layer is called Real-Time
Hardware Abstraction Layer (RTHAL). It abstracts the hardware timers and
interrupts and adds a separate subsystem to run the real-time tasks. The Linux
kernel and all the normal Linux processes are then managed by the abstraction
layer as the lowest priority tasks — i.e., the Linux kernel only executes when
there are no real-time tasks to run.

The first project implementing this approach was RTLinux [5]. The
project started at Finite State Machine Labs (FSMLabs) in 1995. Then, it
was released in two different versions: an Open Source version (under GPL
license) and a more featured commercial version. An operation of patenting
issued in US in 1999, however, generated a massive transition of developers
towards the parallel project RTAI. Then, the commercial version was bought
by WindRiver. Nowadays, both versions are not maintained anymore [5].

RTAI [6] (which stands for “Real-Time Application Interface”) is a
project started as a variant of RTLinux in 1997 at Dipartimento di Ingegneria
Aerospaziale of Politecnico di Milano (DIAPM), Italy. The project is under
LGPL license, and it was supported by a large community of developers,
based on the Open Source model. Although the project initially started from
the original RTLinux code, it has been completely rewritten over time. In
particular, the RTAI community has developed the Adaptive Domain Envi-
ronment for Operating Systems (ADEOS) nanokernel as an alternative for
RTAI’s core, to get rid of the old kernel patch and exploit a more structured
and flexible way to add a real-time environment to Linux [4]. The project
mainly targets the x86 architecture and is currently maintained (even if less
popular than it used to be in the past).

Xenomai [7] was born in 2001 as an evolution of Fusion, a project
to run RTAI tasks in the user space. With Xenomai, a real-time task can

7.2 State of The Art 177

execute in user space or in kernel space. Normally, it starts in kernel space
(i.e., “primary domain”), where it has real time performance. When the real-
time task invokes a function belonging to the Linux standard API or libraries,
it is automatically migrated to the user-level (i.e., “secondary domain”), under
the control of the Linux scheduler. In this secondary domain, it keeps a
high priority, being scheduled with the SCHED FIFO or SCHED RR Linux
policies. However, it can experience some delay and latency, due to the fact
that it is scheduled by Linux. After the function call has been completed, the
task can go back to the primary mode by explicitly calling a function. In this
way, at the cost of some limited unpredictability, the real-time programmer
can use the full power of Linux also for real-time applications.

Among the various projects implementing the hardware abstraction
approach, Xenomai is the one which supports the highest number of embed-
ded architectures. It supports ARM, Blackfin, NiosII, PPC and, of course,
x86. Xenomai also offers a set of skins implementing the various APIs of
popular RTOS such as Windriver VxWorks [8], as well as the POSIX API [9].
In version 3 of Xenomai, the project aims at working on top of both a
native Linux kernel and a kernel with PREEMPT RT [10], by providing a
set of user-space libraries enabling seamless porting of applications among
the various OS versions.

It is important to highlight the advantages of the approach of hard-
ware abstraction. First of all, the latency reduction is really effective [4].
This allows the implementation of very fast control loops for applications
like vibrational control. Moreover, it is possible to use a full-featured OS
like Linux for both the real-time and the non-real-time activities (e.g.,
HMI, logging, monitoring, communications, etc.). Finally, the possibility
of developing and then executing the code on the same hardware platform,
considerably simplifies the complexity of the development environment.

Typical drawbacks of this approach – which depend on the particular
implementation – are:

• Real-time tasks must be implemented using specific APIs, and they
cannot access typical Linux services without losing their real-time
guarantees.

• The implementation is very hardware-dependent, and may not be
available for a specific architecture.

• The real-time tasks are typically executed as modules dynamically
loaded into the kernel. Thus, there is no memory protection and a buggy
real-time task may crash the whole system.

178 Embedded Operating Systems

For these reasons, this approach is usually followed only to build hard real-
time systems with very tight requirements.

7.2.1.2 Latency reduction
“Latency” can be defined as the time between the occurrence of an event
and the beginning of the action to respond to the event [4]. In the case of
an OS, it is often defined as the time between the interrupt signal arriving to
the processor (signaling the occurrence of an external event like data from a
sensor) and the time when the handling routine starts execution (e.g., the real-
time task that responds to the event). Since in the development of critical real-
time control systems, it is necessary to account for the worst-case scenario, a
particularly important measure is the maximum latency value.

The two main sources of latency in general-purpose OSs are task latency
and timer resolution:

1. Task latency is experienced by a process when it cannot preempt a lower
priority process because this is executing in kernel context (i.e., the
kernel is executing on behalf of the process). Typically, monolithic OSs
do not allow more than one stream of execution in kernel context, so
that the high-priority task cannot execute until the kernel code either
returns to user-space or explicitly blocks. As we will explain in the
following paragraphs, Linux has been capable of mixing the advantages
of a traditional monolithic design with the performance of concurrent
streams of execution within the kernel.

2. The timer resolution depends on the frequency at which the electronics
issues the timing interrupts (also called “tick”). This hardware timer is
programmed by the OS to issue interrupts at a pre-programmed period of
time. The periodic tick rate directly affects the granularity of all timing
activities. The Linux kernel has recently switched towards a dynamic
tick timer, where the timer does not issue interrupts at a periodic rate.
This feature allows the reduction of energy consumption whenever the
system is idle.

In the course of the years, several strategies have been designed and imple-
mented by kernel developers to reduce these values. Among the mechanisms
already integrated in the official Linux kernel, we can find:

• Robert Love’s Preemptible Kernel patch to make the Linux kernel
preemptible just like user-space. This means that several flows of ker-
nel execution can be run simultaneously. Urgent events can be served
regardless of the fact that the system is running in the kernel context.

7.2 State of The Art 179

Hence, it becomes possible to preempt a process at any point, as long
as the kernel is in a consistent state. With this patch the Linux kernel
has become a fully preemptive kernel, unlike most existing OSs (UNIX
variants included). This feature was introduced in the 2.6 kernel series
(December 2003).

• High Resolution Timers (HRT) is a mechanism to issue timer interrupts
aperiodically – i.e., the system timer is programmed to generate the
interrupt after an interval of time that is not constant, but depends on
the next event scheduled by the OS. Often, these implementations also
exploit processor-specific hardware (like the APIC on modern x86 pro-
cessors) to obtain a better timing resolution. This feature was introduced
in the 2.6.16 kernel release (March 2006).

• Priority inheritance for user-level mutex, available since release 2.6.18
(September 2006). Priority inheritance support is useful to guarantee
bounded blocking times in case more than one thread needs to concur-
rently access the same resource. The main idea is that blocking threads
inherit the priority of the blocked threads, thus giving them additional
importance in order to finish their job early.

