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Abstract.  
 

Urbanization impacts the vegetation redundancy across the globe which turns and results 

into climate change manoeuvring. The paper particularly replicates the same on the basis of 

remote sensing data of vegetation for smart city Ajmer. Ajmer city had gone under lot of 

anthropogenic construction activities and few are still going on. These betterment activities 

for city are leading and shaking the vegetal cover of city. Entire year NDVI values are 

divided in four quarters and summer season and pre-summer season have lesser values of 

NDVI as compared to monsoon and winter season.  
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1. INTRODUCTION 

The physiological needs of component species and vegetation-modified environment link 

the vegetation and environment state spaces [1]. Most forest ecosystems need vegetation. 

Soil and water conservation are crucial [2]. Urban air pollution triggers 7 million premature 

deaths every year world - wide. In light of human pollutants, urban air quality is bad [3]. 

The vegetation barrier affected pollutant deposition dynamics and amplified the effect of 

plant hurdles against air pollution [4]. It may give insights for using new road clean 

infrastructures to ameliorate air quality [5]. Land cover influences and vegetation conditions 

govern the proliferation of vegetation types and   forest sustainability includes determining 

the most effective variables [6]. Spatial and temporal soil complexity determines 

biodiversity distributions. Assessing the link between water and plants is vital for 

environmental restoration and management to show plant-environment interconnections. 

Satellite - derived datasets on growth of plants, gusto, and dynamism may be used in 

environmental monitoring, conservation of natural resources, agricultural production, 

lumber, urban green infrastructures, as well as other sectors. These categories of agricultural 

information provide a realistic framework for macro and resource management of 

agricultural production and, in many cases, crop yield forecasting and projections [7]. Non-
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destructive and noncontact remote sensing techniques capture crucial information via 

separated device (from target) for climate and environmental investigations [8]. Remote 

Sensing gets insight to response of a material with incident radiation on the basis of 

absorption, reflection, transmittance and scattering. Prospecting efforts in hyper spectral 

remote sensing platforms are indeed a vulnerable utility for land and climate monitoring 

applications like plant stress and chlorophyll content parameterization, surveillance of 

various vegetation classes along with water activity, mundialization of leaf pigment, change 

detection, and physical and biological crop yield. Spatial structural arrangement, biomass 

(live and senesced), moisture content is characterized by Leaf Area Index (LAI) in 

recognized spectral property determination by emphasizing processes for hypothesis testing 

of classified applications indulging new generation sensors like Compact Airborne 

Spectrographic Imager (CASI) and Airborne Visible Infrared Imaging Spectrometer 

(AVIRIS). In addition to that hyper spectral remote sensing provides a better approach for 

mapping, classifying, characterizing and modelling of green cover by inculcating Principal 

Component Analysis in best waveband selection. GIS helps organize, store, access, 

manipulate, update, and synthesize multi-sourced data related with geographic locations [9]. 

The Normalized Difference Vegetation Index (NDVI) is derived from the ratio of the amount 

of near-infrared light (NIR) reflected by leaf surface to the amount of red light (Red) 

reflected by leaf surface, recorded by a satellite sensor, and evaluated in a geographic 

information system (GIS) [10]. As a rule, leaves will soak up any sunlight that falls within 

the photo synthetically active radiation range. While green leaves strongly absorb blue and 

red spectral regions of incoming solar light, they do not considerably absorb NIR. This 

means that NDVI may be used to keep tabs on plant photosynthesis over time and to make 

quick work of comparing plant growth across different regions [11]. It may be used to map 

and anticipate the amount of land degradation, as well as to map and analyse the incidence 

and effect of disturbances including drought, fire, flood, and frost [12]. 

