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Abstract.  
 
Accurate state of Health (SOH) and remaining useful life (RUL) prediction is the key to 

ensure safety and reliability of Lithium-Ion Batteries (LIBs). Recent advances in deep 

learning algorithms have led to data-driven estimation approaches with improved 

accuracy. This paper employs data-driven technique for SOH prediction by utilizing 

multiple battery datasets that are multivariate time series (MTS) that are packed with 

dynamical information of the battery ageing system. In this paper, authors have proposed a 

hybrid method, namely the CNN-LSTM model, which improves the prediction accuracy 

by exploiting advantages of both Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM) methods, for the prediction of SOH and RUL of the LIBs. A 

comparison against relevant deep learning forecasting algorithms is carried out by utilizing 

various statistical indicators like the MAE, MAPE and RMSE, to numerically evaluate the 

prediction results. The proposed hybrid estimation approach outperforms other relevant 

deep learning techniques. Authors have validated the results experimentally by utilizing 

multiple NASA battery datasets at different temperatures. 
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1. INTRODUCTION 

The rapid endorsement of electric vehicles (EVs) has led to significant rise in the demand 

of LIBs [1]. In the meantime, EV batteries have started to reach their end-of-life condition 

and it is expected to observe an exponential growth of these retired EV batteries in the 

nearing decades. Consequently, the world would be in risk from potential waste of retired 

EV LIBs. Bloomberg New Energy Finance predicts that the incremental addition of the 

retired EV batteries can show up at 185.5 GWh/year in capacity by 2025 [2]. A second 

study estimates the cumulative retired EV batteries capacity could hit approximately 1000 

GWh by 2030 [3]. IDTechEX predicts that the total amount of EV batteries retiring from 

vehicles will reach 7.8 million tonnes per year by 2040 [4]. These retired EV batteries can 

either be reutilized for a second life in stationary applications or it can be recycled to 

procure the raw materials.  

Theoretically, recycling is marginal sustainable measure taken in circular economy and 

therefore, recycling should be the final step, only in the case when batteries are not 

utilizable anymore. Hence, before recycling retired EV batteries, they should be taken into 

consideration for remanufacturing or repurposing for second life. The LIBs retired from 

EVs retain 70-80% of their initial capacity unlike the batteries used in consumer 



 

electronics [5]. These retired EV batteries are ineffective for EV service as decline in 

battery capacity limits the driving range. But these retired EV batteries, with lower SOH, 

can still meet the requirements of less demanding stationary applications like energy 

storage [6]. Therefore, second life becomes an attractive option for retired EV batteries 

having LFP chemistry. 

However, estimating SOH is complex because numerous internal and external factors 

causing degradation of batteries are involved in calculation. Estimates of capacity and 

power degradation of ageing battery could reasonably estimate SOH [7]. SOH prediction 

methods are categorized into experimental methods and adaptive battery methods. 

Experimental techniques include model-based measurements and direct measurements. 

Merits of these experimental techniques are lesser computational power and easier Battery 

Management System (BMS) implementation [8]. Demerits like lower accuracy and time 

consuming make these methods less popular. Alternatively, adaptive methods like Kalman 

Filters need high computational effort and integration to BMS is difficult [9]. Recent 

method of combining electrochemical and mathematical models yields better results at cost 

of increased complexity and computational resources [10].  

The data-driven method being the state-of-the-art method can be utilized if data from the 

battery‟s previous life can be gained. These methods are asserted to be more powerful as 

statistical and machine learning approaches are incorporated, without depending on 

complete understanding of the various degradation mechanisms like solid electrolyte 

interphase formation, dendrite formation, lithium plating, physical changes like particle 

cracking and fragmentation. Considering these aspects, data-driven approaches have an 

edge over conventional SOH estimation methods, as data-driven methods use historical 

data for prediction and do not need understanding of complex physical, chemical and 

mathematical models of LIBs capacity degradation. Hence, authors have considered data 

driven methods for estimating SOH of ageing LIBs. Data driven approaches are machine 

learning techniques, evolutionary algorithms, artificial neural network and deep neural 

networks. Various researchers have proposed different data driven methods for RUL 

prediction of LIBs, like recurrent neural network [11], LSTM [11], support vector machine 

[12], etc. LSTM models and CNNs are widely accepted, efficacious and established deep 

learning methods [13]. [14]-[16] are the recent research papers which have employed 

CNN-LSTM technique to estimate RUL of LIBs. The essential ideology supporting the 

implementation of CNN and LSTM techniques on time-series forecasting is the ability of 

LSTM networks to proficiently apprehend sequence pattern information of long sequential 

data owing to their distinct architecture design which constitutes internal memory. 

