

Codebook optimization using Jaya Algorithm for image

compression

Suvojit Acharjee, Prof. Sheli Sinha Chaudhuri

Department of ETCE, Jadavpur University

acharjeesuvo@gmail.com, shelism@rediffmail.com

Abstract.

Image compression is required to effectively manage today's communication infrastructure.

The Linde–Buzo–Gray (LBG) algorithm is a powerful and reliable lossy image compression

technique. Iterative refining is used by LBG to construct a local codebook. Various

evolutionary algorithms were used to create a global codebook. However, the performance

of various evolutionary algorithms is not consistent. Furthermore, these algorithms include

algorithm specific parameters such as acceleration rate in particle swarm optimization

(PSO), discovery probability in cuckoo search (CS), and so on. Improper value selection for

these tuning parameters might lead to local minima. This article proposes utilizing the Jaya

Algorithm (JA) to optimize the vector quantization codebook. JA has no algorithm specific

tuning parameters, and its success is determined only by generic evolutionary algorithm

parameters like maximum iteration and initial population numbers. The output from the

proposed algorithm outperforms the CS, and PSO based vector quantization algorithms as

well as the state-of-the-art pattern-based masking LBG algorithm.

Keywords. LBG, Jaya Algorithm, Image Compression, PSO, cuckoo search, Codebook.

1. INTRODUCTION

Compression can be classified into lossy and lossless categories. Lossless compression does

not lose any information during compression. However, lossy compression allows the loss

of information up to an extent. The removed information is often redundant in nature. The

loss of this information has a negligible effect on the signal. The image compression

techniques mainly employ the vector quantization algorithms (VQA) for lossy compression.

The most popular VQA, Linde–Buzo–Gray (LBG) [1] algorithm works by minimizing the

Euclidian distance between the codeword and the image vector. LBG successfully generates

locally optimized codebook for image vectors. But it does not guarantee a global optimal

code word. Also, the output of the LBG algorithm varies massively based on the initial

condition of the algorithm. Therefore, researchers employ several evolutionary algorithms

to find a global codebook for VQ.

The ant colony optimization-based (ACO) VQA [2] used wavelet coefficients and

bidirectional graphs. Though the output of this process was better than the output of LBG,

the speed of the algorithm was very slow. VQ was successfully accomplished using the

Particle swarm optimization (PSO) algorithm [3]. The PSO based algorithm was faster than

the ACO-based algorithm. However, the convergence of PSO becomes very unstable if any

particle in the swarm has a high velocity. PSO was further modified in Quantum-behaved

mailto:acharjeesuvo@gmail.com
mailto:shelism@rediffmail.com

2

Particle Swarm Optimization [4] (QPSO) which calculates the local particle using the

particle’s best fitness as well as the global best fitness. The Firefly Optimization Algorithm

(FOA) [5] is based on the social characteristics of the firefly. Fireflies use their

bioluminescence property for mating communication. The dark firefly moves toward the

brighter firefly during mating. [6] But FOA face difficulty when brighter fireflies are absent

from the search space. Chiranjeevi et al. [7] proposed a FOA-based VQA that solves this

problem by allowing the firefly to fly at random in the absence of the bright firefly. The Bat

Algorithm (BA)-based VQA (BALBG) [8] outperforms the FOA-based VQA (FOALBG)

with proper tuning parameters such as frequency, pulse rate, and loudness. However,

evolutionary algorithms such as PSO, BA, FOA, and others contain a number of algorithm-

specific parameters. The algorithm's performance varies significantly when these

operational parameters are not properly tuned. The discovery probability is the single

algorithm-specific parameter in the cuckoo search (CS) algorithm [9]. As a result, it is far

simpler than BA and FOA. VQ based on CS was simple to implement [10]. Despite the fact

that CS reduced the number, the performance of these evolutionary algorithms is still heavily

dependent on algorithmic-specific parameters. Incorrect tuning of these parameters can lead

to local optima and delay convergence. The pattern-based masking LBG (PBMLBG)

algorithm [11] used the local histogram peak to find the repetitive patterns inside the image

vectors. These patterns are then used as the initial codebook of the LBG algorithm. But

improper selection of the histogram peaks can lead to improper results [11]. Rao et al. [12]

proposed the Jaya algorithm (JA), which depends only on general parameters of

evolutionary algorithms. Previously, the JA successfully optimized a variety of engineering

problems, including the block matching algorithm for motion estimation [13], fuzzy PIDF

controller [14], and many others. The absence of algorithmic specific parameters helps the

proposed algorithm to outperform the BALBG and PBMLBG.

The manuscript is structured as follows. Section two will introduce different VQ techniques

based on evolutionary algorithm. Section 3 will outline the JA as well as the proposed JA

based VQA. In section 4, the performance of the proposed algorithms is compared with the

performance of state-of-the-art algorithms. Section 5 will bring the article to a conclusion.

