


Shaping the Future of IoT with
Edge Intelligence

How Edge Computing Enables the Next
Generation of IoT Applications



RIVER PUBLISHERS SERIES IN COMMUNICATIONS
AND NETWORKING

Series Editors:

Abbas Jamalipour
The University of Sydney, Australia

Marina Ruggieri
University of Rome Tor Vergata, Italy

The “River Publishers Series in Communications and Networking” is a series of
comprehensive academic and professional books which focus on communication
and network systems. Topics range from the theory and use of systems involving
all terminals, computers, and information processors to wired and wireless net-
works and network layouts, protocols, architectures, and implementations. Also
covered are developments stemming from new market demands in systems, prod-
ucts, and technologies such as personal communications services, multimedia
systems, enterprise networks, and optical communications.

The series includes research monographs, edited volumes, handbooks and
textbooks, providing professionals, researchers, educators, and advanced stu-
dents in the field with an invaluable insight into the latest research and
developments.

Topics included in this series include:-

• Communication theory
• Multimedia systems
• Network architecture
• Optical communications
• Personal communication services
• Telecoms networks
• Wifi network protocols

For a list of other books in this series, visit www.riverpublishers.com



Shaping the Future of IoT with
Edge Intelligence

How Edge Computing Enables the Next
Generation of IoT Applications

Editors

Rute C. Sofia
fortiss GmbH, Germany

John Soldatos
Netcompany-Intrasoft, Luxembourg

River Publishers



Published, sold and distributed by:
River Publishers
Alsbjergvej 10
9260 Gistrup
Denmark

www.riverpublishers.com

ISBN: 978-87-7004-027-3 (Hardback)
978-87-7004-026-6 (Ebook)

©The Editor(s) (if applicable) and The Author(s) 2023. This book is published open
access.

Open Access
This book is distributed under the terms of the Creative Commons Attribution-Non-
Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/
licenses/by/4.0/), which permits use, duplication, adaptation, distribution and repro-
duction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, a link is provided to the Creative Commons license
and any changes made are indicated. The images or other third party material in
this book are included in the work’s Creative Commons license, unless indicated
otherwise in the credit line; if such material is not included in the work’s Creative
Commons license and the respective action is not permitted by statutory regulation,
users will need to obtain permission from the license holder to duplicate, adapt, or
reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks,
etc. in this publication does not imply, even in the absence of a specific statement,
that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and
information in this book are believed to be true and accurate at the date of publica-
tion. Neither the publisher nor the authors or the editors give a warranty, express or
implied, with respect to the material contained herein or for any errors or omissions
that may have been made.

Printed on acid-free paper.

This book has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreements No. 956671 and No. 825075.



Contents

Preface xvii
J. Soldatos and R. Sofia
The Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Book Structure and Contents . . . . . . . . . . . . . . . . . . . . xix

List of Figures xxv

List of Tables xxxi

List of Contributors xxxiii

List of Abbreviations xxxix

I Edge Intelligence with 5G/6G Networks 1

1 Edge Networking Technology Drivers for Next-generation
Internet of Things in the TERMINET Project 3
Athanasios Liatifis, Dimitrios Pliatsios, Panagiotis Radoglou-
Grammatikis, Thomas Lagkas, Vasileios Vitsas, Nikolaos Katertsidis,
Ioannis Moscholios, Sotirios Goudos, and
Panagiotis Sarigiannidis
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Technology Drivers . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Software defined networking and network function
virtualization . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Beyond 5G mobile networks . . . . . . . . . . . . . 7
1.2.3 Digital twin . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 Multiple-access edge computing . . . . . . . . . . . 10

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 11

v



vi Contents

2 AI-driven Service and Slice Orchestration 15
G. Bernini, P. Piscione, and E. Seder
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Management and orchestration of 5G networks . . . 17
2.2.2 5G network slices . . . . . . . . . . . . . . . . . . . 18
2.2.3 Information models for 5G network slices . . . . . . 20
2.2.4 Management of 5G network slices . . . . . . . . . . 21

2.3 Architectural Principles . . . . . . . . . . . . . . . . . . . . 23
2.4 Functional Architecture . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Orchestration components . . . . . . . . . . . . . . 25
2.4.2 AI/ML and monitoring platform . . . . . . . . . . . 30

2.5 Example of AI/ML-based Network Slice Optimization . . . 34

3 Tactile IoT Architecture for the IoT-Edge-Cloud Continuum:
The ASSIST-IoT Approach 37
C. E. Palau, A. Fornes-Leal, I. Lacalle, P. Szmeja, M. Ganzha,
F. Konstantinidis, and E. Garro
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Concepts and Approach . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Design principles . . . . . . . . . . . . . . . . . . . 39
3.2.2 Conceptual approach . . . . . . . . . . . . . . . . . 40

3.3 Architecture Views . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Functional view . . . . . . . . . . . . . . . . . . . . 41

3.3.1.1 Device and edge plane . . . . . . . . . . . 41
3.3.1.2 Smart network and control plane . . . . . 43
3.3.1.3 Data management plane . . . . . . . . . . 45
3.3.1.4 Applications and services plane . . . . . . 45

3.3.2 Node view . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Development view . . . . . . . . . . . . . . . . . . 48
3.3.4 Deployment view . . . . . . . . . . . . . . . . . . . 49

3.3.4.1 Infrastructure and Kubernetes considerations 49
3.3.4.2 Enablers deployment . . . . . . . . . . . 50

3.3.5 Data view . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Verticals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Self-* . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Interoperability . . . . . . . . . . . . . . . . . . . . 53
3.4.3 Security, privacy, and trust . . . . . . . . . . . . . . 54

3.4.3.1 Security . . . . . . . . . . . . . . . . . . 54



Contents vii

3.4.3.2 Privacy . . . . . . . . . . . . . . . . . . . 55
3.4.3.3 Trust . . . . . . . . . . . . . . . . . . . . 56

3.4.4 Scalability . . . . . . . . . . . . . . . . . . . . . . 56
3.4.5 Manageability . . . . . . . . . . . . . . . . . . . . 57

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 57

II Artificial Intelligence of Things (AIoT) and AI at the
Edge 61

4 Machine Learning (ML) as a Service (MLaaS): Enhancing
IoT with Intelligence, Adaptive Online Deep and Reinforce-
ment Learning, Model Sharing, and Zero-knowledge Model
Verification 63
Jorge Mira, Iván Moreno, Hervé Bardisbanian, and
Jesús Gorroñogoitia
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 MLaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 MLaaS features . . . . . . . . . . . . . . . . . . . . 66
4.2.2 MLaaS architecture, services, and delivery . . . . . 68

4.3 Adaptive Online Deep Learning . . . . . . . . . . . . . . . 70
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.3 Technical solution . . . . . . . . . . . . . . . . . . 72
4.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Model Sharing, Model Translation, and Zero-knowledge
Model Verification . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 82
4.4.2 Features . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 Technical implementation . . . . . . . . . . . . . . 85
4.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Federated Learning Models in Decentralized Critical Infras-
tructure 95
Ilias Siniosoglou, Stamatia Bibi, Konstantinos-Filippos Kollias,
George Fragulis, Panagiotis Radoglou-Grammatikis,
Thomas Lagkas, Vasileios Argyriou, Vasileios Vitsas,
and Panagiotis Sarigiannidis



viii Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1.1 Definition and motivation . . . . . . . . . . . . . . 96
5.1.2 Federated learning domains . . . . . . . . . . . . . 97
5.1.3 Use cases and applications . . . . . . . . . . . . . . 98

5.2 How Federated Learning Works . . . . . . . . . . . . . . . 100
5.2.1 Overview of the architecture and process . . . . . . 100
5.2.2 Key components . . . . . . . . . . . . . . . . . . . 100

5.2.2.1 Orchestrator . . . . . . . . . . . . . . . . 101
5.2.2.2 Aggregator . . . . . . . . . . . . . . . . . 101
5.2.2.3 Worker . . . . . . . . . . . . . . . . . . . 101

5.2.3 Types of federated learning . . . . . . . . . . . . . . 102
5.2.4 Model fusion algorithms . . . . . . . . . . . . . . . 104

5.3 Federated Learning vs. Traditional Centralized Learning . . 105
5.3.1 Advantages and disadvantages of federated learning 106
5.3.2 Real-world examples of federated learning . . . . . 106

5.3.2.1 Smart farming . . . . . . . . . . . . . . . 106
5.3.2.2 Smart, sustainable, and efficient buildings 108
5.3.2.3 Industrial supply chains . . . . . . . . . . 108
5.3.2.4 Industrial infrastructures . . . . . . . . . . 108
5.3.2.5 Medical sector . . . . . . . . . . . . . . . 109

5.4 Implementing Federated Learning . . . . . . . . . . . . . . 110
5.4.1 Tools and frameworks available . . . . . . . . . . . 110
5.4.2 Challenges . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Analysis of Privacy Preservation Enhancements in Federated
Learning Frameworks 117
Z. Anastasakis, S. Bourou, T. H. Velivasaki, A. Voulkidis,
and D. Skias
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Privacy-preserving Federated Learning . . . . . . . . . . . . 119

6.2.1 Federated learning frameworks . . . . . . . . . . . . 119
6.2.2 Privacy preservation in federated learning . . . . . . 120
6.2.3 State-of-the-art approaches in privacy-preserving

federated learning . . . . . . . . . . . . . . . . . . . 122
6.2.4 Comparison of federated learning frameworks con-

sidering privacy preservation . . . . . . . . . . . . . 124
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 129



Contents ix

7 Intelligent Management at the Edge 135
Mohammadreza Mosahebfard, Claudia Torres-Pérez,
Estela Carmona-Cejudo, Andrés Cárdenas Córdova,
Adrián Pino Martínez, Juan Sebastian Camargo Barragan,
Estefanía Coronado, and Muhammad Shuaib Siddiqui
7.1 Introduction to Intelligence at 5G/6G Networks Edge . . . . 136

7.1.1 Edge automation . . . . . . . . . . . . . . . . . . . 136
7.1.1.1 State of the art . . . . . . . . . . . . . . . 136
7.1.1.2 Key enablers . . . . . . . . . . . . . . . . 137

7.1.2 Edge intelligence . . . . . . . . . . . . . . . . . . . 138
7.1.2.1 State of the art . . . . . . . . . . . . . . . 138
7.1.2.2 Key enablers . . . . . . . . . . . . . . . . 138

7.1.3 Edge computing and 5G/6G: a cloud native
architecture . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Distributed Telemetry . . . . . . . . . . . . . . . . . . . . . 140
7.2.1 Hierarchical and distributed monitoring framework . 142

7.2.1.1 Monitoring agents . . . . . . . . . . . . . 143
7.2.1.2 Aggregators – monitoring servers . . . . . 144
7.2.1.3 Centralized aggregator – monitoring server 145

7.3 AI Pipelines for the Edge-to-cloud Continuum . . . . . . . . 145
7.3.1 Native AI for distributed edge-to-cloud environments 146

