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Abstract.  
 
This paper presents a novel method of null placement by controlling only the excitation 

phase of the edge elements of a uniformly excited linear antenna array. Antenna parameters 

such as directivity, First Null Beam Width (FNBW) and Half Power Beam Width (HPBW) 

are obtained analytically through array synthesis. Then the pattern gets degraded due to the 

required null placement. Subsequently to enhance the pattern, antenna parameters and to 

find out the optimum value of the excitation phase, suitable evolutionary algorithm has been 

employed. The whole simulation is carried out using a 10-element uniform, linear antenna 

array by two different approaches to comparatively study the effects. 

Keywords. Null placement, Phase control, Edge element, Array symmetric method, 
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INTRODUCTION 

In the modern era of communication system, a major role is played by antenna. Starting from 

Wi-Fi, Bluetooth, GPS, etc. to RADAR, SONAR, UAVs to Satellite Communications, every 

single wireless gadget requires an antenna and more specifically an antenna array [1]. But 

the objective of an antenna is not restricted to just transmitting and receiving signals, it 

should also be able to optimize radiated energy in some particular required direction and 

should be able to suppress it in other directions. Although the antenna directivity can be 

increased by increasing the number of array elements or by reducing the inter element 

spacing [2] but still suppression of unwanted signals is very essential for further increase in 

directivity. Generally, this suppression of unwanted signals is done by masking the 

interference signal from a particular direction. This method of masking is known as null 

placement and in earlier times researchers used to place nulls analytically [3-6], but later 

researchers found out that due to this analytical placement of null, various antenna 

parameters are deteriorating and moreover multiple null and wide null cannot be placed 

analytically. This gave rise to the use of evolutionary algorithms to overcome the limitations. 
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Researchers started applying evolutionary algorithms to overcome limitation in the form of 

pattern degradation of antenna array with null placements. Accordingly, Goudos et.al. [7] in 

his research work has compared different evolutionary algorithms by applying them to 

antenna design related problems. Then he concluded from the results that he found out, that 

Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Differential Evolution 

(DE) algorithms are some of the most popularly used algorithms in antenna design. His 

results also suggest that classical DE is one of the simplest and efficient among the three. 

Using this result, later Mathur et.al. [8] proposed a null placing method using PSO algorithm 

in uniform linear array and they obtained desirable results. This supports the results obtained 

by Goudos et.al. Another method of null placement has been discussed by researchers 

Hamza et.al. [9] in their work. It uses Genetic Algorithm along with the method suggested 

by Schelkunoff in order to increase the speed of beam steering and they also observed an 

improvement in the radiation pattern of the array and an increased accuracy in null 

placement. But they had done it for circular array. In the recent years’ researchers Jamunaa 

et.al. [10] had worked on this null placement method with uniform linear array. They had 

approached with phase only control method where they had kept the amplitude of all the 

elements uniform and used evolutionary algorithm to optimize the phase of all the elements 

in order to place accurate null. From the results it was concluded that they could successfully 

place nulls. But they had done this method only for single null placement and they concluded 

that their work can be further studied and extended for multiple null. Chatterjee et.al. [11] 

in their work also, proposed a novel least perturbation based method of constrained null 

placement for a non-uniformly excited linear antenna array. They have carried out their work 

by controlling the excitation amplitude and phase of the edge elements which makes the 

antenna design less complex. But antenna array synthesis can also be done only by 

controlling the phase and keeping amplitude constant which reduces the runtime as well as 

cost.  

 So, these research works lead to the motivation of our method of null placement 

which has been discussed in this paper. So in the proposed method, only the phase of the 

edge elements is controlled. This has two advantages. Firstly, there is no requirement of 

attenuator which makes the appliance using the antenna array lighter and cheaper. And 

secondly, the design becomes simpler. Moreover, a uniformly excited linear antenna is taken 

so that the design time and complexity also reduces. The design of this antenna array has 

been approached by two methods. At first, the conventional method which gave rise to some 

drawbacks which leads to the second method of array symmetry. The analytical results are 

then optimized using classical DE algorithm which in turn improves the value of radiation 

parameters and optimizes the value of phase. 
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PROPOSED METHOD 

First Approach: Conventional Method 

 

(a) 

 

(b) 

 

Figure 2.1 Conventional Uniform Linear Array (a) Geometry, (b) Schematic diagram of 

edge element control 

When a uniform linear array of N number of isotropic elements placed along the z-axis then 

the far field observation obtained is shown in Figure 2.1(a). So, the array factor of uniform 

linear array is given by equation (2.1), 

AF(θ) = [e+j0(kdcosθ+β) + e+j1(kdcosθ+β) + e+j2(kdcosθ+β) +⋯+ e+j(N−1)(kdcosθ+β)]   

(2.1) 

AF(θ) = [∑ ej(n−1)(kdcosθ+β)]N
n=1                                             (2.2) 

Now, let us assume ψ = kdcosθ + β, then the equation (2.2) will become, 

AF(θ) = [∑ ej(n−1)ψN
n=1 ]                                                    (2.3) 

In order to make the array factor more compact, both sides of the equation (2.3) is multiplied 

by ejψ, and the modified array factor is given by equation (2.4). 