2. DATA  

This article calculates VI and NDVI for smart city Ajmer during 2003-2013. Data from the 

USGS Earth Resources Observation and Science Centre’s Land Processes Distributed 

Active Archive Centre (LP DAAC), part of NASA's Earth Observing System Data and 

Information System (EOSDIS), were utilized in this study (EROS) [13]. Canopy greenness 

is a metric of photosynthetic activity, chlorophyll, and canopy structure, and may be 

compared across space and time using MODIS vegetation indices [14]. With NOAA's 

AVHRR NDVI time series record, NDVI provides historical and climatic coherence. EVI 

diminishes oscillations between the canopy and the earth and increases sensitivity in dense 

foliage. The dynamics of vegetation on a global scale may be summed up in two 

components. Vegetation indices are calculated daily using the surface's bidirectional 

reflectance. VIs with low-quality pixels is removed by a MODIS-specific compositing 

process [15]. To composite, constrained view angle picks a pixel with one of the remaining 

high VI values (from the two highest NDVI values it selects the pixel that is closest-to-nadir) 

[16]. With the VI method, both MODIS data sets are integrated over a span of 16 days, with 

the resulting temporal resolution being improved. The latest version of Terra MODIS's 

vegetation indices (MOD13Q1) is produced every 16 days, with a spatial resolution of 

250m. Two plants are included in MOD13Q1. NOAA-AVHRR NDVI uses NDVI as its 

continuity index [17]. EVI makes it possible to detect changes in high biomass areas with 
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greater precision. A pixel's value is determined by the software and it is set to 16 days [18]. 

There were few clouds in the sky, and the NDVI/EVI values were high. Multi-day temporal 

resolution, temporal coverage beginning on February 18, 2000, worldwide coverage, 

sinusoidal coordinates, a 250m pixel size, and 12 Science Data Sets are all features of Terra 

MODIS (MOD13Q1.006-version 6) [19]. 

3. STUDY AREA 

The research region is between 26°20′ N and 26°35′ N and 74°33′ and 74°45′ E. Ajmer is 

132 kilometres from Jaipur, Rajasthan's capital, and surrounded by Aravalli hills. Ajmer is 

an important historical and educational centre in Rajasthan. 

   

Figure 3.1. Geological Location of Study Area 

Smart City has a semi-arid, hot summer and chilly winter environment, short monsoon. The 

Aravalli Mountain range in western India stretches 482 kilometres from northeast to 

southwest through Rajasthan. Ajmer district spans 8,481 square kilometres and is bordered 

by Nagaur, Jaipur, Tonk, Bhilwara, and Pali. Ajmer city is selected as study area due to 

mixed geographical conditions like hilly terrain, lake and desert area. 

4. METHODOLOGY  

The particular study of NDVI for Ajmer city using GIS and satellite data involves selection 

of Ajmer City coordinates sample along with creation of shape file of city area and buffer 

zone of 10kms. Afterwards the required data set for the time duration have been collected in 

Hierarchical Data Format (HDF) and then reformatted into Geo-TIFF format using MODIS 

re-projection tool (MRT) [20]. After quality checking and using a scale factor of 0.0001, the 

output data sets were operated under statistical analysis. 
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Figure 4.2. Methodological Layout 

5. RESULTS AND DISCUSSIONS 

Normalized Difference Vegetation Index is calculated for the period of 2000-2022 by 

examining 23 images per year. These results are divided among the four quarters in a year 

to check the monthly as well as annual comparisons. Generally, NDVI values lies in between 

-1 to 1 and same range is established in the results. Trend analysis and correlation coefficient 

with maximum, minimum, average and variance values were also calculated as in Table5.1. 

 

 

Figure 5.3. Quarter wise variation in NDVI from 2000-2022 
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After summers in all the years the average NDVI values for quarter III and IV showing 

increase on comparing previous quartes. The trend line and coffiecent of co-relations are 

0.1773 and 0.2863 for Q-3 and Q-4 while Q-1 and Q-2 are having 0.0528 and 0.0783 for 

maximum NDVI values as shown in Fig.5.1. 