7.3.1.1 Energy saving in distributed edge
computing . . . . . . . . . . . . . . . . . 148

7.3.1.2 Latency-aware AI processes in edge com-
puting . . . . . . . . . . . . . . . . . . . 149

8 IoT Things to Service Matchmaking at the Edge 157
Nisrine Bnouhanna and Rute C. Sofia
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.2 Semantic Matching and Current Approaches . . . . . . . . . 159
8.3 TSMatch, an Example of Semantic Matchmaking for IIoT . 161

8.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.3.2 Runtime . . . . . . . . . . . . . . . . . . . . . . . . 164

8.4 Semantic Matchmaking Challenges for IoT . . . . . . . . . 167
8.5 Evolving Semantic Matchmaking at the Edge . . . . . . . . 169

8.5.1 Hybrid semantic matching . . . . . . . . . . . . . . 170
8.5.2 Categorization . . . . . . . . . . . . . . . . . . . . 173
8.5.3 Tradeoff . . . . . . . . . . . . . . . . . . . . . . . . 174
8.5.4 Feedback Loop . . . . . . . . . . . . . . . . . . . . 174



x Contents

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9 A Scalable, Heterogeneous Hardware Platform for Accelerated
AIoT based on Microservers 179
R. Griessl, F. Porrmann, N. Kucza, K. Mika, J. Hagemeyer,
M. Kaiser, M. Porrmann, M. Tassemeier, M. Flottmann,
F. Qararyah, M. Waqar, P. Trancoso, D. Ödman, K. Gugala,
and G. Latosinski
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.2 Heterogeneous Hardware Platform for the Cloud-edge-IoT

Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.2.1 Cloud computing platform RECS|Box . . . . . . . . 181
9.2.2 Near-edge computing platform t.RECS . . . . . . . 182
9.2.3 Far-edge computing platform u.RECS . . . . . . . . 183

9.3 Accelerator Overview . . . . . . . . . . . . . . . . . . . . . 184
9.3.1 Reconfigurable accelerators . . . . . . . . . . . . . 186

9.4 Benchmarking and Evaluation . . . . . . . . . . . . . . . . 189
9.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . 189
9.4.2 Evaluation results . . . . . . . . . . . . . . . . . . . 191

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 194

10 Methods for Requirements Engineering, Verification, Security,
Safety, and Robustness in AIoT Systems 197
Marcelo Pasin, Jämes Ménétrey, Pascal Felber, Valerio Schiavoni,
Hans-Martin Heyn, Eric Knauss, Anum Khurshid, and Shahid Raza
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.2 Architecture Framework for AIoT Systems . . . . . . . . . 198

10.2.1 State-of-the-art for AI systems architecture . . . . . 199
10.2.2 A compositional architecture framework for AIoT . 200
10.2.3 Clusters of concern . . . . . . . . . . . . . . . . . . 200
10.2.4 Levels of abstraction . . . . . . . . . . . . . . . . . 203
10.2.5 Compositional architecture framework . . . . . . . . 205
10.2.6 Applying a compositional architecture framework in

practice . . . . . . . . . . . . . . . . . . . . . . . . 207
10.3 WebAssembly as a Common Layer for the Cloud-edge Con-

tinuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
10.3.1 Building blocks of a seamless continuum for AIoT . 210
10.3.2 WebAssembly as a unifying solution . . . . . . . . . 213
10.3.3 The case for a TEE-backed WebAssembly continuum 214



Contents xi

10.3.4 WebAssembly performance . . . . . . . . . . . . . 215
10.3.5 WebAssembly limitations . . . . . . . . . . . . . . 215
10.3.6 Closing remarks concerning the common layer . . . 216

10.4 TOCTOU-secure Remote Attestation and Certification
for IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.4.1 AutoCert – proposed mechanism . . . . . . . . . . . 218

10.4.1.1 Pre-deployment . . . . . . . . . . . . . . 218
10.4.1.2 Remote attestation . . . . . . . . . . . . . 219
10.4.1.3 TOCTOU and integrity_proof . . . . . . . 220
10.4.1.4 Verification for TOCTOU security . . . . 220

10.4.2 Implementation and experimental evaluation . . . . 222
10.4.3 AutoCert – conclusion . . . . . . . . . . . . . . . . 224

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 224

III Blockchain Solutions for Trusted Edge Intelligence in
IoT Systems 229

11 Decentralized Strategy for Artificial Intelligence in Distributed
IoT Ecosystems: Federation in ASSIST-IoT 231
Eduardo Garro, Ignacio Lacalle, Karolina Bogacka,
Anastasiya Danilenka, Katarzyna Wasielewska-Michniewska,
Charalambos Tassakos, Anastasia Theodouli, Anastasia
Kassiani Blitsi, Konstantinos Votis, Dimitrios Tzovaras, Marcin
Paprzycki, and Carlos E. Palau
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 232

11.1.1 Decentralized AI . . . . . . . . . . . . . . . . . . . 232
11.1.2 Federated learning . . . . . . . . . . . . . . . . . . 234

11.2 Federated Learning Principles . . . . . . . . . . . . . . . . 235
11.3 Federated Learning System of ASSIST-IoT Project . . . . . 236

11.3.1 FL enablers . . . . . . . . . . . . . . . . . . . . . . 237
11.3.1.1 FL orchestrator . . . . . . . . . . . . . . 237
11.3.1.2 FL repository . . . . . . . . . . . . . . . 238
11.3.1.3 FL training collector . . . . . . . . . . . . 238
11.3.1.4 FL local operations . . . . . . . . . . . . 239

11.3.2 Secure reputation mechanism for the FL system via
blockchain and distributed ledger . . . . . . . . . . 240

11.4 ASSIST-IoT FL Application in an Automotive Defect Detec-
tion Use Case . . . . . . . . . . . . . . . . . . . . . . . . . 241



xii Contents

11.4.1 Business overview and context of the scenario . . . . 241
11.4.2 Proposed solution and benefits of decentralized

learning strategy . . . . . . . . . . . . . . . . . . . 243
11.4.3 Proposed validation . . . . . . . . . . . . . . . . . . 245

11.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 246

12 Achieving Security and Privacy in NG-IoT using Blockchain
Techniques 251
Vasiliki Kelli, Anna Triantafyllou, Panagiotis Radoglou-Grammatikis,
Thomas Lagkas, Vasileios Vitsas, Panagiotis Fouliras, Igor Kotsiuba,
and Panagiotis Sarigiannidis
12.1 Introduction – What Is Blockchain? . . . . . . . . . . . . . 252
12.2 Permission-less and Permissioned Blockchain . . . . . . . . 255
12.3 Consensus Mechanisms . . . . . . . . . . . . . . . . . . . . 256
12.4 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . 258
12.5 Blockchain Applications for Security and Privacy . . . . . . 260
12.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 262

IV Novel IoT Applications at the Cloud, Edge, and
“Far-Edge” 267

13 Enabling Remote-controlled Factory Robots via Smart IoT
Application Programming Interface 269
Ivo Bizon Franco de Almeida, Rania Rojbi, Nuria Molner,
and Carsten Weinhold
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 269
13.2 IoT Application for Supply chain . . . . . . . . . . . . . . . 271

13.2.1 IoT applications in smart factories and warehouses . 271
13.3 Tactile IoT Applications . . . . . . . . . . . . . . . . . . . 273

13.3.1 Tactile Internet applications encountered in supply
chain stages . . . . . . . . . . . . . . . . . . . . . . 274
13.3.1.1 Teleoperation . . . . . . . . . . . . . . . 275
13.3.1.2 Autonomous driving . . . . . . . . . . . . 276
13.3.1.3 Industrial automation . . . . . . . . . . . 276

13.4 Industrial and Tactile Application Programming
Interface (API) . . . . . . . . . . . . . . . . . . . . . . . . 277
13.4.1 Proof-of-concept within the iNGENIOUS project . . 279

13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 282



Contents xiii

14 A Practical Deployment of Tactile IoT: 3D Models and Mixed
Reality to Increase Safety at Construction Sites 285
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The Book

In recent years, there is an on-going shift of data and applications from the
cloud to edge computing data centers and devices. Edge computing expands
conventional centralized hyperscale models to enable real-time, ultra-low-
latency applications, privacy-preserving, and energy- efficient applications.
Internet of Things (IoT) devices are the heart of the edge computing paradigm
serving as producers, consumers, and processors of large amounts of data.
Specifically, IoT devices are among the main data sources of non-trivial
cloud/edge applications such as lifestyle management applications in health-
care, predictive maintenance applications in industry, and connected car
applications in transport. Moreover, IoT devices are commonly deployed as
edge devices, i.e., they deal with data collection and data processing close to
the field. There are also cases where IoT devices, cyber−physical systems,
and smart objects (e.g., robotic cells, unmanned aerial vehicles, etc.) imple-
ment actuation functionalities that drive edge intelligence. Overall, a wide
range of IoT applications are nowadays based on cloud/edge architectures
and related deployment paradigms.

The development, deployment, and operation of IoT applications at the
edge are currently enabled by a rich set of cutting-edge digital technologies.
For instance, 5G/6G networks are commonly used to ensure high-bandwidth
and ultra-low-latency operations in an edge computing environment. Such
operations are key for supporting a host of emerging applications such as
autonomous driving and metaverse applications involving Tactile Internet
interactions. As another example, embedded machine learning and federated

xvii
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machine learning technologies enable the implementation of artificial intel-
ligence (AI) functionalities at the edge (edge AI). Edge AI functionalities
facilitate the implementation of a rich set of real-time, power-efficient, and
privacy-friendly IoT applications. There are also cases where IoT solution
integrators integrate distributed ledger technologies (DLTs) (i.e., blockchain
infrastructures) in the cloud/edge computing continuum to implement decen-
tralized intelligence use cases. The latter are usually characterized by strong
security and are particularly handy in scenarios where centralized control is
hardly possible (e.g., due to the lack of a trusted third party).

Based on the above-listed technologies, IoT developers and solution
integrators are offered with many possibilities to implement IoT applications
in-line with the cloud/edge paradigm. Specifically, they are provided with the
means for implementing different deployment edge computing configurations
that vary in terms of latency, energy efficiency, levels of data protection,
degree of decentralization, real-time performance, and other characteristics.
In this context, IoT researchers, developers, and engineers must be able to
understand the characteristics and functionalities of the various edge intel-
ligence technologies, along with their implications on the functional and
non-functional properties of IoT solutions.

This book presents the technologies that empower edge intelligence,
along with their use in novel IoT solutions. Specifically, it presents how
5G/6G, edge AI, and blockchain solutions enable novel IoT-based decentral-
ized intelligence use cases at the cloud/edge computing continuum. Emphasis
is to be paid on how these technologies support a wide array of functional and
non-functional requirements spanning latency, performance, cybersecurity,
data protection, real-time performance, energy efficiency, and more. The
chapters of the book are contributed by six EU-funded projects (H2020
ASSIST-IoT, H2020 EFPF, H2020 iNGENIOUS, H2020 IoT-NGIN, H2020
TERMINET, and H2020 VEDLIoT), which have recently developed novel
IoT platforms that enable the development and deployment of edge intelli-
gence solutions. Each one of the projects employs its own approach and uses
a different mix of networking, middleware, and IoT technologies. Therefore,
each of the chapters of the book contributes a unique perspective about the
capabilities of the enabling technologies and their integration in practical
real-life applications in different sectors. The editing of the book has been
coordinated by the H2020 EU-IoT project, which is an EU-funded coordi-
nation and support action (CSA) that is destined to support the European
IoT community and to foster the development of a strong European IoT
ecosystem. Apart from the editing of the book, EU-IoT has also contributed
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chapters about two of the ever important complementary assets that empower
the development and deployment of successful edge intelligence applications,
namely IoT business models and IoT skills. The book includes a dedicated
part that discusses these resources that complement the research and scientific
solutions.

