

Survey Paper on Banker’s Algorithm

to Remove Deadlock

Kuldeep Vayadande1, Nikita Punde2, Parth Narkhede3, Rohit Gurav4, Srushti

Nikam5, Sejal Hukare6

Department of Artificial Intelligence and Data Science

Vishwakarma Institute of Technology, Upper Indiranagar, Bibwewadi, Pune Maharashtra

411037, India

1kuldeep.vayadande@gmail.cam, 2nikita.punde20@vit.edu, 3parth.narkhede20@vit.edu,
4rohit.gurav20@vit.edu, 5srushti.nikam20@vit.edu, 6sejal.hukare20@vit.edu

Abstract- It is common knowledge in the computing field that computers can accomplish

multiple tasks at once. In breaking deadlocks, the operating system is crucial. You must

remove deadlocks correctly in order to accomplish your multitasking objectives. Bankers'

Algorithm is used for allocating resources and removing the deadlock, that evaluates all

resource requests made by processes, checks to see if the system corresponds to a safe

condition after granting the request, and then approves the request if the system corresponds

in a safe state otherwise, checks to see whether any potential pending processes exist before

putting the system into a S state. . The paper is on different surveys to remove the deadlock

in Banker’s Algorithm and also to know which process needs what instant of resources and

also increasing the number of processes.

Keywords- Banker’s Algorithm, Safe State, Request Response Algorithm, Dynamic

Approach, Max.

1. INTRODUCTION

1.1 Deadlock

When all of the processes in a set are awaiting an event that can only be triggered by

one other process in the set, a stalemate occurs. A deadlock happens when two

programmes that are using the identical resources block each other from using it, which

causes both programmes to abort working. One programme could only run at a time on

the first computer operating systems. When a number of processes is in a wait state, a

deadlock happens because every process is expecting a resource that is being managed

by another process which is in still condition. As a consequence, all deadlocks involve

competing demands for resources from more than processes.

Deadlock Occurrence Conditions

Deadlock occurs when four conditions are met simultaneously.

i. Mutual Exclusion: As there is only sufficient area for one person in the landings, it

mailto:kuldeep.vayadande@gmail.cam
mailto:nikita.punde20@vit.edu
mailto:parth.narkhede20@vit.edu
mailto:rohit.gurav20@vit.edu
mailto:srushti.nikam20@vit.edu
mailto:sejal.hukare20@vit.edu

 2

is not possible for two individuals to pass each other. The first requirement for the

progress of the deadlock is that just one person (or process) is able to get access (or

resource) between them.

ii. Hold and Wait: Holding is when two people waiting for their ground and deny to

back down.

iii. No Pre-emption: To remove the deadlock, one need to only abandon one process,

in order for the other to proceed to execute. The Operating System, however, does not.

The processors are provided with the resources for as long as is required till the task is

finished. The resources are not provisionally reallocated as a result.

iv. Circular Wait: This is what happens when two persons deny to to give back and

wait for the other to do so that they can complete their duty.

1.2 Deadlock Handling Methods

 To prevent a system from deadlock, the two techniques are applied.

 i. Deadlock Avoidance

This is attained by preventive the approaches via which a request may be done. We

work to evade any one of the four conditions listed above since a draw only happens

when all four are true.

ii. Avoiding Deadlock

The deadlock avoidance process looks at the resource-allocation state whenever a

process ask for a resource. The request is processed unless allocating that resource

leaves the system in an unsafe state.

As an output, it requires more particulars, such how many resources of each type a

process needs. To prevent a deadlock, the system must return if it reaches an unsafe

state.

1.3 Banker’s Algorithm

This algorithm simulates resource allocation for present maximum feasible amounts of

all viabilities before doing a "s-state" check to search for prospective activities and

deciding whether allocation should be continued or not further.The banker's algorithm

gets its name from the fact that it is used in the banking industry to decide whether or

not to approve a loan to an individual. Assume a bank has n account holders with a total

of S in their individual accounts. When someone applies for a credit, the bank first

minimizes the requested credit value from the total amount of money it has, and only

the requested loan value is granted if the left sum is more than S.

Assume that there are n processes in the system and m different resource kinds.

 Available:

It is an array of 1 dimensional of size ‘m’ that lists the total amount of resources of

each type that are accessible.

Available [j] = k indicates that the resource type exists in k instances.

 3

Algorithm for Safety

The following is a description of the algorithm for determining whether a system

corresponds to safe state:

Algorithm for Resource Requests

 Banker Algorithm Improvements

When certain processes move into the wait state, the banker algorithm does not have a

viable method for providing a secure sequence. A safe sequence is offered by the wait

state process

algorithm.

As to how it operates: Following the resource request procedure, the process must carry

out the following steps if it enters the wait state:

 Step 1: Demand(m) and Demand are compared in (m+1 to rearmost). increase.