2. OVERVIEW: VECTOR QUANTIZATION

The VQ is a lossy process that maps the image vectors into codewords. The image vectors

are generated by subdividing an image into non-overlapping blocks. All codewords are

stored and indexed inside the codebook. Every image vector will be assigned the index of

its nearest codeword based on the Euclidian distance. The size of the codebook controls the

quality of the output as well as the speed of the process. The decoder reconstructs the image

based on the index and the codebook.

2.1. LBG Algorithm

LBG algorithm [1] is the most popular algorithm to construct the codebook for an image

vector. LBG reduce the distortion between the original and recovered image through

repetitive iteration. The steps of the algorithm are following.

3

Figure 1. Encoding and Decoding process of vector quantization.

A) Generate initial codebook by randomly selecting Nc number of codewords from the

image vectors. Size of each image vector as well as the codewords are Nb.

B) Map the image vectors {I1, I2, …., IM} to its nearest codewords {C1, C2, …., CNc}.

𝑓𝑙𝑎𝑔𝑚𝑖 =
𝑡𝑟𝑢𝑒 𝑖𝑓 |𝐶𝑖 − 𝐼𝑚|< |𝐶𝑗∈1,..,𝑁𝑐⋮𝑗≠𝑖 − 𝐼𝑚|

𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

flagmi describes the position in the {M×Nc} Boolean flag matrix. This matrix is only true

when mth image vector belongs to ith codeword.

C) Compute the centroid of the new clusters. These centroids are the new codewords C’i.

𝐶𝑖
′ =

∑ 𝐼𝑀
𝑚=1 𝑚

∗ 𝑓𝑙𝑎𝑔𝑚𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
 (2)

D) Compute the distortion (d’) with new codewords Algorithm terminates when present

distortion is larger or equal to previous iteration (d). Else, the process repeats from step 2.

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑤ℎ𝑒𝑛 (𝑑 − 𝑑′) > 0 (3)

2.2. Evolutionary Algorithms based LBG Algorithm

The codebook produced from LBG is localized one. Evolutionary algorithms were employed

to find the globally optimized codebook. The steps of any evolutionary algorithm-based

vector quantization algorithms are following.

A) Run the LBG algorithm and assign the output as one of the n number of solutions.

Initialize rest of the (n-1) solutions randomly.

B) Calculate the fitness of every solution using equation 4.

𝐹 =
𝑁𝑏

∑ ∑ ∑ ||𝐼𝑚𝑗 − 𝐶𝑖𝑗||
𝑁𝑏
𝑗=1

𝑀
𝑚=1

𝑁𝑐
𝑖=1 ∗ 𝑓𝑙𝑎𝑔𝑚𝑖

 (4)

C) Rank the solutions based on their fitness and generate new solutions for next iteration.

D) Until the termination requirements were met, repeat the process from step B.

3. JAYA ALGORITHM BASED VECTOR QUANTIZATION

JA is one of those evolutionary algorithms which does not contain any algorithm specific
operational parameter. It only depends on the general evolutionary algorithm parameters i.e.,
maximum iteration and initial population size. Therefore, it is free from the possibility of
premature convergence due to improper selection of tuning parameters. The steps of JA are
described below.

A) Set the population size & maximum iteration. Also, randomly initialize the population.

B) Calculate the fitness of the solutions and identify best (Xbest) and worst (Xworst) solution.

4

C) Generate new solutions using equation 5. r1 and r2 are random numbers between 0 & 1.

𝑋𝑖
′ = 𝑋𝑖 + 𝑟1 ∗ (|𝑋𝑖 − 𝑋𝑏𝑒𝑠𝑡|) − 𝑟2 ∗ (|𝑋𝑖 − 𝑋𝑤𝑜𝑟𝑠𝑡|) (5)

D) Accept the new solution if the fitness of new solution is better than the previous one.

E) Continue from step 3 until the termination requirements are met.

The new solution generation process in Jaya algorithm pushes the old solution closer

towards the best solution. At the same time, old solution moves further away from the worst

solution. The JA based VQA is referring the codebook as a solution. The fitness of the

solutions or the codebooks are calculated based on equation 4. The aim of JA based VQA is

to obtain an optimal codebook which will maximize the fitness. The details of JA based

VQA algorithm are as follows.

A) Divide the whole image into image vectors I= {I1, I2, ... , IM }.

B) Merwe et al. [15] demonstrated that using a local codebook as the initial population of an
evolutionary algorithm reduces the convergence time of evolutionary algorithms. Therefore,
LBG algorithm was used to generate a codebook which was assigned as one of the initial
populations in JA based VQA. Other populations are selected randomly from the image
vectors. Initial population consist of n codebooks.