Book Structure and Contents

The book is structured in five distinct parts. The first four focus on four
different sets of enabling technologies for edge intelligence and smart IoT
applications in the cloud/edge/IoT continuum. The fifth and final part is
devoted to business models and skills frameworks for edge intelligence
applications. Specifically, the five parts of the book and the chapters that they
comprise are as follows:

The first part of the book (Part 1) is titled “Edge Intelligence with
5G/6G Networks.” It provides insights on how the capabilities of 5G and 6G
networks boost edge intelligence and related next generation IoT applications
in the cloud/edge continuum. The first part of the book includes the following
chapters:

• Chapter 1 is titled “Edge Networking Technology Drivers for Next-
generation Internet of Things in TERMINET Project.” It provides
an overview of novel technological building blocks of future networks
that empower next-generation IoT applications. The chapter is based on
work carried out in the scope of the H2020 TERMINET project.

• Chapter 2 is titled “AI-driven service and slice orchestration.” It is
contributed to the book by the H2020 INGENIOUS project. The chapter
illustrates how AI/ML techniques can help in augmenting the network
slicing and service orchestration logic towards improving automation
and intelligence. The chapter also illustrates how AI/ML boosts self-
adaptation to satisfy the dynamics of next-generation IoT services.

• Chapter 3 is titled “Tactile IoT Architecture for the IoT-Edge-
Cloud Continuum: The ASSIST-IoT Approach” and is contributed
to the book by the H2020 ASSIST-IoT project. The chapter illustrates
an approach for the development and deployment of tactile IoT sys-
tems, which is grounded on a reference architecture that is built on
cloud-native concepts and several enabling technologies such as AI,
cloud/edge computing, 5G, DLT, and AR/VR interfaces.
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The second part of the book (Part 2) is titled “Artificial Intelligence of
Things (AIoT) and AI at the Edge.” It focuses on solutions for developing
and deploying AI systems at the edge of the network toward achieving
latency, privacy, and power-efficiency benefits. This second part of the book
includes the following chapters:

• Chapter 4 is titled “ML as a Service (MLaaS): Enhancing IoT with
Intelligence with Adaptive Online Deep and Reinforcement Learn-
ing, Model Sharing, and Zero-Knowledge Model Verification.” The
chapter describes work carried out in the scope of the H2020 IoT-NGIN
project. It presents an MLOps that leverages MLOps platform for the
delivery of intelligent IoT.

• Chapter 5 is titled “Federated Learning Models in Decentralized
Critical Infrastructure.” It focuses on federated learning solutions for
decentralized critical infrastructures (CI). The chapter highlights the
advantages and disadvantages of federated learning for CI applications
and presents practical examples of federated learning for CI protections
in different settings like power production facilities, agricultural sensor
networks, smart homes, and more. The chapter is contributed to the book
by the H2020 TERMINET project.

• Chapter 6 is titled “Analysis of Privacy Preservation Enhancements
in Federated Learning Frameworks” and reflects work carried out
in the scope of the H2020 IoT-NGIN project. It introduces privacy-
preserving techniques for federated learning systems, notably tech-
niques that enable fully private machine learning model sharing and
training.

• Chapter 7 is titled “Intelligent Management at the Edge.” It is
contributed by the H2020 IoT-NGIN project. The chapter presents dif-
ferent cloud-native technologies enabling scalable, cost-efficient, and
reliable IoT solutions. It also details various distributed and hierarchical
monitoring frameworks and metrics collection schemes that can be used
as inputs to AI engines. Moreover, the chapter discusses application
placement problems focused on delay minimization in geographically
distributed single-cluster environments.

• Chapter 8 is titled “IoT Thing to Service ML-based Semantic
Matchmaking at the Edge.” It is based on work partially carried out in
the scope of the H2020 EU-IoT and H2020 EFPF projects. The chapter
discusses the use of ML to support edge-based semantic matchmaking
toward handling large-scale integration of IoT data sources with IoT
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platforms. Emphasis is paid on how to alleviate the interoperability
challenges of this integration.

• Chapter 9 is titled “A Scalable, Heterogenous Hardware Platform
for Accelerated AIoT based on Microservers.” It presents a modular
microserver-based approach that enables the integration of different,
heterogeneous accelerators into one platform. The work benchmarks the
various accelerators considering their performance, energy efficiency,
and accuracy. It is based on work carried out in the scope of the H2020
VEDLIoT project.

• Chapter 10 is titled “Methods for Requirements Engineering, Ver-
ification, Security, Safety, and Robustness in AIoT Systems” and is
also contributed by the H2020 VEDLIoT project. The chapter presents
a scalable, heterogenous hardware platform for accelerated AIoT based
on microserver technology.

The third part of the book (Part 3) is titled “Blockchain Solutions for
Trusted Edge Intelligence in IoT Systems.” It unveils the potential benefit
of using DLT technologies for edge intelligence in IoT systems. This part of
the book comprises the following chapters:

• Chapter 11 is titled “Decentralized Strategy for Artificial Intelli-
gence in Distributed IoT Ecosystems: Federation in ASSIST-IoT”
and comprises work that has been carried out in the scope of the
H2020 ASSIST-IoT project. It presents a decentralized learning solution
for automotive and fleet management settings. The solution leverages
distributed ledger technology among other solutions to improve the
efficiency of the distributed learning paradigm, while preserving privacy.

• Chapter 12 is titled “Achieving Security and Privacy in NG-IoT
using Blockchain Techniques” and presents work carried out in the
context of the H2020 TERMINET project. It provides an overview of
blockchain’s security and privacy benefits for next-generation IoT appli-
cations. Moreover, the chapter discusses how blockchain technology
can be used in conjunction with other technologies of the cloud/edge
continuum.

The fourth part of the book (Part 4) is titled “Novel IoT Applications
at the Cloud, Edge, and Far-Edge” and focuses on the presentation of
novel IoT applications in the cloud/edge continuum, notably applications that
exhibit edge intelligence among other characteristics. This part of the book
comprises the following chapters:
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• Chapter 13 is titled “Enabling Remote Controlled Factory Robots
via Smart IoT Application Programming Interface” and reflects
work that has been carried out in the H2020 iNGENIOUS project. The
chapter provides an overview of IoT applications that comprise real-
time control, touch, and sensing/actuation. The applications are put in
the context of various industrial sectors.

• Chapter 14 is titled “A Practical Deployment of Tactile IoT: 3D
Models and Mixed Reality to Increase Safety at Construction Sites”
and is contributed by H2020 ASSIST-IoT. This chapter presents a mixed
reality application that leverages cloud/edge middleware of the ASSIST-
IoT project to enhance the safety and health of blue-collar workers at a
construction site.

• Chapter 15 is titled “Haptic and Mixed Reality Enabled Immersive
Cockpits for Tele-operated Driving” and is contributed by the H2020
iNGENIOUS project. It illustrates an approach for solving some of the
autonomous operation challenges of autonomous mobile robots and of
unmanned aerial vehicles in dynamic settings. The approach is based
on the combination of low-latency 5G-IoT networks and immersive
cockpits equipped with haptic and mixed reality devices. The chapter
explains how such devices provide intuitive feedback toward facilitating
context-aware decision making.

• Chapter 16 is titled “The EFPF Approach to Manufacturing Appli-
cations Across Edge−Cloud Architectures.” It is contributed by the
H2020 EFPF project and describes how industrial IoT systems and
technologies enable a manufacturing as a service (MaaS) paradigm. The
chapter provides insights on the integration of a diverse set of services
such as data analytics, factory connectors, and interoperable data spines
toward a high level of automation across different shopfloors.

The fifth part of the book (Part 5) is titled “IoT Skills and Business
Models.” It describes complementary assets and resources for deploying and
operating modern IoT applications. This part of the book comprises two
chapters:

• Chapter 17 is titled “The EU-IoT Skills Framework for IoT Training
and Career Development Processes” and is based on work that has
been carried out in the H2020 EU-IoT project. It introduces a skills
framework that can facilitate IoT-related upskilling and reskilling pro-
cesses. Moreover, it illustrates how the framework can be used to drive
the specification of learning paths for popular IoT skills profiles.
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• Chapter 18 is titled “Digital Business IoT Maturity Patterns from
EU-IoT Ecosystem.” It presents novel and disruptive IoT business
model practices, along with trends and patterns in different industries.
The presented patterns and best practices suggest an appropriate tool-
box for stimulating a higher degree of innovation-driven thinking and
exploitation for next-generation IoT applications. The chapter has been
authored based on work carried out in the H2020 EU-IoT project.

The target audience of the book includes:

• IoT researchers that focus on novel technologies in the cloud/edge/IoT
continuum and have a special interest in edge intelligence applications.

• Practitioners and providers of IoT solutions, which have an interest in
the development, deployment, and operation of novel next-generation
IoT use cases.

• Managers of IoT projects that need to gain insights on novel technology
enablers of IoT applications in the cloud/edge/IoT continuum.

The book is provided in an Open Access publication, which makes it
broadly and freely available to the cloud/edge computing and IoT com-
munities. We would like to thank River Publishers for their collaboration
and support in making this Open Access publication a reality. We would
also like to thank the contributing projects for their research and scientific
contributions. Moreover, we would like to acknowledge funding and support
from the European Commission as part of the seven projects that contributed
to this edited volume. We really hope that the IoT community will find this
Open Access publication useful and interesting.

John Soldatos

Route Sofia
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Abstract

The rapid growth of the Internet of Things has shaped the design and
deployment of mobile networks to accommodate the need for ubiquitous
connectivity and novel applications. The recent advancements in wireless
communications and computing technologies allow the connection of a wider
range and number of devices and systems, thereby enabling the design and
development of next-generation Internet of Things applications. However,
current networking technologies cannot accommodate the increasing number
of IoT devices as well as satisfy the heterogeneous and stringent requirements
in terms of bandwidth, connectivity, latency, and reliability. Motivated by
these remarks, this chapter aims to provide an overview of key novel tech-
nologies, which are expected to be integral components of future networks
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and can effectively address the challenges associated with satisfying the
aforementioned requirements.

Keywords: Next-generation Internet of Things, software-defined network-
ing, network function virtualization mobile edge computing, digital twins,
radio access network.

1.1 Introduction

The past couple of years have seen an increased interest in the Internet of
Things (IoT) [1]. IoT is one of the fastest evolving technologies and it is being
increasingly adopted and shaped by various industries and organizations to
push their vision. As a result, IoT is expected to be a core component of
the future Internet and has received much attention from both industry and
academia due to its great potential to deliver customer services in many
aspects of modern life. IoT enables the interconnection of various appliances
and devices to the internet, enabling them to communicate and exchange data.
This interconnected network of devices is expected to introduce substantial
changes to the ways people live and work.