Whereas CNN networks can efficiently filter the noise of sequential data and can draw 

significant features of multivariate time series data. Standard CNNs are suitable for 

addressing spatial autocorrelation data, and LSTM models are tailored to deal with 

temporal correlations. Therefore, authors have proposed a deep learning network which 

exploits the merits of both LSTM and CNN techniques to enhance the SOH and RUL 

prediction performance of ageing LIBs. Authors have employed multiple battery datasets 

at different temperatures that are multivariate time series for SOH and RUL estimation, 

which are unlikely to be seen in available literatures. 

The paper is organized in following manner: Section 1 presents a brief survey of retired 

EV lithium-ion batteries and its current literatures concerning the second life application 



 

various data-driven techniques in SOH and RUL prediction of ageing LIBs. Section 2 

describes the details of the proposed CNN-LSTM deep learning technique. Section 3 

discusses the data of ageing lithium-ion battery. Section 4 presents results obtained and 

related discussions. Section 5 summarizes the findings of the research undertaken. 

2. PROPOSED MODEL 

The primary idea of the proposed model is to effectively integrate the merits of the two 

established and efficient deep leaning techniques namely CNN and LSTM.  

2.1. Convolutional and pooling layers  

These layers are particularly made for data pre-processing; hence it filters noises from 

input data and extract input features i.e., important information which is usually utilized as 

an input for next network layer [17]. These convolutional layers perform convolution 

operation on convolution kernels and input data generate some feature values. This 

necessitates that input to be organised in matrix form, as CNN was essentially developed 

to extract features of image. Convolution kernel can be thought of as a small window 

containing coefficient values in matrix for (for comparison with the input matrix). This 

tiny window performs convolution operation on every patch met by the specified window 

across the input matrix as the window slides over the input data. The resulting convolved 

matrix corresponds to a feature value. By employing various convolution kernels on the 

input datasets, several corresponding features are developed. These convolved features are 

better than the actual features of the input datasets and hence, the model performance is 

improved. The convolutional layers are generally accompanied by a nonlinear activation 

function to introduce some amount of non-linearity. These layers are then followed 

pooling layers to decrease dimensionality of feature maps. Consequently, the pooling layer 

provides matrices which comprehend the convolved features. The pooling operation assists 

in making the system more robust 

2.2. LSTM layers 

LSTM models are specialized recurrent neural networks (RNNs) that learn the long-term 

dependencies by employing feedback connections [18]. Conventional RNNs are feed 

forward neural networks, and its lack of memory causes underperformance on long 

temporal sequences and time-series problems. RNNs use recurring connections on their 

hidden layers to obtain information from time-series sequential data and attain short term 

memory. However, RNNs are inefficient in learning long-term dependencies of sequential 

data as it‟s affected by vanishing gradient problem. LSTM resolves this issue by learning 

long term dependencies by managing controlled flow of information by storing important 

data on memory cells and deleting insignificant information. 



 

 
Fig. 1: LSTM block and  ,   ,    are forget, input and output gates respectively 

 

As exhibited in Fig. 1 the LSTM cell is comprised of different gates, which are input gate, 

output gate, forget gate and self-recurrent neuron. The inter activeness among various 

memory units are controlled by these gates. The input gate checks if the input data can 

change memory cell‟s state or not. The output gate manages the modification of other 

memory cells‟ state. In contrast the forget gate can decide to discard or retain its past 

information. Various gates, cell states, hidden states and outputs can be represented as 

follows: 
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where(   ,   ,    ,    ),(     ,   ,   ,   ) and (  ,    ,   ,   ) are input weights, 

biases and recurrent weights respectively.   ,    and    and are cell, input and hidden 

states respectively at time step t. While at time step t − 1,      and      are cell state and 

hidden respectively.  , σ,   and are pointwise multiplication, sigmoid activation and 

pointwise addition respectively. 

 

2.3. CNN–LSTM model 

 

The objective of the research undertaken is to attain RUL prediction with improved 

accuracy and acceptable execution time by combining CNN and LSTM. CNN-LSTM is 

employed for multivariate time series ageing Li-ion batteries datasets for prediction of the 

RUL. The architecture of CNN-LSTM comprising its building blocks is as shown in Fig. 