C) The algorithm uses Equation 4 to calculate the fitness of the population. The solutions are
sorted based on their fitness. The codebook with the highest fitness will be at the top of the
list, while the codebook with the lowest fitness will be at the bottom.

D) Equation 6 will generate the new solution for next iteration. This equation is a more
specific version of equation 5 which was more elaborated for JA based VQA.

𝐶𝑖𝑗𝑘
′ = 𝐶𝑖𝑗𝑘 + 𝑟1 ∗ (|𝐶𝑖𝑗1 − 𝐶𝑖𝑗𝑘|) − 𝑟2 ∗ (|𝐶𝑖𝑗𝑛 − 𝐶𝑖𝑗𝑘|) (6)

E) The new codebook C’i will only replace Ck when the fitness of new codebook C’k is better

than the fitness of old codebook Ci.

F) The algorithm checks for the termination conditions. When the iteration is smaller than

maximum iteration and error is not converged then repeat the process from step C.

4. RESULT AND DISCUSSION

4.1. Dataset, Initial Condition and Performance metrics

In this experiment, the performance of the proposed algorithm's output is compared to the

output of LBG, PSOLBG, QPSOLBG, FOALBG, BALBG, and PBMLBG utilizing bit rate

per pixel (bpp), peak signal to noise ratio (PSNR), and calculation time. Four standard test

images of 512×512 resolution (“Lenna.jpg”, “baboon.png”, “peppers.png”, and

“goldhill.png”) are used to compare the performance of the proposed algorithm with the

benchmark algorithms. The test images are divided into nonoverlapping 4×4 blocks to

construct the image vectors. Therefore, each image creates 16384 image vectors. This

experiment sets the initial population to 30 and the maximum iterations to 30.

𝑏𝑝𝑝 =
log2 𝑁𝑐

𝑁𝑏

 (7)

𝑃𝑆𝑁𝑅 = 10 log10 (
2552

mean square error between initial & reconstructed image
) 𝑑𝐵 (8)

5

Figure 2. (a) Flowchart of the Jaya algorithm (b) n number of initial population

4.2. Discussion

Proposed algorithm was compared with the benchmark algorithms utilizing the PSNR, bpp

and computation time. The PSNR and the computation time presented in this manuscript are

the average of the output from five separate execution of the algorithms. The codebook size

is {8,16,32,64,128,256,512}. For “Lenna” image, the bpp vs PSNR performance in figure

3a clearly indicates that the proposed algorithm outperforms every other algorithm except

PBMLBG. However, for every other test image, the bpp vs PSNR performance of the

proposed algorithm outperforms all benchmark algorithms. This demonstrates that the

suggested algorithm's reconstructed picture is superior than those produced by other

techniques under consideration.

Tables one to four illustrate the execution time required by various algorithms with varying

codebook sizes. Conclusions may be derived from this table that the proposed algorithm is

quicker than the others for most of the scenario. However, the execution time of the proposed

algorithm increases with the bpp. The speed of the proposed algorithm is lagging behind all

benchmark algorithms when bpp is 0.5625. The proposed technique is always slower than

the PBMLBG because the proposed algorithm requires more iterations to converge than the

PBMLBG. When bpp is low, the proposed algorithm minimizes the calculation time of

codebook optimization. However, it increases with bpp. Nevertheless, the proposed method

consistently delivers the best reconstructed image.

Figure 3. bpp vs PSNR for (a) “Lenna” (b) Baboon” (c) “Goldhill” (d) “Peppers”

(a) (b)

(a) (b)

(c) (d)

6

5. CONCLUSION

Proposed algorithm in this article optimizes the codebook of VQ using JA. The proposed

algorithm outperforms all benchmark algorithms in terms of PSNR. In this way, proposed

algorithm increases the quality of reconstructed image with respect to all benchmark

algorithm. Also, JA converges quicker than PSOLBG, QPSOLBG, BALBG, and FOALBG

when bpp is low. Future versions of the proposed method may include the PBMLBG outputs

as an additional initial solution to further speed up convergence.

6. REFERENCES

[1] Y. Linde, A. Buzo, and R. Gray, “An Algorithm for Vector Quantizer Design,” IEEE

trans. commun., vol. 28, no. 1, pp. 84–95, 1980

[2] Rajpoot, N., Hussain, A., Ali, U., Saleem, K., & Qureshi, M., “A novel image coding

algorithm using ant colony system vector quantization,” in International workshop on

systems, signals and image processing Poznan, Poland, 2004, pp. 13–15.