• Threaded interrupts by converting interrupt handlers into preemptible
kernel threads, available since release 2.6.30 (June 2009). To better
understand the effect of this patch, we have to consider that the typical
way interrupts are managed in Linux is to manage the effect of the
interruption immediately inside the so-called interrupt handler. In this
way, peripherals are handled immediately, typically providing a better
throughput (because thread waiting for asynchronous events are put
earlier in the ready queue). On the other hand, a real-time system
may have a few “important” IRQs that need immediate service, while
the others, linked to lower priority activities (e.g., network, disk I/O),
can experiences higher delays. Therefore, having all interrupt services
immediately may provide unwanted jitter in the response times, as low-
priority IRQ handlers may interrupt high-priority tasks. The threaded
interrupt patch solves this problem by transforming all IRQ handlers
into kernel threads. As a result, the IRQ handlers (and their impact on the
response time) are minimized. Moreover, users can play with real-time
priorities to eventually raise the priorities of the important interrupts,
therefore providing stronger real-time guarantees.

PREEMPT RT [10] is an on-going project supported by the Linux
Foundation [11] to bring real-time performance to a further level of
sophistication, by introducing preemptible (“sleeping”) spinlocks and RT
mutexes implementing Priority Inheritance to avoid priority inversion.

180 Embedded Operating Systems

It is worth specifying that the purpose of the PREEMPT RT patch is
not to improve the throughput or the overall performance. The patch aims
at reducing the maximum latency experienced by an application to make the
system more predictable and deterministic. The average latency, however, is
often increased.

7.2.1.3 Real-time CPU scheduling
Linux systems traditionally offered only two kind of scheduling policies:

1. SCHED OTHER: Best-effort round-robin scheduler;
2. SCHED FIFO/SCHED RR: Fixed-priority POSIX scheduling.

During the last decade, due to the increasing need of a proper real-time
scheduler, a number of projects have been proposed to add more sophisticated
real-time scheduling (e.g., SCHED SOFTRR [12], SCHED ISO [13], etc.).
However, they remained as separate projects and have never been integrated
in the mainline kernel.

During the last years, the real-time scheduler SCHED DEADLINE
[14, 15] originally proposed and developed by Evidence Srl in the context
of the EU project ACTORS [16], has been integrated in the Linux kernel.
It is available since the stable release 3.14 (March 2014). It consists of a
platform-independent real-time CPU scheduler based on the Earliest Dead-
line Scheduler (EDF) algorithm [17], and it offers temporal isolation between
the running tasks. This means that the temporal behavior of each task (i.e., its
ability to meet its deadlines) is not affected by the behavior of the other tasks
running in the system. Even if a task misbehaves, it is not able to exploit
larger execution times than the amount it has been allocated. The scheduler
only enforces temporal isolation on the CPU, and it does not yet take into
account shared hardware resources that could affect the timing behavior.

A recent collaboration between Scuola Superiore Sant’Anna, ARM Ltd.
and Evidence Srl, has aimed at overcoming the non-work-conserving nature
of SCHED DEADLINE while keeping the real-time predictability. This joint
effort that replaced the previous CBS algorithm with GRUB has been merged
since kernel release 4.13.

7.2.2 Survey of Existing Embedded RTOSs

The market of embedded RTOSs has been exploited in the past decades
by several companies that have been able to build solid businesses. These
companies started several years ago, when the competition from free OSs

7.2 State of The Art 181

was non-existent or very low. Thus, they had enough time to create a
strong business built on top of popular and reliable products. Nowadays, the
market is full of commercial solutions, which differentiate in the applica-
tion domain (e.g., automotive, avionics, railway, etc.) and in the licensing
model. Most popular commercial RTOSs are: Windriver VxWorks [8], Green
Hills Integrity [18], QNX [19], SYSGO PikeOS [20], Mentor Graphics
Nucleus RTOS [21], LynuxWorks LynxOS [22], and Micrium µc/OS-III [23].
However, there are some other interesting commercial products like Segger
EmbOS [24], ENEA OSE [25], and Arccore Arctic core [26].

On the other hand, valid Open-Source alternatives exist. The development
of a completely free software tool chain being our target, the focus of this
subsection will be more on the free RTOSs available publicly. Some free
RTOSs, in fact, have now reached a level of maturity in terms of reliability
and popularity that can compete with commercial solutions. The Open-
Source licenses allow the modification of the source code and porting the
RTOS on the newest many-core architectures.

This section provides an overview of the free RTOSs available. For each
RTOS, the list of supported architectures, the level of maturity and the kind
of real-time support are briefly provided. Other information about existing
RTOSs can be found in [27].

FreeRTOS
FreeRTOS [28] is a small RTOS written in C. It provides threads, tasks,
mutexes, semaphores and software timers. A tick-less mode is provided for
low-power applications.

It supports several architectures, including ARM (ARM7/9, Cortex-A/M),
Altera Nios2, Atmel AVR and AVR32, Cortus, Cypress PSoC, Freescale
Coldfire and Kinetis, Infineon TriCore, Intel x86, Microchip dsPIC
and PIC18/24/32 and dsPIC, Renesas H8/S, SuperH, Fujitsu, Xilinx
Microblaze, etc.

It does not implement very advanced scheduling algorithms, but it offers
a classical preemptive or cooperative fixed-priority round-robin with priority
inheritance mutexes.

The RTOS is Open Source, and was initially distributed under a license
similar to GPL with linking exception [29]. Recently the FreeRTOS kernel
has been relicensed under the MIT license thanks to the collaboration with
Amazon AWS. A couple of commercial versions called SafeRTOS and
OpenRTOS are available as well. The typical footprint is between 5 KB
and 10 KB.

182 Embedded Operating Systems

Contiki
Contiki [30] is an Open-Source OS for networked, memory-constrained
systems with a particular focus on low-power Internet of things devices. It
supports about a dozen microcontrollers, even if the ARM architecture is not
included. The Open-Source license is BSD, which allows the usage of the OS
in commercial devices without releasing proprietary code.

Although several resources include Contiki in the list of free RTOSs,
Contiki is not a proper RTOS. The implementation is based on the concept
of protothreads, which are non-preemptible stack-less threads [31]. Context
switch can only take place on blocking operations, and does not preserve the
content of the stack (i.e., global variables must be used to maintain variables
across context switches).

Stack sharing is a useful feature, but the lack of preemptive support and
advanced scheduling mechanisms made this OS not suitable to meet the needs
of the parallel programming software framework we want to implement.

Marte OS
Marte OS [32] is a hard RTOS that follows the Minimal Real-Time POSIX.13
subset. It has been developed by the University of Cantabria. Although it
is claimed to be designed for the embedded domain, the only supported
platform is the x86 architecture. The development is discontinued, and the
latest contributions date back to June 2011.

Ecos and EcosPro
Ecos [33] is an Open-Source RTOS for applications which need only one
process with multiple threads. The source code is under GNU GPL with
linking exception.

The current version is 3.0 and it runs on a wide variety of hardware
architectures, including ARM, CalmRISC, Motorola 68000/Coldfire, fr30,
FR-V, Hitachi H8, IA32, MIPS, MN10300, OpenRISC, PowerPC, SPARC,
SuperH, and V8xx.