AF(θ)ejψ = [ejψ + ej2ψ +⋯+ ej(N−1)ψ + ejNψ]                             (2.4) 

Equation (2.3) is then subtracted from equation (2.4), and the expression becomes, 

AF(θ)(ejψ − 1) = (−1 + ejNψ)                                            (2.5) 

AF(θ) = ej[
(N−1)

2
]ψ [

sin(
N

2
ψ)

sin(
ψ

2
)
]                                                 (2.6) 

Now, by taking the physical center of the array as the reference point, then the array factor 

in equation (2.6) will be reduced to, 

AF(θ) = [
sin(

N

2
ψ)

sin(
ψ

2
)
]                                                        (2.7) 
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The schematic diagram of edge element control in uniform linear array is shown in Figure 

2.1(b). Array factor of N numbered linear array with uniform excitation is given by the 

equation (2.7) in which wave number k =
2π

λ
, where λ is incident wave length, inter element 

spacing d =
λ

2
,and θ is the elevation angle. Array factor can be considered as the summation 

of array factor due to rest of the elements AFR(θ) as represented by equation (2.9) and array 

factor due to edge elements AFE (θ) which is represented by equation (2.10), and here ψ =
kd(sinθ − sinθs). 

AF(θ) = AFR(θ) + AFE(θ)                                                 (2.8) 

AFR(θ) = [
sin(

(N−2)

2
ψ)

sin(
ψ

2
)

]                                                     (2.9) 

AFE(θ) = ej(
N−1

2
)ψ + e−j(

N−1

2
)ψ = 2 cos [(

N−1

2
)ψ]                           (2.10) 

Additional control for null placement are only the phases -P and +P that are being fed directly 

to the edge elements because amplitude is constant, so, A=1. So, the modified array factor 

contribution due to edge elements (AFE(θ)|m) is given by equation (2.11). 

AFE(θ)|m = e−j(−P)e−j(
N−1

2
)ψ + e−jPej(

N−1

2
)ψ                              (2.11) 

As the array is assumed to be symmetric, so –P = +P = P. So on adding the terms the equation 

(2.11) becomes equation (2.12). 

AFE(θ)|m = 2 cos [(
N−1

2
)ψ − P]                                       (2.12) 

Consequently, modified array factor along is given by equation (2.13).  

AF(θ)|m = AFR(θ) + AFE(θ)|m                                       (2.13) 

Now θn be the desired single null position in which total array factor AF(θ)|m is considered 

as zero to achieve the desired result, which provides the final expression for array factor in 

equation (2.14). Then by substituting θ = θn in equation (2.14) and solving, the required 

value of P is obtained in equation (2.15) where ψn = kd(sinθn − sinθs). 

AF(θ)|m = [
sin(

(N−2)

2
ψ)

sin(
ψ

2
)

] + 2 cos [(
N−1

2
)ψ − P]                       (2.14) 

P = −
π

2
+

(N−1)ψn

2
+ sin−1 (−

sin(
(N−2)

2
ψn)

2sin(
ψn
2
)
)                           (2.15) 

But this method has a drawback which is illustrated with an example in Figure 2.2 (a), (b). 

All the array factor plots have been simulated for 10 elements array, with 0.5λ inter element 

spacing beam steered at 20° and the null has to be placed at -34°. It must be noted that as 

isotropic elements are considered in the present investigation, the array factor plot itself 

represents the radiation pattern of the array. 
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(a) 

 

(b) 

Figure 2.2 Conventional Uniform Linear Array Factor Null Placement at -34° (a) 

Analytical, (b) Using DE  

It is observed from Figure 2.2 that no null is placed exactly at -34° and it has shifted towards 

-30°. Neither it could be placed analytically nor it could be rectified by applying DE. The 

reason behind this observation is that there are too many assumptions taken in this method 

such as the actual antenna array center is not at the origin, but during the mathematical 

calculations the physical center of the array is taken as the reference point for which the 

phasor part of the equation gets cancelled. So the algorithm cannot find the value of phase 

at certain points and hence it could not place the null properly resulting in the shift. This led 

the proposed method towards the second approach. 
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Second Approach: Array Symmetric Method 

 

(a) 

 

(b) 

Figure 2.3 Non-Uniform Symmetric Linear Array (a) Geometry, (b) Schematic diagram of 

edge element control 

Generally, all the array elements in a non-uniform linear array have different excitation 

amplitudes. But in this proposed approach, all the excitation amplitude (an) values are set as 

1, which makes the non-uniform linear array work as a uniform linear array. Since in this 

method already the antenna array is placed symmetrically along the z-axis so the actual 

center of the array already lies at the origin. So no assumption is required in this approach.  

Figure 2.3(a) shows the geometry of linear symmetric array. The array factor of linear array 

of 2N isotropic element is given by equation (2.16), where k = 2π/λ is the wave number, an 

is the excitation amplitude of nth element, d is the inter-element spacing. 