 Step 2: Execute the procedure with the greatest allocation and the least amount of

 necessity.

 Step 3. Put the process into action. Set state if it's possible.

 Step 4: Obtainable=Obtainable + Assignment in step four.

 Step.5: Continue performing steps 1 through 4 until the Process as a whole enters

 the Running condition.

1) Assume x and y are two vectors, m and n, respectively.

 Start with W = A. (W-x, A- Available.)

 x[i] = false; where I = 1 through n

2) Locate an I such that x[i] = false in both cases.

 Need(i) = W; in the absence of such, proceed to step (4)

3) A[i] = W+ W

 Move to the next, if finish[i] is true (2)

4) The process is in a safe condition if Finish I = true for all i.

1) Start with the procedure.

2) If Request(i) >= Need(i)

 otherwise, give a wrong condition because the process has made more claims than it

can handle.

2) If Available > Request(i)

If you skip step (2), P(i) will have to wait since the resources are not available.

3) Change the state in such a way that the process appears to have given P(i) the

requested resources:

Requested - Available = Available

Request(i) = Request(i) – Allocation

 Need(i) = Need(i) – Request(i)

 4

2. LITERATURE REVIEW

[1] In this paper a new O(n) (PBA) with an ideal running time of O is proposed in this

study. The strategy was implemented in hardware, named the PBA unit (PBAU), using

Verilog HDL, and its complexity of runtime was confirmed. It is an intelligent property

(IP) block that gives multiprocessor system-on-chips (MPSoC), which are anticipated

to rule future high-performance computing environments, a very quick automatic

deadlock avoidance technique.

[2] The technical aspects of allocating or redistributing resources are crucial. By doing

this, processes are prevented from using and reserving resources that are required by

other processes. Without effective management of the allocation and deallocation of

these two jobs, many processes would starve themselves of resources while they wait

for the system to allot resources and are held up by processes waiting for more

resources. When a process runs into a deadlock situation and runs out of resources, it

can find itself in a perilous state where it cannot finish its execution.

[3] According to the author, private higher education includes private universities as a

significant component. Undergraduate electives come in a variety of forms. Classes are

filled to capacity with interdisciplinary students. At the end of the semester, those with

few resources face enormous difficulties. A dynamic deadlock algorithm removal

technique is the Banker algorithm.

[4] According to the author, private higher education includes private universities as a

significant component. Undergraduate electives come in a variety of forms. Classes are

filled to capacity with interdisciplinary students. At the end of the semester, those with

few resources face enormous difficulties. A dynamic deadlock algorithm removal

technique is the Banker algorithm.

[5] In this paper, two fresh approaches to preventing deadlocks in concurrent systems

are presented. Use of the suggested method to describe a flexible manufacturing system

with Petri nets. Both approaches are based on an understanding of the process structure

and are upgrades to the conventional Banker algorithm. The Petri net model's size

polynomial comes first. The second may involve non-polynomial costs and is highly

reliant on the number of alternative processing methods for the portion.

[6] In paper [6], author tells to breakdown trees in regions and determine the related

overall resource demands earlier to process execution, they presented a quadratic-time

approach. With the original banking algorithm, this data is utilized during runtime to

assess the system's security. However, this method was not practical and could not

identify resource-related calling patterns.

[7] A deadlock avoidance technique for wait state systems is presented. This approach

improves on Banker's algorithm. There is no effective strategy for sorting waiting

processes in the algorithm of the banker after a process enters a wait state (FCFS is not

good enough). This study offered a methodology that selects waiting processes to run

while taking into account the no. of allotted resources or the number of possibilities and

the resource's demand.

 5

3. COMPARISON TABLE

TABLE. 1 COMPARISON TABLE

Sr

No

Authors Year Title Conclusion

1. Jaehwan John

Lee and

Vincent John

Mooney III

2005 A Novel O(n) Parallel Banker’s

Algorithm for System-on-a-

Chip[7]

The study presents a revolutionary Parallel

Bankers Algorithm for multi-situation, multi-

resource systems together with the hardware

implementation of the PBA

2. Dushyant

Singh

Mrinal Gaur

2009 Implementation of Banker’s

Algorithm Using Dynamic

Modified Approach[1]

The algorithm specific activity requires and

tells weather it is in safe order or not., making

it very simple to add the required resources to

the process and address the issue.

3.
Lambert

Kekebou

Erefaghe

2021 Illustration of Safe and

Unsafe State Using

Transition Table and Java

Simulation [2]

The concept of deadlocks is very important in

advanced stages of technology

development, especially software development,

and a clear understanding of them

4.
LI Jiang

2019 Application Research of

Banker Algorithm in

Teaching Arrangement in

Independent College[3]

The banking algorithm is introduced and its

implementation in the university course

planning system is performed, A dynamic

method of avoiding deadlock is the Banker

algorithm.