The footprint is in the order of tens of KB, which does not make it suitable
for processing units with extremely low memory. The kernel is currently
developed in a closed-source fork named eCosPro.

FreeOSEK
FreeOSEK [34] is a minimal RTOS implementing the OSEK/VDX automo-
tive standard, like Erika Enterprise. The Open-Source license (GNU GPLv3
with linking exception) is similar to the one of Erika Enterprise too. However,

7.2 State of The Art 183

it only supports the ARM7 architecture, the development community is small,
and the project does not appear to be actively maintained.

QP
Quantum platform (QP) [35] is a family of lightweight, open source soft-
ware frameworks developed by company Quantum Leaps. These frameworks
allow building modular real-time embedded applications as systems of coop-
erating, event-driven active objects (actors). In particular, QK (Quantum
Kernel) is a tiny preemptive non-blocking run-to-completion kernel designed
specifically for executing state machines in a run-to-completion (RTC)
fashion.

Quantum platform supports several microcontrollers, including ARM
Cortex-M, ARM 7/9/Cortex-M, Atmel AVR Mega and AVR32, Texas
Instruments MSP430/TMS320C28x/TMS320C55x, Renesas Rx600/R8C/H8,
Freescale Coldfire/68HC08, Altera Nios II, Microchip PIC24/dsPIC, and
Cypress PSoC1.

The software is released in dual licensing: an Open-Source and a com-
mercial license. The Open-Source license is GNU GPL v3, which requires
the release of the source code to any end user. Unfortunately, the Open-
Source license chosen is not suitable for consumer electronics, where
the companies want to keep the intellectual property of their application
software.

Trampoline
Trampoline [36] is an RTOS which aims at OSEK/VDX automotive certifi-
cation. However, unlike ERIKA Enterprise, it has not yet been certified.

Only the following architectures are supported: Cortex M, Cortex A7
(alone or with the Hypervisor XVisor), RISC-V, PowerPC 32 bits, AVR,
ARM 32 bit.

The Open-Source license at the time the evaluation was made was LGPL
v2.1. This license is not very suitable for consumer electronics because it
implies that any receiver of the binary (e.g., final user buying a product) must
be given access to the low-level and the possibility of relinking the application
towards a newer version of the RTOS. The license was changed afterwards to
GPL v2 in September 2015.

RTEMS
RTEMS [37] is a fully-featured Open-Source RTOS supporting several appli-
cation programming interfaces (APIs) such as POSIX and BSD sockets. It

184 Embedded Operating Systems

is used in several application domains (e.g., avionics, medical, networking)
and supports a wide range of architectures including ARM, PowerPC, Intel,
Blackfin, MIPS, and Microblaze. It implements a single process, multi-
threaded environment. The Open-Source license is similar (but not equal)
to the more popular GPL with Linking Exception [29].

The footprint is not extremely small, and for the smallest applications,
ranges from 64 to 128 K on nearly all CPU families [38]. For this reason,
another project called TinyRTEMS [39] has been created to reduce the
footprint of RTEMS. However, its Open-Source license is GPLv2, which is
not suitable for development in industrial contexts.

TinyOS
TinyOS [40] is an Open-Source OS specifically designed for low-power
wireless devices (e.g., sensor networks) and mainly used in research insti-
tutions. It has been designed for very resource-constrained devices, such as
microcontrollers with a few KB of RAM and a few tens of KB of code space.
It’s also been designed for devices that need to be very low power.

TinyOS programs are built out of software components, some of which
present hardware abstractions. Components are connected to each other
using interfaces. TinyOS provides interfaces and components for common
abstractions such as packet communication, routing, sensing, actuation, and
storage.

TinyOS cannot be considered a proper real-time OS, since it implements
a non-preemptive thread model.

The OS is licensed under BSD license which, like GPL with link-
ing exception, does not require redistribution of the source code of the
application.

TinyOS supports Texas Instruments MSP430, Atmel Atmega128, and
Intel px27ax families of microcontrollers. Currently, it does not support the
family of ARM Cortex processors. The development of TinyOS has been
discontinued since a few years.

ChibiOS/RT
ChibiOS/RT [41] is a compact and Open-Source RTOS. It is designed for
embedded real-time applications where execution efficiency and compact
code are important requirements. This RTOS is characterized by its high
portability, compact size and, mainly, by its architecture optimized for
extremely efficient context switching. It supports a preemptive thread model
but it does not support stack sharing among threads.

7.2 State of The Art 185

The official list of supported microcontrollers is mainly focused on the
ARM Cortex-M family, even if a very few other processors (i.e., ARM7, AVR
Mega, MSP430, Power Architecture e200z, and STM8) are supported as well.
Some further microcontrollers are not officially supported, and the porting of
the RTOSs has been done by individual developers.

The footprint of this RTOS is very low, being between 1 KB and 5.5 KB.
ChibiOS/RT is provided under several licenses. Besides the commercial

license, unstable releases are available as GPL v3 and stable releases as
GPL v3 with linking exception. Since version 3 of GPL does not allow
“tivoization” [42], these Open-Source licenses are not suitable for indus-
trial contexts where the manufacturer wants to prevent users from running
modified versions of the software through hardware restrictions.

ERIKA Enterprise v2
Erika Enterprise v2 [43] is a minimal RTOS providing hard real-time guar-
antees. It is developed by partner Evidence Srl, but it is released for free.
The Open-Source license – GPL with linking exception (also known as
“Classpath”) [29] – is suitable for industrial usage because it allows linking
(even statically) the proprietary application code with the RTOS without the
need of releasing the source code.

The RTOS was born in 2002 to target the automotive market. During the
course of the years it has been certified OSEK/VDX and it is currently used
by either automotive companies (as Magneti Marelli and Cobra) or research
institutions. ERIKA Enterprise v2 implements the AUTOSAR API 4.0.3 as
well, up to Scalability Class 4.

Besides the very small footprint (about 2–4 KB), ERIKA Enterprise
has innovative features, like advanced scheduling algorithms (e.g., resource
reservation, immediate priority ceiling, etc.) and stack sharing to reduce
memory usage.

It supports several microcontrollers (from 8-bit to 32-bit) and it has been
one of the first RTOSs supporting multicore platforms (i.e., Altera NiosII).
The current list of supported architectures includes Atmel AVR and Atmega,
ARM 7 and Cortex-M, Altera NiosII, Freescale S12 and MPC, Infineon Aurix
and Tricore, Lattice Mico32, Microchip dsPIC and PIC32, Renesas RX200,
and TI MSP430. A preliminary support for ARM Cortex-A as well as the
integration with Linux on the same multicore chip has been shown during a
talk at the Automotive Linux Summit Fall [44] in October 2013.

186 Embedded Operating Systems

Version 3 of ERIKA Enterprise has also been released recently [45]. The
architecture of ERIKA Enterprise v3 has been directly derived as an evolution
of the work described in this chapter, and is aimed to support full AUTOSAR
OS compliance on various single and multi-/manycore platforms, including
support for hypervisors.

