

An Approach to Select Efficient Data Optimization

Techniques in Connected Cars

Ayushi Jain1 Durgesh Nandan2

Symbiosis institute of technology, Symbiosis International (Deemed University),

Pune, India

durgeshnandano51@gmail.com

Abstract

To make data storage more successful, even using much storage, data can be compressed.

By compressing data, information can be shared much more quickly. There are multiple

techniques available for data optimization. Each approach also provides a different set of

outcomes. This paper will discuss the optimization techniques using four different

algorithms: Huffman encoding, Lempel Ziv Welch, Run Length Encoding, and Shannon

Fano methods. This essay shows how a method performs compression and which method

is more appropriate and effective when utilized to perform real-based data compression.

The result of a technique can be determined by the compression file size, which is less than

the original file.

Keywords: Data compression, connected cars, compression techniques, Lossless

compression, Real data-based compression.

1. Introduction

The connected car, which is a vehicle with Internet connectivity, communication capabilities

with other vehicles and road infrastructure, and the ability to gather real-time data from

multiple sources, is predicted to be a key player in the future Internet of Things [1]. With

the support of hardware and software that facilitate widespread knowledge transfer rapidly

via the internet, around the world, technology is developing quickly. Information technology

[2] professionals can effortlessly by sending information over the internet. Not all data can

be sent easily, though. To decrease the quantity of data that needs to be kept and transferred

while easing data transmission, a data set is converted into a code through the process of

compression. Compression can help cut down on time and memory [3] requirements
(storage). The Huffman, Lempel Ziv Welch, Run Length Encoding, and Shannon Fano

methods are only a few examples of efficient compression algorithm techniques. The

optimization method is shown in Figure 1.

mailto:durgeshnandano51@gmail.co

Figure 1: Block diagram of Data compression process

Figure 1 describes the general data compression process [4]. When data is not compressed,

lossless compression is used to process the uncompressed tour to compress its size. The

file will be smaller than it was before compression once the content has been reduced. A

file's size is decreased through compression from a huge size to a smaller size.

Figure 2: Types of data compression

Figure 2, there are two compression techniques named lossless and lossy compression

techniques [5]. In the lossy compression technique, the data in a file is takeout and brought

bring back to its original form after decompression. Lossy compression is generally used

to compress multimedia data (audio, video, and images). In lossless compression

techniques, it belongs to a kind of data compression that makes it possible to recover the

main data exactly from the optimized data lack of losing any details. Since most real-world

data exhibits statistical redundancy, lossless compression is practical. It maintains quality.

In lossless compression, it uses different algorithms for compressed data like as, Huffman

encoding, Shannon Fano coding, Run-length encoding, and the LZW method [6]. Here is

an explanation of how data compression can be executed.

 Compression for audio

 Compression for text

 Compression for video

 Compression for image

There are different explanations for how data compression can be executed. As we are

working on Real-based data so, it required text data for compression [7]. When text is

optimized, the decompression procedure resets the compressed file to the beginning of the

text. The results of decompression depend on whether Lossless Compression or Lossy

Compression was applied. If a text has completed lossless compression, the main details

can be precisely retrieved from the uncompressed file. Lossy compression causes some

information to be lost, and the text generated after decompression cannot fully equal the

text from the original data. It is explicitly evaluated and compared to how well various

approaches compress text data.

2. Literature Review

In this paper [8], A novel multilevel Huffman coding-based test database optimization

method was proposed. The suggested method works with IP cores whose structural details

are unknown. The technique encrypts three of the primary data kinds. The same Huffman

codewords produce better compression outcomes. According to most of the relevant

procedures from the literature, the efficiency of the space above the intended Decompressor

is relatively low.

In this paper [9], It can be concluded that the Shannon-Fano algorithm for data compression

has been very well achieved using Modalism SE 6.4 simulator and VHDL coding and that

data is compressed using these techniques. The Shannon-Fano algorithm equation creates

a very effective compression strategy for determining how much data is compressed.

In this paper [10], Arithmetic coding provides the best compression, but its slow execution

can be a drawback. Arithmetic coding's efficiency and built-in separation of coding and

modelling are its key benefit for statistical data compression. The drawbacks of arithmetic

coding are its slow performance, implementation complexity, and shortage of prefix codes.