The main advantage of IoT is the ability to collect, aggregate, and analyze
large volumes of data, enabling the automation of various processes or
generating useful insights that assist in the decision-making process. IoT is
being integrated into various application verticals, including smart healthcare,
smart industry, autonomous vehicles, smart agriculture, and smart cities.

The latest advancements in wireless communications and computing
technologies integrate enhanced connectivity, increased bandwidth and data
rates, and ultra-low-latency communications, making it feasible to connect
a wider range of systems and devices and enabling the realization of next-
generation IoT (NG-IoT) applications [2]. To this end, researchers have
identified a number of key challenges that have to be addressed:

1. Large data volumes and number of devices: A distinct characteristic
of IoT is the dense deployment of massive numbers of devices. These
devices generate a large volume of data that have to be efficiently
transferred and processed. The Big Data concept is concerned with how
these data are collected, stored, and processed.

2. Ubiquitous wireless connectivity: Mobile networks provide ubiqui-
tous wireless connectivity, enabling reliable communications between
humans. Consequently, they are promising candidates for the
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communications infrastructure. However, the traffic generated by IoT
devices features some special characteristics and has considerable dif-
ferences compared to traffic generated by human-to-human communica-
tions. Therefore, these attributes have to be considered during the design
and deployment of future mobile networks.

3. Interoperability: Interoperability refers to the ability of devices and
applications from different vendors to work together seamlessly. It is
considered one of the most important aspects of the IoT, as it enables
the communication and sharing of data among devices, regardless of
the manufacturer or technology they use. Key challenges in achieving
interoperability in the IoT domain include the diversity of devices and
protocols, as well as the lack of standardization in the field.

4. Energy efficiency: Energy efficiency is concerned with the minimiza-
tion of energy consumption while ensuring the provisioning of a mini-
mum quality of service (QoS). It is a critical factor in IoT, as most of
the devices have limited energy reserves. Therefore, the reduction of the
consumed energy assists in extending their operating time. Moreover,
achieving a high energy efficiency level can effectively reduce the total
network energy consumption.

5. Cybersecurity considerations: Cybersecurity considerations include
the measures adopted to protect the devices, data, and networks
from unauthorized access and cyberattacks, such as man-in-the-middle
attacks, device spoofing, and denial-of-service attacks. Cybersecurity
has become a major concern due to the increasing number of IoT
devices. Furthermore, the limited processing capabilities of IoT devices
make the deployment of advanced cybersecurity countermeasures chal-
lenging.

To address the aforementioned challenges, several technologies have
emerged. This chapter aims to provide an overview of these technologies,
describe their key features, and outline potential applications. An illustration
of the technology drivers for NG-IoT is presented in Figure 1.1.

1.2 Technology Drivers

1.2.1 Software defined networking and network function
virtualization

Software defined networking (SDN) and network function virtualization
(NFV) have revolutionized the way networks are designed, deployed, and
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Figure 1.1 NG-IoT technology drivers.

operated [3]. Traditionally, data forwarding and control mechanisms were
intertwined in every forwarding device (e.g., switch, router, firewall, etc.)
resulting in limited flexibility in terms of new functionality and freedom of
choice of hardware solutions. Each vendor offered specific tools and frame-
works rendering multi-vendor deployment a hard task for large organizations
(operational expenditure − OPEX). SDN, and, notably, OpenFlow [4], are
promising technologies that can address the challenges associated with man-
aging and operating complex networks. Consequently, service providers can
focus on developing novel and customized solutions suitable for the size,
needs, and customer profiles while maximizing the usage of networking
infrastructure.

Networking functionalities, such as firewalls and load-balancing pro-
cesses, were implemented by dedicated and expensive hardware solutions.
Also, network scalability was not particularly considered, resulting in higher
capital expenditures [5]. Moreover, the support for new protocol demands
required the replacement of existing infrastructure and time-consuming pro-
cesses. By leveraging the advancements of virtualization technologies, NFV
offers dynamic network scaling and allows for placing network functionali-
ties in the appropriate location, thereby minimizing network downtime.

The combination of SDN and NFV allows for realizing a dynamic,
efficient, and customized networking infrastructure. Network services can be
deployed easily in any part of the network and combined to form a chain of
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services [6]. Furthermore, SDN complements NFV offering a standardized
mechanism to manipulate the behavior of forwarding devices through well-
defined interfaces. The control plane can identify abnormal behavior in the
data plane and re-adjust the path flows traverse to avoid cascading effects.

Despite the fact that SDN and NFV have acted as catalysts for many
network services, current solutions are accompanied by several limitations.
The next generation of computer networks, also referred to as next-generation
SDN (NG-SDN), is characterized by fully programmable data planes offer-
ing packet-based monitoring solutions, whereas SDN and NFV will be
tightly coupled further complementing each other. Programming languages
and frameworks like P4, eBPF/XDP, and DPDK enable end-to-end pro-
grammability and experimentation with new protocols following a continuous
integration/continuous development (CI/CD) approach [7]. Additionally, net-
work functions can be, fully or partially, offloaded to programmable targets
alleviating the control plane from continuous monitoring of the data plane
state. Advances to artificial intelligence and machine learning (AI/ML) are
also reflected in the control plane through intelligent applications that utilize
the enriched statistics collected from the data plane [8], while existing SDN
controllers are updated or new ones are developed to take full advantage
of what programmable targets have to offer [9]. Frameworks like open
programmable infrastructure (OPI) aim to unify programmability across
infrastructure components (computing, AI/ML, networking, storage, etc.)
granting developers standardized mechanisms of programming the entire
infrastructure [10].

1.2.2 Beyond 5G mobile networks

5G mobile networks facilitate the design and development of applications
with highly heterogeneous communication requirements by defining specific
application classes such as enhanced mobile broadband (eMBB), ultra-
reliable and low-latency communications (URLLC), and massive machine-
type communications (mMTC). Nevertheless, the rapid growth of intelligent
and autonomous IoT networks is likely to exceed the capabilities of 5G
mobile networks.

As a result, researchers from academia and industry are focusing on the
beyond 5G (B5G) mobile networks and their accompanying technological
advances in order to prepare the way for NG-IoT development [11]. Due to
its superior features over previous network generations, such as extremely
high throughput, ultra-low-latency communications, and intelligent network



8 Edge Networking Technology Drivers for Next-generation Internet of Things

capabilities, B5G networks are expected to deliver a new level of service and
user experience in IoT networks.

• Support for massive IoT: B5G networks will enable the deployment of
a massive number of IoT devices, with the ability to deploy millions
of devices in a square kilometer. This will allow IoT applications to
be deployed in domains such as smart cities, industrial automation, and
agriculture [12].

• Ultra-reliability and low-latency communications: B5G networks
facilitate the realization of IoT-based application scenarios that require
ultra-reliability and low latency. Such application scenarios include
remote surgery, virtual and augmented reality applications, autonomous
vehicles, and intelligent industrial robotics [13].

• Seamless wireless protocol integration: The integration of various
wireless protocols will assist in achieving the stringent requirements of
NG-IoT. For example, the integration of Wi-Fi and B5G protocols will
enable the leverage of the high-capacity links of Wi-Fi and the enhanced
coverage of mobile networks. Moreover, additional wireless protocols
can be integrated, with each one introducing different advantages, such
as Bluetooth low energy (BLE), LoRa, etc.

• High-frequency communication: High-frequency communication
refers to the use of higher frequency bands in wireless communications,
such as millimeter wave (mmWave) and terahertz (THz) frequencies
[14], [15]. The mmWave range includes frequencies in the range of
30−300 GHz, while the THz range includes frequencies between 100
GHz and 10 THz. These frequencies offer a much larger bandwidth
compared to traditional mobile network frequencies. As a result, larger
numbers of devices can be accommodated and very high data rates
can be achieved. However, these signals are more susceptible to obsta-
cles such as trees and buildings, making the deployment of such
high-frequency networks more challenging.

• Novel radio access schemes: Radio access schemes are a key compo-
nent of wireless communication systems, as they manage the use of
the limited radio frequency (RF) spectrum. Due to the massive con-
nectivity and low-latency requirements, several radio access schemes
have emerged, such as the non-orthogonal multiple access (NOMA)
and grant-free (GF) access schemes. NOMA schemes aim to schedule
multiple devices over the same radio resources, while GF schemes allow
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devices to transmit their data without having to request radio access
beforehand, effectively reducing latency [16].

• Reconfigurable intelligent surfaces: Reconfigurable intelligent sur-
faces (RIS) enable the manipulation of electromagnetic signals through
a large number of passive, programmable, and low-cost elements [17].
These elements are able to control the absorption, refraction, and reflec-
tion of the signals, therefore reducing the signal fading, reducing the
required transmission power, and enhancing the spatial spectrum reuse.
Moreover, RIS reduce network expansion costs, as they mitigate the
need to deploy more base stations for providing coverage to devices
located at the network edge or behind obstacles.

1.2.3 Digital twin

The digital twin concept enables the digital representation of a physical object
or system. A digital twin is generated by accumulating data from sensors on
the physical device or system and utilizing that data to construct a virtual
model of the real device or system [18]. The digital system coexists with the
physical one as the two systems are interconnected through reliable and low-
latency links. Real-time data transfers between physical and digital systems
provide synchronized and coherent operation of the physical and virtual
counterparts [19].

This enables the implementation of various simulation scenarios and
analyses using this model for evaluating the possible outcomes, prior to their
actual application in the real world. Consequently, digital twins can be used
to construct digital representations of IoT devices and/or networks, in order
to monitor, control, and assess the performance of the device/system in real
time. Digital twins can be used in a variety of applications and scenarios
including the following:

• Virtual prototyping: The digital twin of a device can be used for testing
and assessing various design options, leading to an optimal design of
the final product before its construction. This can effectively reduce the
overall manufacturing time, as well as the associated testing costs.

• Predictive maintenance: By monitoring the performance of a device
or system over time, the digital twin can be used to predict when
maintenance is needed and to schedule maintenance at the most optimal
time. Moreover, “what-if” scenarios can be simulated in order to find the
best course of action with respect to the object’s maintenance.
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• Building automation: Typically, buildings consist of various compo-
nents from different domains, including ventilation, heating, energy,
mechanics, and plumbing. The digital twin of a building, a building
complex, or a whole city can effectively facilitate building/city man-
agement and mitigate the environmental footprint (i.e., realizing a green
building).

1.2.4 Multiple-access edge computing

Multi-access edge computing (MEC) is an emerging paradigm that attempts
to converge telecommunication and IT services by delivering a cloud comput-
ing platform at the network edge [20]. MEC provides storage and computing
resources at the network’s edge, therefore lowering latency for mobile end
users and maximizing the utilization of mobile backhaul and core networks.
Consequently, MEC enables the development of a wide range of novel
applications and services and the introduction of new business models. Key
applications enabled by the MEC include the following:

• Computation offloading: Computationally intensive applications such
as augmented and virtual reality applications require large data volumes
to be transmitted and processed in real time. As a result, the conventional
approach of transmitting and routing the data to datacenters with ample
computing resources cannot ensure the real-time constraint. Computa-
tion offloading enables resource-constrained devices to partially or fully
offload computationally intensive tasks to the computation resources
offered by MEC, thereby reducing the processing time, increasing bat-
tery lifetime, and enhancing the network’s energy efficiency [21], [22].
Additionally, as the processing takes place at the network edge, the
communication and latency overheads are mitigated.