7.2.3 Classification of Embedded RTOSs

The existing open-source RTOSs can be grouped in the following classes:

1. POSIX RTOSs, which provide the typical POSIX API allowing dynamic
thread creation and resource allocation. These RTOSs have a large
footprint due to the implementation of the powerful but complex POSIX
API. Examples are: Marte OS and RTEMS.

2. Simil-POSIX RTOSs, which try to offer an API with the same capabili-
ties of POSIX (i.e., dynamic thread creation and resource allocation) but
at a lower footprint meeting the typical constraints of small embedded
systems. Examples are: FreeRTOS, Ecos and ChibiOS/RT.

3. OSEK RTOSs, implementing the OSEK/VDX API with static thread
creation but still allowing thread preemption. These RTOSs are
characterized by a low footprint. Moreover, they usually also offer
stack-sharing among the threads, allowing the reduction of memory
consumption at run-time. Examples are: ERIKA Enterprise, Trampoline,
and FreeOSEK.

4. Other minimal RTOSs, which have a low footprint and a non-preemptive
thread model by construction. Usually, these RTOSs offer the stack-
sharing capability. Examples are: TinyOS and Contiki.

This classification is shown in the following Table 7.1:

Table 7.1 Classification of RTOSs
POSIX Simil-POSIX OSEK Other Minimal

API POSIX Custom OSEK/VDX Custom
Footprint size Big Medium Small Small
Thread preemption V V V X
Thread creation V V – –
Stack sharing – – V V
Examples MarteOS

RTEMS
FreeRTOS

Ecos
ChibiOS/RT

ERIKA Enterprise
Trampoline
FreeOSEK

TinyOS
Contiki

QP

7.3 Requirements for The Choice of The Run Time System 187

7.3 Requirements for The Choice of The Run Time System

This section includes a short description of the main requirements that influ-
enced the choice of the OS platform for the implementation of our parallel
programming model.

7.3.1 Programming Model

The run-time system is a fundamental software component of the parallel
programming model to transform the parallel expressions defined by the user
into threads that execute in the different processing units, i.e., cores.

Therefore, the OS system must provide support to execute the run-time
system that will implement the API services defined by the parallel program-
ming model. In our case, the requirement is related to the fact that an UNIX
environment such as Linux should be present, with support for the C and C++
programming languages.

7.3.2 Preemption Support

In single-core real-time systems, allowing a thread to be preempted has a
positive impact on the schedulability of the system because the blocking on
higher-priority jobs is significantly limited. However, in many-core systems,
the impact of preemptions on schedulability is not as clear, since higher
priority jobs might have a chance to execute on one of the many other cores
available in the system. Nevertheless, for highly parallel workloads, it may
happen that all cores are occupied by lower-priority parallel jobs, so that
higher-priority instances may be blocked for the whole duration of the lower-
priority jobs. In this case, a smart preemption support might be beneficial,
allowing a subset of the lower-priority instances to be preempted in favor of
the higher-priority jobs. The remaining lower-priority instance may continue
executing on the remaining cores, while the state of the preempted instances
needs to be saved by the OS, in order to restore it as soon as there are
computing units available again.

In order to develop the proper OS mechanisms, it is necessary to support
the kind of preemption needed by the scheduling algorithms described in
Chapter 4, with particular reference to the hybrid approach known as “limited
preemption,” and to the store location of the preempted threads context. In
order to implement such techniques, the OS design needs to take into account
which restrictions will be imposed on the preemptability of the threads,

188 Embedded Operating Systems

whether by means of statically defined preemption points, or by postponing
the invocation of the scheduling routine by a given amount of time.

7.3.3 Migration Support

In migration-based multicore systems, a preempted thread may resume its
execution on a different core. Migration support requires additional OS mech-
anisms to allow threads to be resumed on different cores. Different migration
approaches are possible:

• Partitioned approach: Each thread is scheduled on one core and cannot
execute on other cores;

• Clustered approach: Each thread can execute on a subset (cluster) of the
available cores;

• Global approach: Threads can execute on any of the available cores.

7.3.4 Scheduling Characteristics

Real-time scheduling algorithms are often divided into static vs. dynamic
scheduling algorithms, depending on the priority assigned to each job to
execute. Static algorithms assign a fixed priority to each thread. Although
they are easier to implement, their performance could be lower than with
more flexible approaches that may dynamically change priorities of each
thread. Depending on the scheduling strategy, fixed or dynamic, different OS
kernel mechanisms will be needed.

Another design point concerns the policies for arbitrating the access to
mutually exclusive shared resources. Depending on the adopted policy, par-
ticular synchronization mechanisms, thread queues, and blocking primitives
may be needed.

7.3.5 Timing Analysis

In order for the timing analysis tools to be able to compute safe and accurate
worst-case timing estimates, it is essential that the RTOS manages all the
software/hardware resources in a predictable manner. Also, it is crucial for
the timing estimates to be as tight as possible because subsequently these
values (like the worst-case execution time of a task or the maximum time to
read/write data from/to the main memory) will propagate all the way up and
will be used as basic blocks in higher-level analyses like the schedulability
analysis. Deriving tight estimates requires that all the OS mechanisms that

7.3 Requirements for The Choice of The Run Time System 189

allocate and arbitrate the access to the system resources are thoroughly
documented and do not make use of any procedure that involves randomness
or based on non-deterministic parameters.

Task-to-thread and thread-to-core mapping: The allocation of the tasks to
the threads and the mapping of the threads to the cores must be documented;
ideally, it should also be static and known at design time. If the alloca-
tion is dynamic, i.e., computed at run-time, then the allocation/scheduling
algorithm should follow a set of deterministic (and fully documented) rules.
The knowledge of where and when the tasks execute considerably facilitates
the timing analysis process, as it allows for deriving an accurate utilization
profile of each resource and then uses those profiles to compute safe bounds
on the time it takes to access these resources.

Contract-based resource allocation scheme: Before executing, each appli-
cation or task has a “contract” with every system resource that it may need to
access. Each contract stipulates the minimum share of the system resource
(hardware and software) that the task must be allowed to use over time.
Considering a communication bus shared between several tasks, a TDMA
(Time Division Multiple Access) bus arbitration policy is a good example
of a contract-based allocation scheme: the number of time-slots dedicated to
each task in a time-frame of fixed length gives the minimum share of the bus
that is guaranteed to be granted to the task at run-time. When the resource
is a core, contract-based mechanisms are often referred to as reservation-
based scheduling. Before executing, an execution budget is assigned to every
task and a task can execute on a core only if its allocated budget is not
exhausted. Technically speaking, within such reservation-based mechanisms,
the scheduling algorithm of the OS does not schedule the execution of the
tasks as such, but rather it manages the associated budgets (i.e., empties
and replenishes them) and defines the order in which those budgets are
granted to the tasks. There are many advantages of using contract-based
mechanisms. For example, they provide a simple way of protecting the system
against a violation of the timing parameters. If a task fails and starts looping
infinitely, for instance, the task will eventually be interrupted once it runs out
of budget, without affecting the planned execution of the next tasks. These
budgets/contracts can be seen as fault containers. They guarantee a minimum
service to every task while enabling the system to identify potential task
failure and avoid propagating the potentially harmful consequences of a faulty
task through the execution of the other tasks.