                                  AF(θ) = 2∑ cos [(
2n−1

2
) kd(cosθ)]N

n=1                                        (2.16) 

Figure 2.3(b) shows the schematic diagram of edge element control in non-uniform linear 

array. So, the array factor expression for 2N numbered beam steered uniformly excited linear 

array is given by equation (2.17).  

AF(θ) = 2∑ cos [(
2n−1

2
)ψ]N

n=1                                              (2.17) 

Here, ψ = kd(sinθ − sinθs), where θs represents the steered main beam position. Further, 

d is the uniform inter element spacing, k=2π/λ is the wave number and θ is the elevation 

angle whose value lies within –π/2 to +π/2. Moreover, edge element contribution can be 

generalized as given in equation (2.18). 

AF(θ) = AF(θ)|Rest + AF(θ)|Edge                                       (2.18) 

In equation (2.18), AF(θ)|Rest and AF(θ)|Edge has been given in equation (2.19) and (2.20) 

respectively. 

AF(θ)|Rest = 2∑ cos [(
2n−1

2
)ψ]N−1

n=1                                      (2.19) 
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AF(θ)|Edge = 2cos [(
2N−1

2
)ψ]                                          (2.20) 

So, the edge elements for the linear array are directly fed with additional excitation phase -

P and +P to the left and right edge element respectively. Consequently, modified array factor 

(AF(θ)|Edge_m) for 2N numbered linear array is given by equation (2.21).    

AF(θ)|Edge_m = e−j(−P)e−j(
2N−1

2
)ψ + e−jPej(

2N−1

2
)ψ

                      (2.21) 

As the array is symmetric so by substituting P+ = P- = P in equation (2.21) the modified 

array factor is given by equation (2.22). 

AF(θ)|Edge_m = 2 cos [(
2N−1

2
)ψ − P]                                   (2.22) 

Accordingly, the modified array factor of the complete array is given by equation (2.23). 

AF(θ)|modified = 2∑ cos [(
2n−1

2
)ψ]N−1

n=1 + 2 cos [(
2N−1

2
)ψ − P]          (2.23) 

Now θn be the desired single null position in which total array factor AF(θ)|modified is 

considered as zero to achieve the desired result. So, by substituting θ = θn in equation (2.23) 

and solving, the required value of P is obtained in equation (2.24) where ψn = kd(sinθn −
sinθs). 

P = −
π

2
+

(2N−1)ψn

2
− sin−1 (∑ cos [(

2n−1

2
)ψn]

N−1
n=1 )                      (2.24) 

Hence, the effectiveness of the proposed method has been illustrated in Figure 2.4 (a), (b) 

through design instances of a 10 elements linear array with main beam position at 20°. Single 

null placement at -34° has been considered. The inter element spacing has been kept at 0.5λ. 

 

(a) 
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(b) 

Figure 2.4 Uniform Symmetric Linear Array Factor Null Placement at -34° (a) Analytical, 

(b) Using DE  

From Figure 2.4 it is observed that null can be exactly placed where it is required which in 

this case is -34°, both analytically and by applying DE. The convergence curve in Figure 2.5 

also shows that this is the best fit value.  

 

Figure 2.5 Convergence curve of Uniform Symmetric Linear Array Factor with Null at -

34° 

Multiple null placement can also be achieved by this proposed method of symmetric array. 

Such an example has been illustrated in Figure 2.6 through design instances of a 10 elements 
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linear array with main beam position at 20°. One null placed at -34° while the other at -9°. 

The inter element spacing has been kept at 0.5λ. 

 

Figure 2.6 Uniform Symmetric Linear Array Factor with Null placed at -34° and -9° 

The convergence curve in Figure 2.7 also shows that this is the best fit value. While Table 

2.1 shows the comparative study of parametric effect, before and after the application of DE 

and for both single as well as multiple null.   

 

 

Figure 2.7 Convergence curve of Uniform Symmetric Linear Array Factor with Null at -

34° and -9° 
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Table 2.1 Parametric effect on radiation characteristics before and after applying DE 

 HPBW  

(in degrees) 

FNBW  

(in degrees) 

Directivity  

(in dB) 

Optimized 

phase (in terms 

of wavelength) 

Before Null 

Placement 

10.8 24.5 10 - 

After 

Analytical 

Null 

Placement 

11.9 27.6 9.7199 13.0323 

After applying 

DE for Single 

Null 

11.1 26.2 9.7212 0.8971 

After applying 

DE for 

Multiple Null 

11.1 25.7 9.7198 0.7935 

CONCLUSION 

This article demonstrates the method of phase control of edge elements through array 

symmetric approach for null placement analytically. The effectiveness of the design has 

been illustrated using an example of 10 elements array.  Further performance improvement 

of the method has been carried out using classical DE algorithm. Thus from the results 

obtained it can be observed that the proposed method can perfectly place null, both single 

as well as multiple as well as it can improve the radiation parameters values which 

deteriorated due to analytical null placement. And last but not the least, this proposed method 

can perfectly optimize the value of excitation phase. Hence, it can be concluded that the 

proposed method is fit for single and multiple null placement and has the ability to handle 

multiple objectives. So, it can be used to design linear antenna arrays for any number of 

array elements. 
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