• Next-generation Internet of Things: Traditional IoT application sce-
narios involve aggregating large data volumes and forwarding them
to a cloud environment for further processing. However, emerging
next-generation IoT applications have increased constraints in terms
of latency and reliability (e.g., autonomous vehicle scenarios). MEC
can facilitate the deployment of storage and computing resources in
close proximity to the devices, ensuring both redundancy and fast
responses to device requests [23]. For instance, MEC is a key enabler for
vehicle-to-infrastructure and vehicle-to-vehicle communications. Vehi-
cles connected through the distributed MEC nodes can send and receive
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real-time information, such as traffic congestion and warnings from
other vehicles.

• Content delivery and caching: Image and video sharing constitute
a large portion of mobile traffic. Such content is stored in datacen-
ters and is distributed to the users through content delivery networks
(CDNs). Nevertheless, there may be a lack of content in the proximity
of the users, resulting in increased buffering time and lower quality of
experience (QoE). To this end, MEC can effectively assist in realizing
a distributed CDN by also taking into consideration information and
context about the users in the proximity [24], [25].

1.3 Conclusion

The rapid expansion of the IoT considerably affects the planning of networks
in order to satisfy the need for ubiquitous connectivity, increased data rates,
and low-latency communications. NG-IoT is considered an evolution of the
conventional IoT paradigm that is enabled by the latest advancements in
wireless communications and computing technologies. NG-IoT allows the
design and development of innovative services and applications.

NG-IoT applications feature heterogeneous and stringent requirements in
terms of latency, reliability, and connectivity. To this end, various technolo-
gies and frameworks have emerged, aiming to address these requirements
and the associated challenges. This chapter provided an overview of key
technology drivers, namely the NG-SDN, NFV, B5G mobile networks, digital
twins, and MEC, by presenting the main principles and outlining several
application scenarios. These technologies are expected to be core components
of future networks and facilitate the development of novel applications and
services.
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Abstract

Current MANO solutions and existing tools for network slicing and service
orchestration are still implemented as silo-based control and orchestration
tools, mostly addressing the coordination of monolithic pipelined services
that cannot be easily and transparently adapted to dynamic NG-IoT network
and service conditions. Lack of agility and flexibility in the service and
slice lifecycle management, as well as in the runtime operation, is indeed
still an evident limitation. A tight integration of AI/ML techniques can help
in augmenting the slice and service orchestration logics automation and
intelligence, as well as their self-adaptation capabilities to satisfy NG-IoT
service dynamics.

Keywords: NG-IoT, 5G, network slicing, orchestration, 3GPP, artificial
intelligence, machine learning.

2.1 Introduction

In general, a 5G network infrastructure that provides an end-to-end connec-
tivity service in the form of a network slice to the end users requires proper
resource allocation and management. The allocation and the management of
these resources become critical, especially when the number of user equip-
ment (UE) starts to increase. To this end, the next-generation IoT (NG-IoT)
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network slice orchestration supported by an artificial intelligence/machine
learning (AI/ML) platform plays a crucial role, performing semi-automated
decisions on resource allocation and management.

With 5G, the telecommunication industry is more and more looking at
comprehensive management and orchestration (MANO) solutions to ease
the deployment of heterogeneous vertical services and network slices across
several technology domains. The concept of network slicing allows to
jointly orchestrate resources (network, computing, and storage) and network
functions (NFs) (virtualized or physical), which are managed and deliv-
ered together to instantiate and compose network services over a shared
infrastructure. Network slices can be dynamically created and customized
according to the requirements of the services that will run on top of them,
for example, in terms of resource or function isolation and quality of service
(QoS) guarantees. This has been considered in the iNGENIOUS project [1],
where heterogeneous IoT network technologies and devices are required to
interoperate with the 5G network to provide smart and innovative supply
chain and industrial IoT services.

Current MANO framework solutions and existing tools for network
slicing and NFV network service orchestration are still implemented as silo-
based control and orchestration tools, mostly addressing the coordination
of monolithic pipelined services that cannot be easily and transparently
adapted to changing network and service conditions. Lack of agility and
flexibility in the service and slice lifecycle management is still an evident
limitation, thus requiring ad-hoc solutions and customizations for addressing
the challenging NG-IoT time sensitive networking and ultra-low-latency
requirements. Moreover, a full integration of 5G new radio (NR), NG-IoT,
and edge computing technology domains is not yet achieved when it comes
to deploying end-to-end network slices. Moreover, the overall capability of
such orchestration approaches to fulfill heterogeneous service constraints
and requirements still needs to be proved, as it often requires per-service
customizations and human-driven adjustments to support end-to-end deploy-
ments. In addition, the adoption of AI/ML technologies for cognition-based
optimizations, including their interaction across the different technological
domains (e.g., network related, edge computing related, cloud computing
related, etc.) and their tight integration with the service and slice lifecycle
management is still at its early stages.

The current MANO coordination functionalities are highly linked to static
internal coordination and orchestration logic. The management operations
at different levels follow the workflows, which MANO is responsible for



2.2 Related Work 17

implementing. This results in lack of flexibility because when either minor
adjustments are needed or unplanned events occur, MANO remains strict to
its static coordination and orchestration logic. In this context, a tight inte-
gration with AI/ML techniques could address this kind of problem. AI/ML
algorithms generally do not follow the if−then approach, but they are able
to “learn” from past experience and, in some cases, take decisions. For the
aforementioned reasons, in the iNGENIOUS project, one key innovation for
what concerns the orchestration aspects is the intelligent management and
orchestration of network resources for the NG-IoT ecosystem. In this context,
since the resource demand could be fluctuating during a time period and at
the same time the high-level requirements must be satisfied, a semi-automated
decision-based approach comes into place.

2.2 Related Work

2.2.1 Management and orchestration of 5G networks

The 3GPP TSG-SA WG 5, responsible for the aspects related to management,
orchestration, and charging of 5G networks, has defined a generalized mobile
network management architecture in the 3GPP TS 28.500 specification [2].
The architecture, depicted in Figure 2.1, involves a 3GPP management system
with a network manager (NM) and element manager (EM) that control the
elements composing a 5G network, where each of them can be deployed
as a physical network function (PNF) or a virtual network function (VNF).
The presence of VNFs in the 5G mobile network introduces the need of a
management and orchestration (MANO) framework responsible for their pro-
visioning, configuration, and, more in general, for their lifecycle management
(LCM), in cooperation with the 3GPP management system.

The MANO framework is based on the architecture defined by the ETSI
NFV ISG for the NFV-MANO [3] and includes the three elements of the
NFV orchestrator (NFVO), VNF manager (VNFM), and virtual infrastructure
manager (VIM). In this scenario, the NM of the 3GPP management system
is part of the operations support system/business support system (OSS/BSS)
and interacts with the NFVO to request the provisioning and drive the man-
agement of the NFV network services composed of the VNFs that build the
mobile communication network.

The adoption of virtualized functions as elements of the mobile net-
work brings higher degrees of dynamicity and flexibility in the 5G network
deployment. It also enables a number of features in its management and
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Figure 2.1 Mobile network management architecture – interaction between 3GPP manage-
ment system and NFV-MANO framework [2].

operation, including dynamic instantiation, automated scaling, optimization,
and healing. Such functionalities can be driven by an external management
logic and actuated through the NFV orchestrator, with the cooperation of
VNFM and VIM for the configuration of virtual functions and the control
of the virtual resource allocation, respectively.

2.2.2 5G network slices

The network slicing concept has been introduced in 5G networks to allow the
operators to effectively share their own infrastructure, creating multiple con-
current logical partitions, i.e., the network slices. Network slices can be easily
customized according to the business requirements of their customers or the
technical requirements of their services. Network slices can be differentiated
and updated independently, offering various degrees of isolation, and they can
be adapted in terms of mobile connectivity, virtual functions, or computing
and storage resources.

Network slices can be easily configured to offer dedicated communication
services to the verticals, e.g., customized on the basis of their production
requirements. For example, ultra-reliable and low-latency communications
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(URLLCs) meet the requirements of the production lines automated control in
Industry 4.0 and smart factory scenarios. Massive Internet of Things (mIoT)
communications are particularly suitable to manage huge amounts and high
density of IoT sensors and actuators. Enhanced mobile broadband (eMBB)
communications are the enablers for video producing and broadcasting,
offering high data rates in both uplink and downlink directions. Vehicle-to-
everything (V2X) communications support high-bandwidth, low-latency, and
high-reliable interactions among moving (autonomous) vehicles and different
entities such as other vehicles, pedestrians, etc.

The concept of network slicing is introduced in the 3GPP TS 23.501 [4]
specification, where a network slice is defined like a logical network that
provides specific network capabilities and characteristics. A network slice
instance (NSI) consists of a set of network functions (NFs), with their own
computing, storage, and networking resources. An NF can be implemented
within an NSI as a PNF running on dedicated hardware or as a VNF instan-
tiated over a computing shared infrastructure, e.g., on the cloud. In a 5G
network, an end-to-end NSI includes the NFs related to control and user
planes of the 5G core network, as well as next-generation RAN (NG-RAN)
functions for the 3GPP mobile access network.

Network slices can be differentiated in terms of network functions and
network capabilities, according to a number of major categories defined
through a slice/service type (SST) including eMBB, URLLC, mIoT, and
V2X. A network operator can thus instantiate multiple NSIs with their
specific SST to differentiate the business offer toward its own customers.
Moreover, multiple NSIs with the same SST can be instantiated and reserved
to different customers to better guarantee their traffic QoS, isolation, and
security.

The 3GPP TS 28.530 specification [5] defines the major concepts related
to the management of a network slice to support specific types of communi-
cation services (CS), or vertical services. The network slice is presented as
a logic network, including the related pool of resources, which enables the
delivery of a CS on the basis of its characteristics and requirements (e.g.,
maximum latency and jitter, minimum data rates, density of UEs, coverage
area, etc. Different types of CS can be supported through dedicated NSIs. An
NSI can support one or more instances of CS. Moreover, an NSI is formally
modeled as an end-to-end network slice subnet instance (NSSI), which in
turn can include multiple NSSIs (see the network slice information model in
Section 2.2.1 for further details). In particular, the figure shows a common
pattern of network slice modeling, with the end-to-end NSSI composed of
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two lower level NSSIs: the former related to the 5G core network (CN)
and the latter related to the access network (AN). Each of them includes
the related NFs, which communicate through the underlying connectivity
provided by the transport network (TN). In other terms, an NSSI represents a
group of NF instances (together with their own resources) that implement a
part of the NSI. Through this concept, it is possible to manage the set of NF
and related resources as an atomic element, independently on the rest of the
NSI.