190 Embedded Operating Systems

Runtime budget/contract reinforcement: Mechanisms must be provided to
force the system resources and the tasks to abide with their contract, e.g., a
task is not allowed to execute if its CPU budget is exhausted or if its budget
is not currently given to that task by the scheduler. This mechanism is known
in the real-time literature as “hard reservation.”

Memory isolation: The OS should also provide mechanisms to dedicate
regions of the memory to a specific task, or at least to tasks running on a
specific core.

Execution independence: The programs on each core shall run independent
of the hardware state of other cores.

7.4 RTOS Selection

Considering the architecture of the reference platform (i.e., host processor
connected to a set of accelerators, similarly to other commercially available
many-core platforms), we decided to use two different OSs for the host and
the many-core processors.

7.4.1 Host Processor

Linux has been chosen for the host processor, due to its excellent support for
peripherals and communication protocols, the several programming models
supported, and the popularity in the HPC domain.

Given the nature of the project and the requirements of the use-cases, soft
real-time support has been added through the adoption of the PREEMPT RT
patch [10].

7.4.2 Manycore Processor

For the manycore processor, a proper RTOS was needed. The selected RTOS
should have been Open-Source and lightweight (i.e., with a small footprint)
but providing a preemptive thread model. For these reasons, only the RTOSs
belonging to columns 2 (i.e., Simil-POSIX) and 3 (i.e., OSEK) of Table 7.1
could be selected. Moreover, the selected RTOS must be actively maintained
through the support of a development community.

Ecos has been discarded due to the big footprint (comparable to the one
of POSIX systems). FreeOSEK has been discarded because the project is
not actively maintained and because it does not offer any additional feature

7.5 Operating System Support 191

with respect to ERIKA Enterprise. ChibiOS/RT, Trampoline, and QP, instead,
have been discarded for the too restrictive open-source license, not suitable
for industrial products.

The only RTOSs that fulfilled our requirements, therefore, were ERIKA
Enterprise [43] and FreeRTOS [28]. The project eventually chose to use
ERIKA Enterprise due to its smaller footprint, the availability of advanced
real-time features, and the strong know-how in the development team.

7.5 Operating System Support

7.5.1 Linux

As for the Linux support, we started with the Linux version provided together
with the reference platform. In particular, the Kalray Bostan AccessCore
SDK included an Embedded Linux version 3.10, and on top of it we assem-
bled and configured a filesystem based on the Busybox project [46] produced
using Buildroot [47].

The Linux version provided included Symmetric Multi-Processing (SMP)
support (which is a strong requirement for running PREEMPT RT [10]), and
included the PREEMPT RT patch.

7.5.2 ERIKA Enterprise Support

We have successfully ported the ERIKA Enterprise [43] on the MPPA
architecture, supporting its VLIW (Very Large Instruction Word) Instruction
Set Architecture (ISA) and implementing the API used by the off-loading
mechanism. The following paragraphs list the main challenges we had during
the porting, and the main choices we addressed, together with some early
performance results.

7.5.2.1 Exokernel support
The development on the platform directly supports the Kalray “exokernel,”
which is a set of software, mostly running on the 17th core of each cluster
(the resource manager core), used to provide a set of services needed to let
a cluster appear “more like” a SMP machine. Among the various services,
the exokernel includes communication services and inter-core interrupts. The
exokernel API is guaranteed to be maintained across chip releases, while the
raw support for the resource manager core will likely change with newer chip
releases.

192 Embedded Operating Systems

7.5.2.2 Single-ELF multicore ERIKA Enterprise
One of the main objectives during the porting of the ERIKA RTOS has been
the reduction of the memory footprint of the kernel, obtained by using a
Single-ELF build system.

The reason is that the multicore support in ERIKA was historically
designed for hardware architectures which did not have a uniform memory
region, such as Janus [48]. In those architectures, each core had its own
local memory and, most importantly, the view of the memory as seen by the
various cores was different (that is, the same memory bank was available at
a different address on each core). This imposed the need for a custom copy
of the RTOS for each core. Other architectures had a uniform memory space,
but the visibility of some memory regions was prevented by the Network on
Chip. On Altera Nios II, for example, addresses differentiating by only the
31st bit referred to the same physical address with or without caching. This,
again, implied the need for separate images (in particular, you can refer to the
work done during the FP6 project FRESCOR, D-EP7 [49]). More modern
architectures like Freescale PPC and Tricore AURIX allowed the possibility
of single-ELF, but the current multi-ELF scaled relatively well on a small
number of cores, reducing the need for single-ELF versions of the system.

In manycore architectures such as Kalray, the multi-ELF approach
showed its drawback: the high number of cores, in fact, required avoiding
code duplication to not waste memory. Moreover, each core has the visibility
of a memory region, and the addressing is uniform across the cores. For
this reason, after an initial simple single-core port of ERIKA on the Kalray
MPPA, the project decided to eventually design a single-ELF implemen-
tation; this activity required a complete rewrite of the codebase (named
ERIKA Enterprise v3). The new codebase is now in production and sponsored
through a dedicated website [45] in order to gather additional comments and
feedbacks. The next paragraphs include a short description of the main design
guidelines, which are also described in a specific public document [50].

7.5.2.3 Support for limited preemption, job, and global
scheduling

The ERIKA Enterprise RTOS traditionally supported partitioned schedul-
ing, where each core has a set of statically assigned tasks which can be
individually activated.

In order to support the features requested by the parallel programming
framework, the ERIKA Enterprise scheduler has been modified to allow the
following additional features:

7.5 Operating System Support 193

• Limited preemption scheduler – ERIKA Enterprise has been improved
to allow preemptions only at given instants of time (i.e., at task schedul-
ing points, see Chapters 3 and 6). The main advantage is related to
performance, because the preemption is implemented in a moment that
has a limited performance hit on the system.

• Job activation – In ERIKA Enterprise, each task can be individually
activated as the effect of an ActivateTask primitive. In the new environ-
ment, the OS tasks are mapped onto the OpenMP worker threads (see
Chapter 6). Those threads are activated in “groups” (named here “jobs”),
because their activation is equivalent to the start of an OpenMP offload
composed by N OS tasks on a cluster. For this reason, ERIKA Enterprise
now supports “Job activation,” which allows activating a number of tasks
on a cluster. Typically, those tasks will have all the same priority (as they
map the execution of an OpenMP offload).