Table 5.1: Annual Quarter wise distribution of NDVI 

 

Year  

NDVI values for 

Quarter-I 

NDVI values for 

Quarter-II 

NDVI values for 

Quarter-III 

NDVI values for 

Quarter-IV 

Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

2000 -0.11 0.74 0.24 -0.02 0.56 0.19 -0.20 0.66 0.35 -0.17 0.59 0.26 

2001 -0.19 0.79 0.24 0.01 0.94 0.26 -0.13 0.66 0.36 -0.07 0.56 0.27 

2002 0.04 0.77 0.25 0.09 0.60 0.23 0.09 0.66 0.29 0.07 0.57 0.21 

2003 0.11 0.75 0.21 0.03 0.54 0.23 -0.01 0.71 0.42 -0.04 0.61 0.27 

2004 -0.03 0.78 0.26 0.07 0.57 0.20 -0.05 0.69 0.38 -0.10 0.66 0.27 

2005 0.12 0.79 0.25 0.11 0.71 0.28 0.17 0.84 0.48 0.03 0.65 0.29 

2006 -0.01 0.77 0.24 0.02 0.58 0.24 0.07 0.74 0.44 0.13 0.65 0.27 

2007 0.12 0.75 0.24 -0.01 0.90 0.21 -0.19 0.79 0.47 -0.03 0.56 0.28 

2008 0.04 0.78 0.25 0.10 0.88 0.35 -0.12 0.75 0.45 0.00 0.60 0.30 

2009 0.01 0.83 0.27 0.05 0.58 0.23 -0.04 0.60 0.29 0.01 0.60 0.24 

2010 0.06 0.75 0.22 0.08 0.54 0.17 -0.19 0.76 0.54 -0.18 0.70 0.35 

2011 -0.12 0.79 0.32 0.08 0.67 0.33 -0.15 0.79 0.50 -0.12 0.60 0.31 

2012 -0.13 0.77 0.30 0.08 0.57 0.24 -0.20 0.77 0.55 -0.17 0.64 0.33 

2013 -0.17 0.75 0.32 0.02 0.79 0.33 -0.12 0.74 0.45 -0.20 0.70 0.37 

2014 -0.20 0.80 0.35 0.00 0.64 0.23 -0.20 0.80 0.53 -0.20 0.65 0.36 

2015 -0.18 0.77 0.34 0.02 0.68 0.28 -0.16 0.81 0.45 -0.18 0.66 0.32 

2016 -0.20 0.75 0.30 -0.02 0.73 0.30 0.09 0.77 0.50 -0.19 0.71 0.37 

2017 -0.15 0.80 0.34 0.10 0.74 0.41 -0.05 0.78 0.51 -0.18 0.62 0.32 

2018 -0.04 0.82 0.32 0.07 0.58 0.28 0.08 0.80 0.57 -0.11 0.63 0.37 

2019 -0.14 0.71 0.31 0.00 0.65 0.25 -0.08 0.84 0.59 -0.15 0.80 0.43 

2020 -0.15 0.80 0.40 0.09 0.64 0.35 0.08 0.82 0.59 -0.20 0.74 0.39 

2021 -0.20 0.82 0.38 0.08 0.78 0.42 -0.14 1.00 0.57 -0.17 0.80 0.45 

2022 -0.20 0.76 0.41 0.10 0.79 0.43 0.02 0.97 0.56 -0.20 0.74 0.41 

 

In the winters average NDVI values are found in Q-1 and Q-4 due to prevailing favourable 

environmental conditions for the growth of vegetation also the corelation coffiecient lies in 

the range of 0.58-062. The average NDVI values settled for all the quarters 0.3-0.85. The 
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highest values for average NDVI values lies in Q-3 and Q-4. The minimum NDVI lasted 0 

to -0.25 for Q-1, 0 to-0.5 for Q-2, 0 to -0.3 for Q-3 and 0 to -0.2 for Q-4 respectively. The 

cofficient of corelation for minimum NDVI values is highest i.e.0.3251 for Q-4 and lowest 

in the summer and post summer season 0.0122 along with 0.0888 for Q-2 and Q-3 

respectively.  
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