In this paper [11], For most of the text files, the combination of the RLE and LZW

compressors will result in somewhat better compression than either RLE or LZW alone.
Since both the RLE and the LZW algorithms take benefit of common redundancy in text-

based files (i.e., repetitiveness or multiple examples of phrases), combining this beneficial

Aspect of the two algorithms into one algorithm can lead to better results than the individual

performance, but in the end, they find that individual performance gives more compression

ratio.

3. Data Optimization

3.1 Different algorithms

Run length encoding

RLE, also known as run-length encoding, is the most straightforward data compression

approach. This algorithm distinguishes between runs and non-runs by identifying

successive symbol sequences as runs. This algorithm handles a certain amount of

redundancy. Based on their redundancies and their lengths, it evaluates whether there are

any repetitive symbols. All other sequences are regarded as non-runs, while consecutive

recurrent symbols are labelled as runs. For instance, if the file "XYXZZZZX" is chosen to

optimize, the first three letters are regarded as a non-run with a length of 3, while the

following four characters are regarded as a run with a length of 4 because the symbol Z is

repeated. This algorithm's primary priority is to locate the runs in the source file and to

mark each run's symbol and length. While storing all the non-runs and not using any of

those runs for the compression process, the RLE algorithm [12] uses those runs to optimize

the main research file.

Huffman Encoding

ASCII character data compression is the focus of Huffman coding. Numerous types of data,

including text, audio, video, and images, are compressed using it. This method is based on

developing a complete binary tree for each symbol in the original file after figuring out the

probability of each symbol and sorting the symbols by reducing probability. Lossless

compression techniques are included in the Huffman compression algorithm. A

compression technique known as lossless compression does not alter the underlying data

information to make it smaller. Huffman's approach is that each ASCII character is

typically represented by 8 bits. As an illustration, if a file has the character "UUVWX" in

a row, it has 40 bits, 5 bytes, or 5 bits. We only require a file that is 10 bits in size

(0010111110) if each character is assigned a code, such as U = 0, V = 10, W = 111, or X

= 110. that specifies that codes must be identical, or that a code cannot be generated from

some other code [13].

Shannon Fano Encoding

Shannon methods, which replace each symbol with a binary code whose length is

calculated based on the likelihood of the symbol, were at the time the best method, but after

the Huffman encoding, they were hardly ever utilized. Shannon Fano is a method for

generating a prefix code [14] based on a combination of symbols and probabilities in the

area of data optimization. Huffman encoding, on the other hand, is more capable of

producing the code.

Lempel Zev Welch Algorithm

In general, the LZW method uses a dictionary and is a lossless compression algorithm.

Dictionary-based techniques do this instead of having a statistical model as their core. A

dictionary is a collection of all words that can be used in a language. Larger and more

frequent dictionary words are represented by the entries' indexes, which are preserved in a

table-like format. The most popular method is known as the LZW algorithm [15]. This

methodology stores and indexes the previously observed string patterns in a dictionary.

Instead of repeating string patterns, these index values are used during compression.

Instead of using repetitive string patterns, these index values are used during compression.

The dictionary is generated dynamically during the compression process; thus, it is not

necessary to send it along with the encoded message for decompression. During

decompression, the same dictionary is dynamically created.

3.2 Measuring compression performance

Depending on the application, a compression algorithm's performance can be evaluated

using a variety of factors. When assessing performance, space efficiency would be the main

factor to take into consideration. The efficiency of using time is another factor. Because

the behaviour of the compression is based on the symbol repetition in the main file,

evaluating a compression technique's overall performance may be difficult. As a result,

calculating effectiveness is challenging, and many measurements should be used to analyze

the performance of those compression categories. The measurements used to evaluate how

well lossless algorithms work are listed below.

Compression Ratio: It describes the proportion of the source file's size to the compressed

file's size.

𝐶𝑅 =
𝑆𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

Saving percentage:

𝑆𝑎𝑣𝑖𝑛𝑔 % =

𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛−𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
%

Compression factor: It is the absolute opposite of compression ratio.

𝐶𝐹 =
𝑆𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

4. Methodology

The Run Length Encoding Algorithm, Huffman Encoding Algorithm, Shannon Fano

Algorithm, and Lempel Zev Welch Method are implemented and analysed in a set of data

files to evaluate the performance of lossless compression methods. The mentioned factors

are evaluated to measure results.