• Global scheduling – In order to obtain the maximum throughput,
ERIKA implemented a work conserving global scheduler, which is able
to implement migration of tasks among cores of the same cluster. The
migration support also handles contention on the global queue in case
there are two or more cores idle.

7.5.2.4 New ERIKA Enterprise primitives
The implementation of ERIKA Enterprise required the creation of a set of
ad hoc primitives, which have been included in a new kernel explicitly
developed for Kalray. The new primitives are described below:

CreateJob: This primitive is used to create a pool of OS tasks which are
coordinated for the parallel execution in a cluster. A “Job” is composed by a
maximum number of tasks which is equal to the cluster size (16 on Kalray
MPPA). It is possible to specify how many tasks should be created, and on
which cores they should be mapped in case of partitioned scheduling. All
tasks which are part of a Job have the same priority, the same entry point, the
same stack size. Finally, they all have an additional parameter which is used
by the OpenMP workers to perform their job.

ReadyJob and ActivateJob: These two primitives are used to put in the ready
queue (either global or partitioned depending on the kernel configuration)
the tasks corresponding to a specific mask passed as parameter (the mask
is a subset of the one passed previously to CreateJob). In addition to this,
ActivateJob adds a preemption point on the calling site and issues inter-core
interrupts in full preemptive configuration.

194 Embedded Operating Systems

JoinJob: This is a synchronization point at the termination of all tasks of a
Job. It must be called on a task which has lower priority than the Job task
priority.

Synchronization primitives are also provided to allow the implementation
of use-level locks and higher-level programming model synchronization
constructs for the OpenMP runtime library (discussed in Chapter 6).

SpinLockObj and SpinUnlockObj: These primitives provide a standard
lock API, and are directly based on spinlock primitives provided by the
Kalray HAL. At the lowest abstraction level, the lock data structure is
implemented as a 32-bit integer, which could be allocated at any memory-
mapped address. Using this approach, the lock variables can be statically
allocated whenever it is possible, and when more dynamism is required, lock
data structures can be initialized via standard malloc operations on a suitable
memory range.

WaitCondition and SignalValue: These primitives provide a synchroniza-
tion mechanism based on WAIT/SIGNAL semantics. ERIKA supports four
condition operators (equal, not equal, lower than, greater than) and three
different wait policies:

1. BLOCK NO – The condition is checked in a busy waiting loop;
2. BLOCK IMMEDIATELY – The condition is checked once. If the

check fails (and no other tasks are available for execution) the processor
enters sleep mode until the condition is reached. A specific signal is then
used to wake-up the processor.

3. BLOCK OS – Informs the OS that the ERIKA task (i.e., the OpenMP
thread mapped to that task) is voluntarily yielding the processor. The OS
can then use this information to implement different scheduling policies.
For example, the task can be suspended and a different task (belonging
to a different job) can be scheduled for execution.

7.5.2.5 New data structures
Addressing the single-ELF image implementation in the end required a
restructuring of the kernel data structures.

The initial version of ERIKA Enterprise used a set of global data struc-
tures (basically, C arrays of scalars) allocated in RAM or ROM. Each core had
its own copy of the data structures, with the same name. Data which is shared
among the cores is defined and initialized in one core referred to as the master
core. The other cores are called slave cores. Afterwards, when compiling
the slave cores’ code, the locations of the shared data are appended to each

7.5 Operating System Support 195

core’s linker scripts (see also [48]). Figure 7.2 shows the structure of the two
ELF files, highlighting the first core (master), which has everything defined,
and the subsequent slave cores, which have the shared symbols addresses
appended in the linker script.

The single-ELF approach required a complete restructuring of the binary
image. The complete system is compiled in a single binary image, and the
data structures are designed to let the cores access the relevant per-CPU
data. The main guidelines used when designing the data structures are the
following:

• All data is shared among all cores.
• The code must be able to know on which core it is running. This is done

typically using a special register of the architecture that holds the CPU
number.

• Given the CPU number, it is possible to access “private” data structures
to each core (see Figure 7.3). Note that those “private” data structures
can be allocated in special memory regions “near” each core (for exam-
ple, they could be allocated in sections which can be pinned to per-core
caches).

• Clear distinction between Flash Descriptor Blocks (named *DB) and
RAM Control Blocks (named *CB). In this way the reader has a clear
idea of the kind of content from the name of the data structure.

• Limited usage of pointers (used to point only from Flash to RAM), to
make the certification process easier.

Figure 7.2 Structure of the multicore images in the original ERIKA Enterprise structure.

196 Embedded Operating Systems

Figure 7.3 Structure of the Single-ELF image produced by ERIKA Enterprise.

7.5.2.6 Dynamic task creation
In the original version of ERIKA, RTOS tasks were statically allocated by
defining them inside an OIL file. In the new version of ERIKA, we allowed
a pre-allocation of a given number of RTOS tasks, which can be afterwards
“allocated” using a task creation primitive. In this way, the integration with
the upper layers of OpenMP becomes simpler, as OpenMP makes the hypoth-
esis of being able to create as many threads as needed using the underlying
Linux primitive pthread create.

In addition to the changes illustrated above, we also took the opportunity
for making the following additional changes to ease future developments.

7.5.2.7 IRQ handlers as tasks
The original version of ERIKA handled interrupts in the most efficient way
in the case of no memory protection among tasks. When memory protec-
tion comes into play, treating IRQs as special tasks has the advantage of
simplifying the codebase.

In view of the future availability of multi-many cores with memory
protection we implemented the possibility for an IRQ to be treated as a task.
A special fast handler is called upon IRQ arrival, which has the main job of
activating the “interrupt task.”

This approach also simplified the codebase by allowing a simpler context
change primitive, which in turn simplifies the implementation in VLIW chips
such as Kalray.

7.5 Operating System Support 197

7.5.2.8 File hierarchy
For the new version of ERIKA, we adopted a new file hierarchy which aims
to a simplification of the codebase. In particular, the main changes of the new
codebase are the following:

• In the old version, CPU (the specific instruction set, such as PPC,
Cortex-MX, etc.), MCU (the peripherals available on a specific part
number), Boards (code related to the connections on the PCB) were
stored in directories under the “pkg” directory. With the growing number
of architectures supported, this became a limitation which also made the
compilation process longer. The new version of the codebase includes
MCUs and Boards under the CPU layer, making the dependencies in the
codebase clearer.

• We adopted a local self-contained flat (single directory) project structure
instead of a complex hierarchy. All needed files are copied once in the
project directory at compilation time, leading to simpler makefiles.

• We maintained the RTOS code separated from the Application config-
uration. This is very useful to allow the deployment of pre-compiled
libraries; moreover it allows partial compilation of the code.

7.5.2.9 Early performance estimation
Before implementing the Single-ELF version of ERIKA on Kalray, we
performed an initial implementation of the traditional single-core porting
of ERIKA in order to get a reference for the evaluation of the subsequent
development. Please note that the evaluation of the new version of ERIKA
has been done on a prototype implementation (not the final one). However,
the numbers are good enough to allow a fair comparison of the two solutions.