2.2.3 Information models for 5G network slices

The information model of an NSI is defined in the 3GPP TS 28.541 [6], as part
of the 5G network slice resource model (NRM). The model, represented in
Figure 2.2, highlights how an end-to-end network slice, composed of several
network slice subnets, can be deployed through a number of NFV network
services and (virtual) network functions.

A network slice is associated with an end-to-end network slice subnet that
defines the slice’s internal elements and their interconnectivity, together with
a set of service profiles describing the service requirements. Example of ser-
vice profile parameters includes maximum number of UEs, service coverage

Figure 2.2 Structure of network slices and network slice subnets in network services and
virtual network functions [6].
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area, maximum latency, per-slice and per-UE throughput in uplink and down-
link, maximum number of allowed connections, jitter, UEs’ maximum speed,
etc.

On the other hand, an NSD represents the topology of a network service,
identifying its internal network functions (through references to the VNF
and/or PNF descriptors) and describing how they are interconnected through
the virtual links. Moreover, the NSD also defines the logic of the commu-
nications among the network functions, describing how the traffic should be
forwarded through the sequence of functions. This aspect is defined through
the “VNF forwarding graph,” which indicates the sequence of VNFs, and the
related “network forwarding path,” which describe the traffic flows and their
L2/L3 classifiers.

The 3GPP information model reported in Figure 2.2 captures the internal
technical details of a network slice instance, identifying its components and
their connectivity. However, when exposing the generic characteristics of a
network slice toward external entities (for example, in case of network slice
offers to potential customers), it is useful to refer to a “network slice template”
that describes the slice capabilities through a more abstract model that hides
its internal details and the operator implementation choices. In this case, the
slice can be defined through the “generalized network slice template” (GST)
[7] defined by the GSM association (GSMA).

2.2.4 Management of 5G network slices

The 3GPP TR 28.801 specification [8] defines the high-level functional archi-
tecture for the management of network slices in support of communication
services, identifying the three functional elements of the communication
service management function (CSMF), network slice management function
(NSMF), and network slice subnet management function (NSSMF).

At the upper layer, the CSMF is responsible of processing the requests
for new CS and manages the CS instances provided by a network opera-
tor. The CSMF translates the CS requirements into a set of network slice
characteristics, e.g., defining the SST, the required capacity of the mobile
connectivity, the QoS requirements, etc., and interacts with the NSMF to
request the creation of the related NSI.

The NSMF is responsible for the management and end-to-end orches-
tration of NSIs, on the basis of the requests received from the CSMF. The
NSMF splits the NSI into its internal NSSIs, according to the NEST, and
manages their lifecycle. Therefore, the NSMF is the entity that takes decisions



22 AI-driven Service and Slice Orchestration

about the composition of a NSI, including the re-usage of pre-existing
NSSIs that can be shared among multiple NSIs, and the coordination of
their provisioning, scaling, and/or configuration. The actuation of these deci-
sions is then related to the NSSMFs, which are finally responsible for the
management and orchestration of each NSSI.

As analyzed in the 3GPP TS 28.533 specification [9], which defines
an architecture of the 3GPP management system designed following the
service-based architecture (SBA) pattern, a typical deployment of the 3GPP
management system is structured with domain-specific NSSMFs, related to
the RAN, the CN, or TN domains. Such NSSMFs are customized according
to the specific requirements and technologies adopted in their own target
domain. As detailed in Section 2.4, the iNGENIOUS end-to-end network
slice orchestration architecture follows a similar approach introducing ded-
icated NSSMF to handle the RAN, 5G core, and transport domains, as shown
in Figure 2.3.

3GPP standards do not mandate any specific implementation of the
NSMF and NSSMF components. However, the 3GPP TR 28.533 specifica-
tion [9] proposes a deployment option, widely used in production infrastruc-
tures, where the management of the network slices and slice subnets lifecycle

Figure 2.3 Hierarchical interaction between NSMF and per-domain NSSMFs [9].
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is handled through an interaction with the NFV MANO system, where
the NFV orchestrator is responsible for the lifecycle of the NFV network
services associated with the NSSIs. The orchestration solution proposed by
iNGENIOUS is aligned with this approach and relies on the NFV MANO
for the instantiation and lifecycle management of the virtual functions related
to the 5G core network and to the application services within the end-to-end
network slices.

2.3 Architectural Principles

The end-to-end network slice orchestration framework solution proposed
by the iNGENIOUS project has been conceived to satisfy the following
architectural principles:

• Principle #1: The end-to-end network slice orchestration architecture
should follow the global structure of the 5G system defined in the 3GPP
specifications and make use of the latest technologies and architectures
in the area of network function virtualization.

• Principle #2: The end-to-end network slice orchestration architecture
should be aligned with the major 3GPP and ETSI standards in terms
of functional architecture and interfaces with the aim of facilitating
interoperability and integration with 5G infrastructure deployments.

• Principle #3: The design of the end-to-end network slice orchestration
framework should maximize the re-use of existing architectural com-
ponents from 3GPP and ETSI NFV specifications, e.g., in terms of
management functionalities, MANO components, etc. When new func-
tions or components are required, their interfaces should be designed to
facilitate their integration with the existing standard frameworks.

• Principle #4: The end-to-end network slice orchestration should be
augmented with closed-loop functionalities to achieve a high degree
of automation in service and network slice operation. The integra-
tion of AI/ML solutions and technologies should be considered to go
beyond current reactive closed-loop approaches in favor of proactive
optimization solutions.

• Principle #5: The end-to-end network slice orchestration architecture
should enable the implementations of its components as cloud-native
services, easing the deployment in edge and cloud environments, in a
modular, dynamic, and orchestrated way.
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• Principle #6: The end-to-end network slice orchestration framework
should make use of open interfaces and APIs to facilitate its integration
with third-party systems and avoid vendor lock-ins.

• Principle #7: The design of the end-to-end network slice orchestration
architecture should follow a modular pattern that enables its applicability
to multiple use cases and deployment scenarios. It should facilitate
composition and customization of the functional blocks according to
accommodate specific requirements of the target use-case domains and
required features.

2.4 Functional Architecture

The main principles and motivations described in the previous section led to
the specification of the end-to-end network slice orchestration framework.
In Figure 2.4 is available a mapping between the functional architecture
described in the 3GPP TR 28.801 specification (Figure 2.4(a)) and the pro-
posed high-level architecture of the end-to-end network slice framework,
which is assisted by cross-layer AI/ML functionalities in support of the
network slice operations (Figure 2.4(b)).

Figure 2.4(b) shows the three main functional blocks, namely vertical
service management function (VSMF), network slice management function
(NSMF), and network slice subnet management function (NSSMF), which
play a specific and crucial role in the proposed orchestration framework. In
particular, the VSMF layer is in charge of the lifecycle of vertical service
instances, i.e., a service with high-level requirements. The VSMF translates
the vertical service requirements into end-to-end network slice requirements.
The NSMF layer is in charge of the lifecycle of end-to-end network slices.
Furthermore, the NSMF interacts with different NSSMFs. The NSSMF layer
is in charge of managing the specific lifecycle of the network slices subnet.
This layer can include multiple instances of NSSMFs, one specific for each
network domain (e.g., RAN, transport, core, etc.).

The number and type of end-to-end network slices applicable and suitable
for a given vertical service strictly depend on its high-level requirements and
application scenario. For instance, a URLLC and eMBB end-to-end slices
can coexist on the same physical network infrastructure. The former can be
referred to as an industry 4.0 scenario (e.g., robot communication service),
while the latter as a video streaming communication service with a fixed QoS
(e.g., video resolution).
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(a) (b)

Figure 2.4 End-to-end network slice orchestration high-level architecture supported by
AI/ML platform.

From an architectural perspective, the orchestration framework uses a
cross-layer approach, meaning that each functional component described
above is dedicated to manage and coordinate specific service, network slice,
and resource operations, with tight cooperation to fulfill end-to-end and cross-
layer consistency. The information available at the VSMF level is kept at the
service level only, with abstraction in terms of network slice and resource
details. On the other hand, at the NSSMF level, the information managed
is technology- and vendor-specific. Therefore, the end-to-end network slice
orchestration framework implements different mechanisms for translating the
high-level requirements into technology- and vendor-specific requirements.
The end-to-end orchestration framework is also supported by an AI/ML
platform to execute some automatic decisions in the operation of vertical
services and network slices.

In the following sections, the main components of the proposed archi-
tecture (already briefly described above) are detailed. In particular, for each
component, the related functional decomposition is presented, including the
information managed and the interaction with other layers.

2.4.1 Orchestration components

This section describes the internal components of the end-to-end network
slice orchestration framework. Figure 2.5 depicts the functional architecture
of the end-to-end network orchestration framework, derived from the high-
level view of Figure 2.4. In particular, the 3GPP CSMF functionalities are
realized by the vertical service management function (VSMF), the 3GPP
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Figure 2.5 High-level software architecture end-to-end network orchestration framework.

NSMF functionalities are realized by the end-to-end NSMF, and finally the
3GPP NSSMF layer is mapped into multiple specific technology-tailored
NSSMFs.

After a brief description of the network slice related data models sup-
ported by the end-to-end orchestration framework (which is key to capture
how the various entities managed are modeled), the following sub-sections
detail the functional decomposition and internal design of the VSMF, NSMF,
and NSSMF components.

Data models:
The end-to-end network slice orchestration stack introduced above sup-

ports a multi-layered data model. This is used by each orchestration compo-
nent to drive the lifecycle management operations and derive any requirement
concerning services and network slices, and thus enforce the proper actions
and invoke primitives in the lower layer components.

At the upper layer of the orchestration stack, the VSMF implements
two different data models: the vertical service blueprint (VSB) and the
vertical service descriptor (VSD). Both data models are based on a non-
standard information model defined as part of the vertical slicer (the baseline
Nextworks software stack used for the end-to-end network slice orchestrator
[10]) and represent respectively a class of vertical services (VSB) and a spe-
cific vertical service belonging to a certain class (VSD). The VSB describes
a vertical service through service parameters defined according to digi-
tal/communication service providers’ knowledge. Indeed, it provides a high-
level description of the service that does not include infrastructure-related
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information. The VSD is obtained from a VSB, when a vertical consumer
selects a class of service (i.e., a VSB) and produces a vertical service descrip-
tion by specifying certain value of the VSB parameters, which may include
resource specifications, QoS and geographical constraints, number of users
consuming the service, and also reference to specific vertical functions.

As anticipated above, at the NSMF and NSSMF levels, two different
network slice data models are supported: the 3GPP network slice template
(NST) and the GSMA GST. The latter is then called network slice type
(NEST) once its attributes have been assigned proper values for a given
service. The GSMA NEST allows the description of a network slice through
value assignment according to the GSMA GST (GSMA, 2020). The main
requirements expressed through the NEST consist of a list of 5G quality
of service (QoS) indicators (5QI), which are subsequently mapped into
NST’s parameters that determine the type of the network slice. In particular,
such 5QIs are used in the GST-to-NST translation process to determine the
3GPP-based service profile specified in the NST.