2. The CNNLSTM model exploits the usefulness and merits of both CNN model and 

LSTM model. Here both spatial and temporal features are extracted. The interrelations 

within present inputs are the spatial features and these are extracted by CNNs. Whereas 

LSTM bring out the correlations between present SOH and previous inputs which can be 

understood as the temporal (time domain) features. By recursive execution of the input 

vectors processing, the LSTM networks become better at treatment of time-series 

information [19]. 



 

 
Fig. 2: Proposed architecture of CNN-LSTM network 

3. DATASETS 

The experimental datasets are considered by extracting different batteries of NASA 

Prognostics Centre of Excellence Battery ageing datasets that consists of aging data for 

LIBs [20]. All the LIBs were examined through 3 distinct operational processes namely: 

charge, discharge and impedance. For all the LIBs, charging was carried out at a constant 

current (CC) mode at 1.5A till the LIB voltage hit 4.2V, following this a constant voltage 

(CV) mode was carried out until the charging current decreased to 20mA. A set of four 

LIBs (# 05, 06, 07 and 18) were run at room temperature (24 deg C), another set of four 

LIBs (# 29, 30, 31 and 32) were run at elevated ambient temperature (43 deg C) and yet 

another set of four LIBs (# 53 - 56) were run at reduced temperature of 4 deg C. Table I 

illustrates the information about LIBs used.  

 

Table I: Experimental Dataset, Comprising 3 Groups of Cells at Different Temperature 
File 

Name 

Included 

Cell 

Discharge Temperature 

Cycled 

Cycled 

until 

Battery 

Aging 

ARCFY08Q4 

Three cells 

numbering 

#05 and #6 

Discharge was conducted with CC 

level of 2A till LIB voltage dropped 

to 2.7V and 2.5V for 

batteries #05 and #06 respectively 

24 deg 

C 

30% 

fade 

Battery 

Aging 

ARC 25-44 

Three cells 

numbering 

#29 and #30 

Discharge was conducted with CC 

level of 4A till LIB voltage dropped 

to 2.0Vand 2.2V for 

batteries #29 and #30 respectively 

43 deg 

C 

30% 

fade 

Battery 

Aging 

ARC 53 54 

55 56 

Three cells 

numbering 

#55 

and #56 

Discharge was conducted at fixed 

load current of 2A and distinct stop 

voltages 2.5V and 2.7V for 

batteries #55 and #56 respectively 

4 deg 

C 

30% 

fade 

 

Sustained charge discharge cycles caused accelerated aging of LIBs. These experiments 

were discontinued when LIBs reached 30% fade in rated capacity which is End-of- Life 

(EOL) criteria. Fig. 3 depicts capacity degradation over time for all the LIBs considered 

for testing and implementation. By data pre-processing, authors can obtain the datasets of 

particular LIBs. These datasets constitute the fields like impedance, charge and discharge. 

Among these fields, authors have selected the discharge data as discharge datasets are 

more relevant in case of capacity degradation. In discharge datasets we have considered all 

relevant features like cycle number, battery capacity (Ahr), terminal battery voltage, 

battery current, battery temperature, load current, voltage under load. These parameters are 



 

highly reliable, and they characterize the actual performance and degradation LIBs 

accurately under different cell aging conditions. 

 
Fig. 3: Capacity Degradation over Charge/Discharge Cycles 

4. RESULTS AND DISCUSSIONS 

This section summarizes SOH and RUL estimation methods and various performance 

metrics that are adopted for the comparisons and validation. Further, we evaluate the 

effectiveness of the proposed CNN–LSTM model in comparison with the state-of-the-art 

methods namely LSTM and CNN. 

 

4.1.  SOH and RUL Estimation 

In literature, there are various definitions for battery SOH. For understanding, we used the 

SOH [%] , which can be defined as: 

        
    

    
             (7) 

Where: SOH [%] is the battery SOH,      is the current LIB capacity and      is the LIB 

nominal capacity. RUL is stated as the length of remaining charge/discharge cycles to 

reach the threshold of failure of the LIBs. Threshold of failure can be considered as the 

EOL of LIBs when the remaining output capacity hits to 70–80% of the nominal output 

capacity of LIB. This is established as: 

                   (8) 

     is the cycle number at which output capacity hits the failure threshold i.e. EOL and 

    is the current capacity‟s cycle number. 