LZW Algorithm Performance Analysis

Entropy and code efficiency are not planned for this technique because it is not based on a

statistical model. Calculations are performed regarding the compression and

decompression processes, file sizes, compression ratios, and saving percentages [16].

Run length encoding Algorithm Performance Analysis

The Run Length Encoding Algorithm produces the File Sizes, Compression Ratio, and

Saving Percentage since it does not use any statistical techniques to perform compression.

For calculating, a variety of files with multiple source patterns and file sizes are used.

Huffman and Shannon Fano encoding Algorithm Performance Analysis

Implemented and carried out separately are Shannon Fano and Huffman’s Encoding

methods. Calculations are performed regarding the File sizes, compression ratio, and

saving percentage [17].

Comparing the performance

The selected methods function differently depending on the calculations; while one

approach offers a maximum saving percentage, it can take a longer processing time.

Therefore, to pick the best option, all these aspects are examined. The best algorithm is one

that produces a respectable saving percentage in a reasonable period.

5. Results and Comparison

Two text files retrieved from GitHub Real-word file [18] (open source) with various file

sizes and distinct contents, i.e., actual-base data, are tested using four lossless compression

algorithms. The original text files are 4096 bytes and 16384 bytes in size.

Evaluate the performance of the different Algorithms:

Table 1: shows the compression Ratio

Table 2: shows the comparison between saving%, compression factor, and ratio

As can be observed in tables 1, and 2, the relative compression ratios, compression factor,

and saving percentage are displayed in each compression strategy. The run length encoding

has the moderate compression ratio of all data sets. Nowadays, lossless data compression

rarely uses RLE [19]. Based on the information that is currently known regarding

compression ratio, the Huffman encoding strategy is determined to be the best alternative

because it focuses only on reducing input data redundancy [20]. Although Huffman

encoding, which has a moderate compression factor and compression percentage, seems to

produce the outcomes that Shannon Fano encoding most nearly fits.

Dictionary size is an important factor in Lempel-Ziv-Welch encoding's success in

achieving greater compression ratios. Therefore, when compared to other compression

techniques, the results of lower dictionary sizes are reduced.

File size Run-length

encoding

Shannon Fano

coding

Huffman

encoding

LZW

method

4096

Compressed file 1919 1877 1650 1450

Compression ratio 0.531 0.541 0.591 0.645

16384

Compressed file

7707 7100 6707 5707

Compression ratio 52.96% 56.66% 59.06% 65.16%

Parameter Run-length

encoding

Shannon Fano

encoding

Huffman

encoding

LZW method

Compression

Ratio

0.531 0.541 0.591 0.645

Compression

factor

1.88 1.84 1.69 1.55

Saving percentage 53.14% 54.17% 59.71% 64.59%

6. Conclusion and Future Scope

Our text bed had a limited amount of text data, thus we compared four lossless data

compression algorithms in this research. In the future, a larger test bed including audio,

video, and image data may be used to create more compression methods (both lossless and

lossy). After that, a system that can find out the file and then choose the best compression

methodology for that file can be put into place. It was performed as an experimental

comparison of various lossless text data compression algorithms. The effectiveness of

various known lossless compression techniques is evaluated. Although they are evaluated

on various file types, the focus is primarily on multiple test patterns. The Lempel Zev

Welch algorithm can be regarded as an effective technique among the shortlisted ones by

considering the compression ratio, file size, compression factor, and saving percentages of

all the algorithms. These algorithmic parameters are within a reasonable variety, and it

produces effective outcome for big data.

References

[1] Coppola, R. and Morisio, M., 2016. Connected car: technologies, issues, future trends.

ACM Computing Surveys (CSUR), 49(3), pp.1-36.

[2] Solanki, V.K. and Dhall, R., 2017. An IoT-based predictive connected car

maintenance approach.
[3] Ranjan, A., Raha, A., Raghunathan, V. and Raghunathan, A., 2020. Approximate

memory compression. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 28(4), pp.980-991.

[4] Zhaoping, L., 2006. Theoretical understanding of the early visual processes by data

compression and data selection. Network: computation in neural systems, 17(4),

pp.301-334.