The 3GPP NST describes a network slice according to the attributes
defined by the 3GPP network slice NRM [6], which provides network require-
ments and related resources’ configuration. In particular, the NST, whose
simplified class diagram is shown in Figure 2.6, contains a list of service
profiles, each of them specifying the network slice type and the related

Figure 2.6 Network slice simplified class diagram.
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QoS and service attributes (e.g., the latency, the maximum number of UE,
the maximum supported packet size, etc.). In addition to the list of service
profiles, the NST contains a reference to a network slice subnet (NSS) that
can be represented through a NSS template (NSST) as part of the overall
NST data model. The NSST contains a list of slice profiles, each of them
representing the required properties of the NSS. The slice profile contains
QoS attributes, similar to the service profile, and a list of performance require-
ments. The attributes included in the performance requirements depends on
the type of the NSS. For instance, if the network slice type is URLLC, the list
of performance requirements will contain parameters like the E2E latency,
the jitter, the message size byte, and the communication service availability
target. For eMBB network slices, the list of performance requirements can
contain attributes like the experienced data rate, the area traffic capacity
downlink, and the area traffic capacity uplink. Finally, two other attributes
contained inside the NSST are a reference to a list of NSSTs and a network
service descriptor (NSD) info field, which refers to the NFV network services
that may be included into the NSS.

Vertical service management function:
As already mentioned, the VSMF is in charge of managing the requests of

vertical service lifecycle management exploiting the related data model, i.e.,
the vertical service blueprint (VSB) and vertical service descriptor (VSD).
Specifically, the VSB is a template used for representing a class of services.
It contains parameters like the number of users, covered geographical area
by the service, and so on. VSD is the parametrization of the defined VSB,
specifying for instance the actual number of users the service, the actual
geographical area where the service would be deployed, and so on.

In general, each vertical service is associated with a tenant that represents
the vertical consumer/customer of the orchestration platform. However, each
tenant has a maximum amount of resources for the vertical service provision-
ing defined within a service level agreement (SLA). Therefore, the VSMF
implements operations to manage the tenant according to its specific SLAs
information.

In general, the main aim of the VSMF is to manage the lifecycle of
multiple vertical services in a seamless way. For this reason, different func-
tionalities are supported by its internal components. The two main entities
that interact with the VSMF at its northbound are: the network/admin oper-
ator for managing the onboarding of VSBs, and the configuration of the
tenants and related SLAs; the vertical consumer/customer (i.e., the tenant)
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for requesting lifecycle operations of vertical services (e.g., instantiation,
modification, termination, etc.).

Network service management function:
The NSMF is mainly responsible for managing the lifecycle of end-to-

end network slices, according to the requirements and capabilities expressed
in the generalized network slice template (GST) and network service template
(NST).

As already described, the GST defined by GSM Association (GSMA)
contains a set of attributes for defining a generic network slice regardless
of the technology used for the network slice provisioning itself. The GST
results in a NEST when GST’s attributes are associated with a specific
value [7]. Similarly, the NST and NSST, in compliance with the 5G NRM
[6] (also detailed in Section 2.2.1), describe through an abstract model the
slices’ capability, without explicitly stating the internal technical details of
the network slice itself. GSTs, NSTs, and NSSTs drive the whole lifecycle
management of end-to-end network slices, implemented by the different
components available within the NSMF.

Network slice subnet management function:
The NSSMF layer is a collection of different NSSMFs. Depending on the

specific deployment scenario and specific 5G network infrastructure where
the orchestration framework operates, the number and the type of NSSMFs
can change. In the case of iNGENIOUS, the high-level architecture of the
NSSMF layer is depicted in Figure 2.7.

Each specific network domain implements its own mechanisms, data
models, REST APIs, and workflows for allocating computing and network

Figure 2.7 High-level architecture of NSSMF layer.
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resources. For this reason, a tailored NSSMF implementation is needed
to deal with the domain-specific controllers or local orchestrators, such as
NFVOs, RAN controllers, SDN controllers, etc. Furthermore, the technical
details of the domain are hidden by an abstraction layer each NSSMF provide:
this approach allows the NSMF to deal transparently and uniformly with all
the NSSMFs, providing flexibility to the NSMF perspective.

All NSSMFs follow a generic and unified functional decomposition,
which aims at providing a set of common functionalities, which include: a
northbound interface (NBI) for exploiting the NSSMF functionalities and for
receiving subnet slice related requests (e.g., REST APIs), a core NSSMF ser-
vice for validating and dispatching the requests into an event bus, publishing
them as events, an event bus to allow communications among components
using a topic-based and publish−subscribe mechanisms, an NSSMF handler
to receive and process multiple requests and realizes the internal logic of the
NSSMF.

From a software implementation perspective, each specialized NSSMF
has its tailored realization: internal logic of NSSI provisioning, payload infor-
mation model, and workflow interactions with the corresponding network
domain controllers/orchestrators strictly depend on the technology, vendor,
and interfaces supported. Some examples of NSSMFs developed in the
context of the iNGENIOUS project are: O-RAN NSSMF, providing the trans-
lation of slice profiles into O-RAN A1 policies and A1 policy management
operations in the O-RAN near real-time RAN intelligent controller (RIC); 5G
Core network NSSMF, providing automated LCM, and configuration of 5G
Core NFV network services through ETSI OSM [11]. The network service
contains a 5G Core instance consisting of the control plane and user plane
network functions of a 5G Core; service application NSSM, providing auto-
mated LCM and configuration of NFV network services modeling service
virtual applications through ETSI OSM [11].

2.4.2 AI/ML and monitoring platform

As anticipated above, beyond the pure orchestration features, the iNGE-
NIOUS end-to-end orchestration framework will provide closed-loop func-
tionalities through the integration of a dedicated AI/ML and monitoring
platform. First, the implementation of a closed-loop concept to fully automate
the runtime optimization and adaptation of network slices requires knowledge
on status and performance of (at least) the various involved NFs, network
and computing resources. For this, specific monitoring capabilities have to
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be considered as key to collect and store relevant data on how the provi-
sioned network slice instances (and the related resources) behave. Moreover,
with the aim of going beyond the traditional reactive approach in fault and
performance management, iNGENIOUS targets the implementation of pre-
dictive, proactive, and automated network slice runtime operation. For this,
the end-to-end network slice orchestration framework makes use of AI/ML
techniques to assist the decision-making processes mostly at the network slice
management (and thus NSMF) level.

Therefore, the end-to-end network slice orchestration framework relies on
an AI/ML and monitoring platform that is designed with the main purpose of
supporting automated lifecycle management procedures for the optimization
of network slices related resources (both network and computing). In practice,
it aims at collecting metrics and information from heterogeneous resources,
providing a variety of data inputs to AI/ML-based analytics and decision
algorithms that can feed and assist the NSMF. The proposed platform is kept
agnostic with respect to the specific algorithms consuming the monitoring
data and provides two ways for accessing the data. First, it offers query-based
access to retrieve historical or periodical data, for example, for the training of
ML models. Second, it implements a subscribe/notify mechanism that allows
to access streams of real-time data and can be used for real-time inference.

Figure 2.8 shows the high-level functional architecture of the AI/ML and
monitoring platform. It is implemented through the integration of different
data management open-source tools, augmented with additional ad-hoc com-
ponents (such as the configuration manager and the adaptation layer) to ease
the integration with the network slice orchestration components. As shown in
the figure, the AI/ML and monitoring platform is built by the interaction of
two building blocks: the monitoring platform and the AI/ML engine.

The monitoring platform provides both data storing and streaming func-
tionalities, with proper interfaces exposed toward the AI/ML engine to
consume the monitoring data. The data can be collected from different and
heterogeneous data sources through the adaptation layer, which provides the
necessary interfaces and logic to map the data from the sources to proper
messages topics on the internal data bus. In particular, the adaptation layer is
designed to be plug-in oriented, where each plug-in (or data-collection driver)
collects data from a specific data source. This approach provides a high level
of flexibility since the composition of the active plug-ins may vary with
respect to the different network slices to be monitored or during the different
phases of a network slice lifetime. A configurable Alert Manager (which is a
built-in component of Prometheus) sends alarms to the bus when specific data
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Figure 2.8 AI/ML and monitoring platform functional architecture.

exceeds certain thresholds, so that the alarm notification can be captured and
stored in the Data Lake. The alarms and the data, both historical and near-real
time, are therefore immediately available to the AI/ML engine that can access
both the Data Lake and the message bus through dedicated interfaces. The
whole monitoring platform is configured by the NSMF through the Config
Manager, which for each network slice instance can tailor the behavior of the
monitoring platform to properly collect, manage, and store the required data.
Indeed, the Config Manager provides the logic for configuring Prometheus to
properly aggregate the data collected through the message bus. Similarly, the
Alert Manager is configured to produce different types of alerts when a given
metric is exceeding a specific threshold. Moreover, the Config Manager is
also responsible for the configuration of the different Data Collector Drivers
to tailor the data collection from the various available sources according to
the given network slice requirements.

The AI Engine is divided into two functional blocks, analytics and
decision. The live data inputs are obtained by the analytics block through
the monitoring platform, with analytics performance and results reported in
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Grafana. The decision block passes the determined slice adaptations to the
network slice orchestration components.

The analytics block can be subdivided into four stages designed for robust
functionality on real-world data:

• Stage 1. Data pre-processing − real-time data contains many irregular-
ities (e.g., null values) unrelated to the useful information derived from
the target analysis. This noise can directly affect the ability of models
to reliably infer behaviors in the incoming data. The data pre-processor
cleans and normalizes the incoming dataset to avoid misbehavior of the
model on real-world data.

• Stage 2. Feature detection − correlated time series data is analyzed
with respect to long term behaviors that create unique features that
can be used to predict future trends in network behavior. Selection of
these features is achieved through the use of trained models capable of
discriminating target behaviors.

• Stage 3. Inference engine − inference of future trends is performed using
the identified features of the incoming dataset that are used as inputs in
AI/ML algorithms to determine the most probable future state of the
system. These predictions are then sent to the scaling logic to determine
the most appropriate system adaptation.

• Stage 4. Logic − the predictions of the state of the system are combined
with operational parameters to decide if, how, and when an adaptation
will optimize the resources of the system. The logic interacts with the
NSMF to accept any changes to the slice reconfiguration.

For what concerns the interaction with the network slice orchestration
components, the AI/ML and monitoring platform offers a set RESTful APIs
on top of the Config Manager and the AI/ML Engine. The purpose of the
Config Manager API is to enable the automated configuration of specific
monitoring jobs from the NSMF. Indeed, during the provisioning of the end-
to-end network slice instances, through this API, the NSMF can trigger the
monitoring of specific service and network-related metrics, to be then stored
in the Data Lake, visualized in customized dashboards, and consumed by the
AI/ML Engine. On the other hand, the AI/ML Engine offers an API that is
exploited by the NSMF to notify the analytics and decision functionalities
about the evolution of network slices lifecycle (e.g., instantiation, scaling,
termination, etc.) as well as on the result of the related lifecycle operations
(i.e., success or failure) to help in the contextualization of data retrieved from
the monitoring platform.
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2.5 Example of AI/ML-based Network Slice Optimization

AI/ML techniques are being adopted into 5G networks to support full
automation in closed loops related to the management and runtime operation
of 5G services and network slices. In practice, the target is to improve
the optimization of network performances, while enhancing the users per-
ceived experience. At the same time, AI/ML techniques can help in solving
network management complexities brought by 5G, where several technolo-
gies and domains coexist for the provisioning of end-to-end services and
slices. Currently, this requires ad-hoc integrations and knowledge of het-
erogeneous per-domain control and management solutions. Exploiting data
that can be easily collected from the 5G infrastructure, network functions,
and applications, AI/ML techniques can therefore help in fully automating
5G network services and slices runtime operations with a truly closed-loop
approach.