Table 1: Average computation time (sec) at bpp =0.375 and block size=64

Image LBG PSOLBG QPSOLBG FOALBG BALBG PBMLBG Proposed

Lenna 10.1 632.12 632.34 1453.21 678.12 11.2 254.11

Peppers 11.7 612.23 605.21 1301.21 612.23 11.63 147.68

Baboon 11.98 545.21 587.12 1450.21 743.12 10.77 138.82

Goldhill 14.71 598.32 645.32 1201.32 476.43 11.12 151.89

Table 2: Average computation time (sec) at bpp =0.4375 and block size=128

Image LBG PSOLBG QPSOLBG FOALBG BALBG PBMLBG Proposed

Lenna 13.98 645.32 643.23 1012.21 598.21 11.89 511.63

Peppers 19.21 613.23 687.2 1102.2 643.23 11.71 375.32

Baboon 23.12 476.12 523.51 1051.97 976.21 12.12 303.59

Goldhill 17.98 845.12 876.12 1333.21 512.54 11.23 285.79

Table 3: Average computation time (sec) at bpp =0.5 and block size=256

Image LBG PSOLBG QPSOLBG FOALBG BALBG PBMLBG Proposed

Lenna 20.84 902.92 887.71 786.77 662.13 12.11 802.15

Peppers 19.17 771.25 767.52 1001.32 587.21 12.12 663.96

Baboon 27.26 621.27 577.1 1021.92 578.21 12.13 620.47

Goldhill 30.72 925.34 554.32 843.21 987.34 12.33 610.04

Table 4: Average computation time (sec) at bpp =0.5625 and block size=512

Image LBG PSOLBG QPSOLBG FOALBG BALBG PBMLBG Proposed

Lenna 34.21 701.23 723.18 962.38 787.24 12.22 1530.00

Peppers 37.32 962.21 901.27 667.25 512.23 12.12 1310.60

Baboon 21.32 643.23 698.47 751.26 843.12 12.33 1300.30

Goldhill 37.09 576.25 621.12 972.77 934.12 11.33 1240.30

7

[3] H.-M. Feng, C.-Y. Chen, and F. Ye, “Evolutionary fuzzy particle swarm optimization

vector quantization learning scheme in image compression,” Expert Syst. Appl., vol.

32, no. 1, pp. 213–222, 2007.

[4] Y. Wang et al., “A novel quantum swarm evolutionary algorithm and its applications,”

Neurocomputing, vol. 70, no. 4–6, pp. 633–640, 2007.

[5] Yang, X. S., & He, X. (2013). Firefly algorithm: recent advances and applications.

arXiv preprint arXiv:1308.3898.

[6] Horng, M. H. (2012). Vector quantization using the firefly algorithm for image

compression. Expert Systems with Applications, 39(1), 1078-1091.

[7] Chiranjeevi, K., Jena, U. R., Murali Krishna, B., & Kumar, J. (2016). Modified firefly

algorithm (MFA) based vector quantization for image compression. In Computational

Intelligence in Data Mining—Volume 2 (pp. 373-382). Springer, New Delhi.

[8] Karri, C., & Jena, U. (2016). Fast vector quantization using a Bat algorithm for image

compression. Engineering Science and Technology, an International Journal, 19(2),

769-781.

[9] Yang, X. S., & Deb, S. (2014). Cuckoo search: recent advances and applications. Neural

Computing and applications, 24(1), 169-174.

[10] Chiranjeevi, K., & Jena, U. R. (2018). Image compression based on vector quantization

using cuckoo search optimization technique. Ain Shams Engineering Journal, 9(4),

1417-1431.

[11] Bilal, M., Ullah, Z., & Islam, I. U. (2021). Fast codebook generation using pattern-based

masking algorithm for image compression. IEEE Access, 9, 98904-98915.

[12] Zitar, R. A., Al-Betar, M. A., Awadallah, M. A., Doush, I. A., & Assaleh, K. (2021).

An intensive and comprehensive overview of JAYA algorithm, its versions and

applications. Archives of Computational Methods in Engineering, 1-30.

[13] Dash, B., Rup, S., Mohanty, F., & Swamy, M. N. S. (2019). A hybrid block-based

motion estimation algorithm using JAYA for video coding techniques. Digital Signal

Processing, 88, 160-171.

[14] Debnath, M. K., Sinha, S., & Mallick, R. K. (2017). Application of fuzzy-pidf controller

for automatic generation control using jaya algorithm. Int J Pure Appl Math, 114(9),

51-61.

[15] Van der Merwe, D. W., & Engelbrecht, A. P. (2003, December). Data clustering using

particle swarm optimization. In The 2003 Congress on Evolutionary Computation,

2003. CEC'03. (Vol. 1, pp. 215-220). IEEE.

Biographies

Suvojit Acharjee is a Ph.D. scholar at Jadavpur University. He has a research

interest on soft computing, video coding and signal compression.

Prof. Sheli Sinha Chaudhuri has been serving the ETCE Department of

Jadavpur University for the last 23 years. She has a research interest on the field of Machine

Learning and Computer Vision.