 

4.2. Performance Measures 

Besides, evaluation of RUL prediction performance, we have used the mean absolute error 

(MAE), mean absolute percentage error (MAPE), and the root mean square error (RMSE) 

as performance metrics for SOH estimation: 
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Where k is the cycle number,   
  is estimated LIB capacity,     is the true capacity of LIB 

and n is total number of cycles. The MAE measures how close the predictions are to the 

corresponding true observations without sign consideration. MAE is insensitive to outliers 

as it gives less weight to outliers. MAPE is closer to MAE, but it is normalized by true 

observation. RMSE refers to Root of MSE which is a combination measurement of 

variance and bias of the prediction. The unit is brought back to actual unit by RMSE and 

makes model accuracy interpretation is made easier. When these indicators are close to 

zero, then it can be stated that capacity prediction accuracy is higher. 

 

4.3.  Experimental Results 

 

The code was implemented in Python by using open-source distribution for programming 

namely Anaconda 3.0. The deep learning models were developed using Keras library [21] 

with Tensorflow 2.0 as backend. All the models (LSTM, CNN and CNNLSTM) were 

trained for maximum of 500 epochs with early stopping. Adaptive moment estimation 

(ADAM) is used as optimizer and the batch size used was 72. The activation function 

employed is rectified linear unit (ReLU) and the loss function is mean-squared loss. 

 

We have adopted multi battery datasets for SOH estimation. Since training and testing 

datasets should have similar operational profiles, therefore one battery from each 

temperature group is considered for training and other battery is utilized for testing. For 

batteries at 24 deg C, #05 is used for training the model and #06 is employed for testing. 

For batteries at 43 deg C, #29 is employed for training and #30 is utilized for validating the 

model. Similarly for batteries at 4 deg C, #55 is adopted for training the models and #56 is 

used for testing. Various performance metrics results are displayed in Table II. 

 

Table II: SOH Estimation Results for Various Batteries 

Battery Model MAE MAPE RMSE 

B0006 LSTM 0.115316 0.076345 0.12709 

CNN 0.0872128 0.058788 0.098374 

CNNLSTM 0.080202 0.054259 0.089557 

B0030 LSTM 0.059344 0.034233 0.06207 

CNN 0.058901 0.034158 0.059317 

CNNLSTM 0.051973 0.030214 0.052244 

B0056 LSTM 0.043546 0.036565 0.050271 

CNN 0.031195 0.026098 0.037071 

CNNLSTM 0.027973 0.023428 0.033831 

 

Fig. 4a, 4b and 4c show the prediction results for batteries at 24 deg C, 43 deg C and 4 deg 

C respectively. Battery #30 at 43 deg C has a smaller number of cycles than batteries at 24 

deg C during capacity degradation. It can be evidently seen that it‟s challenging to forecast 

with the battery datasets. Despite that, the CNN-LSTM algorithm achieved better results in 

comparison of simpler LSTM and CNN networks. Further, RUL errors at 80% capacity 

degrade for #06 is 2, -8 and -1 cycles for LSTM, CNN and CNN-LSTM networks 

respectively. For other batteries, as per given datasets capacity degrade does not reach 

80%, which can be observed in Fig. 4b and Fig. 4c. Hence, it is seen that RUL is 

significantly less for CNN-LSTM technique.  The aforesaid experiments declare that the 

proposed CNN-LSTM based algorithm has effectively captured the dynamic features of 

LIBs with efficient learning.  



 

 
a. 

 
b. 
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Fig. 4: SOH Estimation Results for Battery (a.) #6, (b.) #30 and (c.) #56 



 

The proposed methods, particularly CNN-LSTM has improved estimation performance 

with significant prediction accuracy. MAPE of CNNLSTM is 0.05, 0.03 and 0.02 for 

batteries #06, #30 and #56 respectively. Hence it is observed that improved values are 

obtained 

5. CONCLUSION 

In the research undertaken, authors have presented multi battery SOH prediction method 

based on state-of-the-art CNNLSTM neural networks. The proposed deep learning 

framework has been implemented and tested on different LIBs dataset, for three different 

temperature ranges (24 deg C, 43 deg C, and 4 deg C). The estimation performance of the 

proposed method has been assessed using various performance metrics. Comparisons 

performed against different relevant deep neural networks CNN and LSTM show the 

superior performances of the CNN-LSTM. The estimation errors of the hybrid CNNLSTM 

method are lesser than the ones obtained with the single deep learning algorithm. Hence, 

CNN-LSTM-based estimation method is a very suitable candidate for multi battery SOH 

and RUL prediction. 
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