Table 7.2 summarizes an early comparison between the old and the new
implementation of ERIKA, for a simple application with two tasks on a single
core. The purpose of the various columns is the following:

• The comparison between the second and the third column gives a rough
idea of the difference in the ISA on a “reasonably similar” code on
another (different) architecture, Nios II.

• The comparison between the third and the fourth column gives a rough
idea of the impact of the changes of the new version of ERIKA over
the old version. The values show an increase of the code footprint. This
increase, however, is less than indicated by the table: the old version of
ERIKA, in fact, does contain the support for multiple task activations
(which has not been compiled) and dynamic task creation (which was

198 Embedded Operating Systems

Table 7.2 ERIKA Enterprise footprint (expressed in bytes)

Description Old Version (*) Old Version
New Version
Single-core

New Version,
Multicore with

Services for
Supporting Libgomp

Platform Nios II Kalray MPPA Kalray MPPA Kalray MPPA
Code footprint (**) About 800 1984 2940 41561

Code footprint
related to multicore
(***)

– – 4156 + 502 for RM

Flash/Read-only 164 – – –
RAM 192 216 216 + 128 for each

core2

(*) Numbers taken from D-EP7v2 of the FRESCOR project [49]. These numbers can be
taken as a reference for the order of magnitude for the size of the kernel and may not
represent the same data structures. We considered these numbers as the current
implementation on ERIKA has roughly a similar size and they can be used as a reference
for comparing “similar” implementations.
(**) The code footprint includes the equivalent of the following functions: StartOs,
ActivateTask, TerminateTask
(***) Code related to the handling of the multicore features (remote notifications,
inter-processor interrupts, spin locks, and code residing) on the Resource Manager Core
(see Chapter 2).

not available). Moreover, we have to consider that the old version of
ERIKA needed 1,984 bytes for each core. The new version of ERIKA,
instead, needs 2,940 bytes, regardless of the number of cores. This
means that with just two cores, the amount of memory needed by the
new version of ERIKA Enterprise is less than using the old version of
the RTOS.

• The comparison between the fourth and the fifth column gives a rough
idea of the impact of the multicore support. The increase of the code
footprint is mainly due to additional synchronization primitives (i.e.,
spinlocks) needed for distributed scheduling – i.e., to allow the “group
activation” done by the Resource Manager on behalf of OpenMP. There-
fore, this increase is specific to the Kalray architecture, and it is missing
on other (e.g., shared-memory) architectures. Note that the footprint
takes into account only the kernel part with the services for supporting
the OpenMP runtime library; it does not include the library itself.

1The footprint takes into account only kernel and support for the OpenMP runtime library;
it does not include the library itself.

2128 = 44 (core data structures) + 84 (idle task).

7.5 Operating System Support 199

Table 7.3 Timings (expressed in clock ticks)
Feature Time on ERIKA
ActivateTask, no preemption 384
ActivateTask, preemption 622
An IRQ happens, no preemption 585
An IRQ happens, with preemption 866

Table 7.3 provides basic measurements of activation and pre-emption of
tasks on a single-core:

Tables 7.4 and 7.5 provide some timing references to compare ERIKA
Enterprise (which is a RTOS) with NodeOS on MPPA-256, taken using
the Kalray MPPA tracer. Since NodeOS does not support preemption (and
therefore a core can execute only one thread) we have configured ERIKA
Enterprise to run only one task on each core as well. Then, we have measured
footprint and execution times. In particular, Table 7.4 provides a rough
comparison of the footprint for ERIKA and NodeOS on Kalray MPPA. For
ERIKA, the footprint also takes into account the per-core and per-task data
structures in a cluster composed of 17 cores. This footprint can be reduced
by using a static configuration of the RTOS. Table 7.5 provides a comparison
between the thread creation time on NodeOS and the equivalent inter-core
task activation on ERIKA.

Table 7.4 Footprint comparison between ERIKA and NodeOS for a 16-core cluster
(expressed in bytes)

ERIKA New Version, Multicore
Description with Services for Supporting OpenMP NodeOS
Code footprint 44843 10060
RAM 2184 2196

Table 7.5 Thread creation/activation times (expressed in clock ticks)
Inter-core Task Activation on ERIKA Thread Creation on NodeOS

1200 3300

3The footprint takes into account only kernel and support for libgomp; it does not include
the whole libgomp library.

200 Embedded Operating Systems

7.6 Summary

This chapter illustrated the state of the art of the OSs suitable for the reference
parallel programming model. After reviewing the main requirements that
influenced the implementation, the selection of the RTOS for the reference
platform has been described for both the host processor and the manycore
accelerators. Furthermore, a description of the main implementation choices
for the ERIKA Enterprise v3 and Linux OS have been detailed. As can be
seen, the result of the implementation provides a complete system which is
capable of addressing high-performance workloads thanks to the synergies
between the general-purpose OS Linux and the ERIKA Enterprise RTOS.

References

[1] Top500, Linux OS. Available at: http://www.top500.org/statistics/details/
osfam/1

[2] RCU, available at: http://en.wikipedia.org/wiki/Read-copy-update
[3] GNU General Public License (GPL), available at: https://www.gnu.org/

copyleft/gpl.html
[4] Lipari, G., Scordino, C., Linux and Real-Time: Current Approaches

and Future Opportunities, International Congress ANIPLA, Rome, Italy,
2006.

[5] RTLinux, available at: http://en.wikipedia.org/wiki/RTLinux
[6] RTAI – the RealTime Application Interface for Linux, available at:

https://www.rtai.org/
[7] Xenomai, Real-Time Framework for Linux. Available at: http://www.

xenomai.org/
[8] Windriver, VxWorks RTOS. Available at: http://www.windriver.com/

products/vxworks/
[9] POSIX IEEE standard, available at: http://en.wikipedia. org/wiki/POSIX

[10] The Real Time Linux project, available at: https://wiki.linuxfoundation.
org/realtime/start

[11] The Linux Foundation, available at: https://www.linuxfoundation.org/
[12] Libenzi, D., SCHED SOFTRR Linux Scheduler Policy, available at:

http://xmailserver.org/linux-patches/softrr.html
[13] Kolivas, C., Isochronous class for unprivileged soft RT scheduling.

Available at: http://ck.kolivas.org/patches/
[14] SCHED DEADLINE Linux Patch, available at: http://en.wikipedia.org/

wiki/SCHED DEADLINE

http://www.top500.org/statistics/details/osfam/1
http://www.top500.org/statistics/details/osfam/1
http://en.wikipedia.org/wiki/Read-copy-update
https://www.gnu.org/ copyleft/gpl.html
https://www.gnu.org/ copyleft/gpl.html
http://en.wikipedia.org/wiki/RTLinux
https://www.rtai.org/
http://www.xenomai.org/
http://www.xenomai.org/
http://www.windriver.com/products/vxworks/
http://en.wikipedia.org/wiki/POSIX
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://www.linuxfoundation.org/
http://xmailserver.org/linux-patches/softrr.html
http://ck.kolivas.org/patches/
http://en.wikipedia.org/wiki/SCHED_DEADLINE
http://en.wikipedia.org/wiki/SCHED_DEADLINE

References 201

[15] Lelli, J., Scordino, C., Abeni, L., Faggioli, D., Deadline scheduling in
the Linux kernel, Software: Practice and Experience, 46, pp. 821–839,
2016.