5.
Xu Gang Wu

Zhiming
2021 Deadlock Avoidance Based

on Banker’s Algorithm for

FMS[4]

In this paper, a deadlock avoidance technique

for FMS is suggested. The standard Banker

algorithm is the foundation of this approach

 6

4. GRAPHS OF COMPARIOSN

Figure 1 Deadlock Incidence based on no. of resources.

Figure 2 Comparison with time complexity(O)n.

Figure 3 – Comparison Graph for Bankers Algorithm and Dynamic modified Approach

6.
F. Tricas J.M.

Colom J.

Ezpeleta

2000 Some Improvements to the

Banker’s Algorithm Based

on the Process Structure[5]

The traditional Banker technique for concurrent

systems deadlock avoidance received two

upgrades from authors. The fact that authors are

aware of the system's process structure inside

the FMS application

 7

5. SCOPE OF IMPLEMENTATION

In this research, we discussed the importance of banking algorithms for

breaking operating system deadlocks. The concept of deadlocks is very important at these

advanced stages of technological development, especially software development, and a

clear understanding of them provides principles for dealing with deadlocks in various

areas of computing, networking, and computer science. It is an important asset to

understand. Computer technology applied in industry.

6. CONCLUSION

The Banker algorithm is demonstrated to work in this study. This is done in order to pinpoint

the issue with the original algorithm that led to the process execution failure. Therefore, the

Dynamic Approach has resolved the Banker's algorithm's existing issues. The outcomes

demonstrate that the modified banker algorithm identifies the kind of additional resources

that are required for this specific activity. With this method, it is pretty simple to add the

required resources to the process in order to remedy the issue because it also indicates

whether everything is in safe order or not.

REFERENCES

[1] Dushyant Singh, Mrinal Gaur, “Implementation of Banker’s Algorithm Using Dynamic

Modified Approach”, 2009.

[2] Lambert Kekebou Erefaghe, “Illustration of Safe and Unsafe State Using Transition

Table and Java Simulation”, 2021.

[3] LI Jiang, “Application Research of Banker Algorithm in Teaching Arrangement in

Independent College”, 2019.

[4] Xu Gang Wu Zhiming, “Deadlock Avoidance Based on Banker’s Algorithm for FMS”,

2021.

[5] F. Tricas J.M. Colom J. Ezpeleta, “Some Improvements to the Banker’s Algorithm

Based on the Process Structure”, 2000

[6] Pankaj Kawadkar, Shiv Prasad, Amiya Dhar Dwivedi, “Deadlock Avoidance based on

Banker’s Algorithm for Waiting State Processes”, 2021

[7] Zorn, B., & Grunwald, D., “Evaluating models of memory allocation”, ACM

Transactions on Modeling and Computer Simulation.

[8] Khan, S. D., & Shin, H. “Effective memory access optimization by memory delay

modelling, memory allocation, and buffer allocation”, International Soc,2009.

[9] Jiang, K., Sanan, D., Zhao, Y., Kan, S., & Liu, Y. “A Formally Verified Buddy Memory

Allocation Model.” 24th International Conference on Engineering of Complex

ComputerSystems,2014.

 8

Biographies

Kuldeep Vayadande is working as Assistant Professor in Dept. Of AI and

DS. He has completed PhD in Computers Science and Engineering and

having 14 Years of Teaching Experience. Published various papers in

International Journals. His area of Specialization includes Operating System,

System Programming, Information Security and Cloud Computing. He is

also working as Reviewer for various International Journals.

Nikita Punde currently pursuing Btech in Artificial Intelligence and Data

Science from Vishwakarma Institute of Technology Pune, Completed HSC

from Agarkar College Akola in State Board and SSC from School of

Scholars Akola in CBSE Board.

Parth Narkhede currently pursuing Btech in Artificial Intelligence and Data

Science from Vishwakarma Institute of Technology Pune, Completed HSC

from Ashok Vidyalaya and Jr college Pune in State Board and SSC from

Bharatiya Vidya Bhavan Pune, SSC Board.

Srushti Nikam currently pursuing Btech in Artificial intelligence and data

science at Vishwakarma institute of technology located in Pune, has passed

out from Dr kalmadi shamrao junior college hsc board and went at

HumeMchenry school (ICSE)Pune.

Rohit Gurav currently pursuing Btech in Artificial Intelligence and Data

Science from Vishwakarma Institute of Technology Pune, Completed HSC

from Bal Bharati Public School from navi Mumbai and SSC from Takshila

School Ahmednagar.

Sejal Hukare currently pursuing Btech in Artificial Intelligence and Data

Science from Vishwakarma Institute of Technology Pune, Completed HSC

from Narayana Junior College, Thane in State Board and SSC from Dav

Public School, Thane in CBSE Board.