[5] Kavitha, P., 2016. A survey on lossless and lossy data compression methods.

International Journal of Computer Science & Engineering Technology, 7(03), pp.110-

114.

[6] Shanmugasundaram, S. and Lourdusamy, R., 2011. A comparative study of text

compression algorithms. International Journal of Wisdom Based Computing, 1(3),

pp.68-76.
[7] Bhattacharjee, A.K., Bej, T. and Agarwal, S., 2013. Comparison study of lossless data

compression algorithms for text data. IOSR Journal of Computer Engineering (IOSR-

JCE), 11(6), pp.15-19.

[8] Kavousianos, X., Kalligeros, E. and Nikolos, D., 2007. Multilevel Huffman coding:

An efficient test-data compression method for IP cores. IEEE transactions on

computer-aided design of integrated circuits and systems, 26(6), pp.1070-1083.

[9] Vaidya, M., Walia, E.S. and Gupta, A., 2014, August. Data compression using the

Shannon-fano algorithm implemented by VHDL. In 2014 International Conference on

Advances in Engineering & Technology Research (ICAETR-2014) (pp. 1-5). IEEE.

[10] Howard, P.G. and Vitter, J.S., 1994. Arithmetic coding for data compression.
Proceedings of the IEEE, 82(6), pp.857-865.

[11] Moronfolu, D.O., 2009. An enhanced LZW text compression algorithm. Afr. J. Comp.

& ICT, 2(2), pp.13-20.

[12] Bradley, S.D., 1969. Optimizing a scheme for run length encoding. Proceedings of the

IEEE, 57(1), pp.108-109.

[13] Fitriya, L.A., Purboyo, T.W. and Prasasti, A.L., 2017. A review of data compression

techniques. International Journal of Applied Engineering Research, 12(19), pp.8956-

8963.

[14] Rochesteresti, D.A., Purboyo, T.W. and Prasasti, A.L., 2017. Comparison of Data

Compression in Text Using Huffman, Shannon-Fano, Run Length Encoding, and
Tunstall Method. International Journal of Applied Engineering Research, 12(23),

pp.13618-13622.

[15] Nandi, U. and Mandal, J.K., 2012, November. A compression technique based on the

optimality of LZW code (OLZW). In 2012 Third International Conference on

Computer and Communication Technology (pp. 166-170). IEEE.

[16] Semunigus, W. and Pattanaik, B., 2021, July. Analysis for Lossless Data Compression

Algorithms for Low Bandwidth Networks. In Journal of Physics: Conference Series

(Vol. 1964, No. 4, p. 042046). IOP Publishing.

[17] Kodituwakku, S.R. and Amarasinghe, U.S., 2010. Comparison of lossless data

compression algorithms for text data. Indian journal of computer science and

engineering, 1(4), pp.416-425.
[18] Findings from GitHub: Methods, Datasets, and Limitations.

[19] Porwal, S., Chaudhary, Y., Joshi, J. and Jain, M., 2013. Data compression

methodologies for lossless data and comparison between algorithms. International

Journal of Engineering Science and Innovative Technology (IJESIT) Volume, 2,

pp.142-147.

[20] ChenGhen, Y., Qu, Z., Zhang, Z. and Yeo, B.L., 2004, April. Data redundancy and

compression methods for a disk-based network backup system. In International

Conference on Information Technology: Coding and Computing, 2004. Proceedings.

ITCC 2004. (Vol. 1, pp. 778-785). IEEE.

Biographies

Ayushi Jain received a bachelor's degree in electronics and

communication engineering from Radharaman engineering college,

RGPV University, Bhopal Madhya Pradesh. Currently pursuing

master’s degree in Embedded systems from Symbiosis Institute of

Technology, Symbiosis International (Deemed University), Pune

Maharashtra. She is in her second year of her master’s. She is

currently working as an Automotive System Engineer Intern at

Company.

Dr. Durgesh Nandan did his Doctor of Philosophy (Ph.D.) from

Department of Electronics & Communication Engineering, Jaypee

University of Engineering and Technology, Guna, Madhya Pradesh,

India in year 2018 with the specialization in VLSI. Currently, he is

working as Assistant Professor (SG-8000 AGP), E&TC, Symbiosis

Institute of Technology, Symbiosis International (Deemed University), Pune Maharashtra.