[16] ACTORS European Project, available at: http://www.actors-project.eu/
[17] Earliest Deadline First (EDF), available at: http://en.wikipedia.org/wiki/

Earliest deadline first scheduling
[18] Green Hills, Integrity RTOS. Available at: http://www.ghs.com/products/

rtos/integrity.html
[19] QNX RTOS, available at: http://www.qnx.com/
[20] SYSGO PikeOS, available at: http://www.sysgo.com/products/pikeos-

rtos-and-virtualization-concept/
[21] Mentor Graphics, Nucleus RTOS. Available at: http://www.mentor.com/

embedded-software/nucleus/
[22] LynuxWorks LynxOS, available at: http://www.lynuxworks.com/rtos/
[23] Micrium µc/OS-III, available at: http://micrium.com/
[24] Segger EmbOS, available at: http://www.segger.com/embos.html
[25] ENEA OSE, available at: http://www.enea.com/ose
[26] Arccore Arctic Core, available at: http://www.arccore.com/products/
[27] Wikipedia, List of Real-Time Operating Systems, available at: http://

en.wikipedia.org/wiki/List of real-time operating systems
[28] FreeRTOS, available at: http://www.freertos.org/
[29] GPL Linking Exception, available at: http://en.wikipedia.org/wiki/

GPL linking exception
[30] Contiki, available at: http://www.contiki-os.org/
[31] Wikipedia, Protothreads. Available at: http://en.wikipedia.org/wiki/

Protothreads
[32] Marte OS, available at: http://marte.unican.es/
[33] Ecos RTOS, available at: http://ecos.sourceware.org/
[34] FreeOSEK RTOS, available at: http://opensek.sourceforge.net/
[35] Quantum Leaps, QPTM Active Object Frameworks for Embedded

Systems, available at: http://www.state-machine.com/
[36] Trampoline RTOS, available at: http://trampoline.rts-software.org/
[37] RTEMS, available at: http://www.rtems.org/
[38] Footprint of RTEMS, available at: http://www.rtems.org/ml/rtems-

users/2004/september/msg00188.html
[39] Tiny RTEMS, available at: https://code.google.com/p/tiny-rtems/
[40] TinyOS, available at: http://www.tinyos.net/
[41] ChibiOS/RT, available at: http://www.chibios.org/
[42] Tivoization, available at: http://en.wikipedia.org/wiki/Tivoization

http://www.actors-project.eu/
http://en.wikipedia.org/wiki/ Earliest_deadline_first_scheduling
http://en.wikipedia.org/wiki/ Earliest_deadline_first_scheduling
http://www.ghs.com/products/ rtos/integrity.html
http://www.ghs.com/products/ rtos/integrity.html
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.mentor.com/ embedded-software/nucleus/
http://www.mentor.com/ embedded-software/nucleus/
http://www.lynuxworks.com/rtos/
http://micrium.com/
http://www.segger.com/embos.html
http://www.enea.com/ose
http://www.arccore.com/products/
http://en.wikipedia.org/wiki/List_of_real-time_operating_systems
http://en.wikipedia.org/wiki/List_of_real-time_operating_systems
http://www.freertos.org/
http://en.wikipedia.org/wiki/ GPL_linking_exception
http://en.wikipedia.org/wiki/ GPL_linking_exception
http://www.contiki-os.org/
http://en.wikipedia.org/wiki/Protothreads
http://en.wikipedia.org/wiki/Protothreads
http://marte.unican.es/
http://ecos.sourceware.org/
http://opensek.sourceforge.net/
http://www.state-machine.com/
http://trampoline.rts-software.org/
http://www.rtems.org/ml/rtems-users/2004/september/msg00188.html
http://www.rtems.org/ml/rtems-users/2004/september/msg00188.html
https://code.google.com/p/tiny-rtems/
http://www.tinyos.net/
http://www.chibios.org/
http://en.wikipedia.org/wiki/Tivoization

202 Embedded Operating Systems

[43] Erika Enterprise RTOS, available at: http://erika.tuxfamily.org
[44] Automotive Linux Summit Fall, available at: http://events.linuxfounda

tion.org/events/automotive-linux-summit-fall
[45] ERIKA Enterprise v3, available at: http://www.erika-enterprise.com
[46] Busybox, available at http://www.busybox.net/, last accessed March

2016.
[47] Buildroot, available at http://buildroot.uclibc.org/, last accessed March

2016.
[48] Ferrari, A., Garue, S., Peri, M., Pezzini, S., Valsecchi, L., Andretta, F.,

and Nesci, W., “The design and implementation of a dual-core platform
for power-train systems.” In Convergence 2000, Detroit, MI, USA, 2000.

[49] FRESCOR FP6 D-EP7v2, available at http://www.frescor.org/ and also
http://www.frescor.org/ and also http://erika.tuxfamily.org/wiki/index.
php?title=Altera Nios II, last accessed March 2016.

[50] Evidence, ERIKA Enterprise Version 3 Requirement Document, avail-
able at ERIKA Enterprise website: http://erika.tuxfamily.org/drupal/
content/erika-enterprise-3

http://erika.tuxfamily.org
http://en.wikipedia.org/wiki/Protothreads
http://en.wikipedia.org/wiki/Protothreads
http://www.erika-enterprise.com
http://www.frescor.org/
http://erika.tuxfamily.org/wiki/index.php?title=Altera_Nios_II
http://erika.tuxfamily.org/wiki/index.php?title=Altera_Nios_II
http://erika.tuxfamily.org/drupal/ content/erika-enterprise-3
http://erika.tuxfamily.org/drupal/ content/erika-enterprise-3

	Embedded Operating Systems
	Introduction
	State of The Art
	Real-time Support in Linux
	Hard real-time support
	Latency reduction
	Real-time CPU scheduling

	Survey of Existing Embedded RTOSs
	Classification of Embedded RTOSs

	Requirements for The Choice of The Run Time System
	Programming Model
	Preemption Support
	Migration Support
	Scheduling Characteristics
	Timing Analysis

	RTOS Selection
	Host Processor
	Manycore Processor

	Operating System Support
	Linux
	ERIKA Enterprise Support
	Exokernel support
	Single-ELF multicore ERIKA Enterprise
	Support for limited preemption, job, and global scheduling
	New ERIKA Enterprise primitives
	New data structures
	Dynamic task creation
	IRQ handlers as tasks
	File hierarchy
	Early performance estimation

	Summary