In particular, the concept of network self-X (self-healing, self-
optimization, etc.) based on the continuous monitoring of service attributes
and performance parameters (data-driven) is a well-known approach in the
context of 5G management platforms. The iNGENIOUS end-to-end network
slice orchestration framework implements such automation mechanism by
involving all the components building the platform: the orchestration stack,
the monitoring platform, and the AI/ML engine. Indeed, when an end-
to-end network slice is deployed, the orchestration platform (i.e., through
the NSMF), as final step, configures the monitoring platform in order to
continuously collect data that are relevant to determine the current status
of the slice itself and the related services. The collected data are related
to the different network subnet slices and their resources (e.g., 5G Core
NFs, virtual applications, etc.). The monitoring platform collects and stores
the data and make them available for the AI/ML engine that continuously
takes decisions based on the monitored status, which can be a simple “do
nothing” or slice optimization requests to be enforced toward the slice
re-configuration interface offered by the NSMF. At this point, the NSMF
translates such requests to real actions on the target (monitored) end-to-end
slice.

The AI/ML innovation scenario considered in iNGENIOUS for the
end-to-end network slice optimization targets the trigger of a pre-emptive
auto-scaling of local-edge and central user plane functions (UPFs), in support
of low-latency communication services, as shown in Figure 2.9. A single UPF
instance can handle multiple protocol data unit (PDU) sessions; however,
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Figure 2.9 Closed-loop pre-emptive auto-scaling of UPF.

the resources of a UPF instance are finite. As traffic load increases, to avoid
degradations in service caused by finite resources, more UPF instances can
be deployed and started, and likewise, an idle UPF instance can be terminated
when the traffic is low. This process can be achieved in a closed-loop continu-
ous fashion that monitors, measures, and assesses real-time network data, and
then automatically acts to optimize according to the SLA. It is important to
note that human operators configure the automated actions and can manually
modify them at any point within the loop.

The information used in pre-emptive auto-scaling, collected from the 5G
infrastructure, and applications, can be related to specific UEs (mobility, com-
munication pattern, etc.), NFs, network slices, or the network as a whole. UPF
load information available from the NWDAF, including CPU, memory, and
disk usage, can be supplemented with user plane data like bandwidth, latency,
packet loss, etc., as well as UE-related information (mobility, position, etc.)
to get accurate predictions of future network conditions. Within an edge
compute node, a local NWDAF collects data from the UPF and exposes it
to the monitoring platform. The platform collects the data from the NWDAF
as well as other sources that are ingested after a pre-processing by the AI
agent that performs a decision about the pre-emptive auto-scaling operation
on UPF itself.
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Abstract

This chapter describes the ASSIST-IoT approach for tactile IoT, proposing
a reference architecture built on cloud-native concepts in which several
enabling technologies (AI, cloud/edge computing, 5G, DLT, AR/VR inter-
faces, etc.) are integrated to implement advanced tactile IoT use cases,
providing a set of guidelines, best practices, and recommendations toward
this end.

Keywords: Reference architecture, next-generation IoT, cloud-native, Tactile
Internet, enablers.

3.1 Introduction

With IoT consolidated in several application domains, the next-generation
IoT (NG-IoT) has emerged, aiming at addressing more ambitious and
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complex use cases. Different enabling technologies have been identified as
key toward this evolution, such as edge computing, 5G, artificial intelligence
(AI) and advanced analytics, augmented reality (AR), digital twins, and dis-
tributed ledger technologies (DLTs). Still, there is not available any reference
architecture (RA) that provides (technical and non-technical) requirements,
guidelines, best practices, and recommendations that serve as blueprint for
developing and implementing such systems, that being one of the main
objectives of the ASSIST-IoT project.

Developing such RA thinking on its further adoption is crucial, and hence
it tries to avoid a very high level of abstraction, selecting a set of design
principles that consider current and expected trends in the IoT and enabling
technologies communities. In this sense, the cloud-native paradigm (based on
microservices, containerization, and DevOps practices) is embraced, adapted
to the edge-cloud computing continuum as a baseline for its conception.
Because of it, the RA will strive to bring flexibility, scalability, and ease
of integration, which are crucial for coping with the continuous and fast
evolution of the NG-IoT ecosystem as well as to help consolidate the imple-
mentation of tactile IoT across different business sectors, which are needed
by the industry [1].

3.2 Concepts and Approach

Reference architectures are usually intended to be generic; so they can be
applicable to different sectors or application domains. The RA developed in
ASSIST-IoT follows the approaches and vocabulary specified in the standard
ISO/IEC/IEEE 42010 [2], which is widely used in many modern RAs. Among
the vocabulary used, the following terms are key in the conception of the
presented architecture:

• Stakeholder: Individual, team, organization, or classes thereof, having
an interest in a system [2]. They might be technology-focused or not,
ranging from developers to testers, maintainers, administrators, and end
users, among others [3].

• Concern: Topic of interest of one or more stakeholders to the archi-
tecture [4]. It includes needs, goals, expectations, requirements, design
constraints, risks, assumptions, or other issues belonging to the system-
of-interest [2].

• View: Work product representing the architecture from the perspective
of specific system concerns [2], depicting how the architecture tackles
them.
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• Perspective: Collection of tactics, activities, and guidelines to ensure
that a system displays a specific property, which should be considered
across the views [3]. Perspectives are also referred to as system charac-
teristics, although in ASSIST-IoT, the term vertical is used instead, rep-
resenting not just properties but also functional blocks solving specific
cross-cutting concerns.

IoT applications can be simple, composed of a less number of devices,
with a basic frontend−backend-database schema and relaxed communication
requirements in terms of latency and bandwidth. However, as IoT systems
grow in size and complexity and NG-IoT requirements come to play, software
architectures are highly recommended as a starting point to design them
as well as to solve the specific needs or issues that may arise. There are
different software architecture patterns [5], which could be combined in
some cases: layered, event-driven, space-based, serverless, based on services,
etc., and among the latter, monolithic, service-oriented architectures (SOA),
and microservices. The ASSIST-IoT RA will consist in a layered architec-
ture based on services, which is a result of the influence of cloud-native
approaches over typical IoT representations.

3.2.1 Design principles

NG-IoT enables more appealing applications at the expense of complexity.
Complementary technologies should be integrated depending on the use case
addressed, and hence modularity and agile adaptation cycles must be ensured.
The principles that govern the ASSIST-IoT RA are:

1. Microservices: The RA, apart from following a layered, multi-
dimensional approach (see the next sub-section), proposes following
a microservices pattern, allowing independent, self-contained services
to be deployed and scaled while specifying boundaries and allowing
coding freedom. All services should declare their own, well-defined
communication interfaces.

2. Containerization: Virtualization, specifically in the form of con-
tainers, is key for deploying the services and decoupling them
from the underlying hardware resources. They have much larger
community support than alternatives such as unikernels or server-
less, while being lighter, faster, and more flexible than virtual
machines (VMs), and thus they are fostered in the cloud-native
paradigm.
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3. Enablers: An enabler is a collection of software, running on
computation nodes, which delivers a particular functionality to the sys-
tem. It is formed by a set of interconnected components, realized as
containers, and exposing a set of well-defined interfaces (internals are
not exposed or accessible). They can be essential (needed at all or most
deployments), optional, or relevant only for certain use cases. Some
features, due to containerization inconvenience or unfeasibility, should
be implemented directly as a host operating system’s (OS) service.

4. Kubernetes: A container orchestration framework provides many ben-
efits, as automation of rollouts/rollbacks, error handling, and resource
optimization (upscaling/downscaling) and, most importantly, bridges the
gap from development to the market. K8s, although not mandated, is
selected for being the de facto standard, and some decisions have been
made considering it.

3.2.2 Conceptual approach

The conceptual architecture has been envisioned considering not only pre-
vious IoT schemas and cloud-native concepts but also the advancements
in enabling technologies (e.g., edge computing, AI, SDN/NFV paradigm),
outcomes from previous and concurrent projects, partners’ expertise, and
extensive research, being influenced primarily by the LSP programme [6], the
OpenFog consortium [7], and AIOTI HLA [8]. The conceptual architecture
is two-dimensional, primarily focused on the functional features, grouped in
four layers or planes (device and edge, smart network and control, data man-
agement, and application and services), representing collections of features
that can be logically layered on top of each other, intersected by cross-cutting
properties, or verticals (self-*, interoperability, scalability, manageability,
and security, privacy, and trust), as seen in Figure 3.1.

3.3 Architecture Views

The views described in the following sections compose, altogether, the whole
scope of the architecture; separately, they represent an observation prism of
the whole specification fit to the wills of a group of stakeholders. Five views
have been developed: functional, development, node, deployment, and data,
following a customized Kruchten’s model [9], coined “41

2+1,” after splitting
its development view into two (development and deployment). The relation
among them can be seen in Figure 3.2.
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Figure 3.1 ASSIST-IoT conceptual architecture.

3.3.1 Functional view

This view, sometimes referred to as logical, represents the functionalities
provided by a system, which is crucial for developers and maintainers as well
as users and acquirers of the solution. A set of enablers are introduced for
each of the planes (Figure 3.3), always considering that a system realization
could require only a subset of them and/or include additional ones tailored
to it.

3.3.1.1 Device and edge plane
This plane is in charge of (i) providing the infrastructure elements (e.g.,
computing nodes, networking elements, etc.) needed for interacting with end
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Figure 3.2 Custom 4 1
2

+1 model of relation among views in ASSIST-IoT RA.

Figure 3.3 Functional view summary representation.
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Figure 3.4 ASSIST-IoT’s GWEN (left); infrastructure elements and functional blocks of the
device and edge plane (right).

devices, sensors, and actuators, and integrating them with the rest of the
architecture, and (ii) offering a set of (hardware/software/firmware) features
that help realizing intelligence, pre-processing, and communication opera-
tions at the edge (e.g., from GPUs/FPGAs to AI frameworks, local processing
functions, protocol adapters, specific extensions for communication protocols
like LoRa, and ZigBee; whatever needed for a specific system realization).
As a matter of fact, the project has designed (and developed) its own gate-
way/edge node (GWEN), which, apart from the required processing and
storage resources, implements common interfaces and baseline functions
needed for the RA to perform (firmware, OS, container engine, K8s, and
pre-installed plugins). It is modular, meaning that features can be extended
via expansion boards and SD slots. Regarding actual enablers, none has been
defined in advance, as they are expected to be tightly coupled to the actual
needs of the use cases addressed by a given system realization. Figure 3.4
presents a high-level schema of the GWEN, as well as the infrastructure and
functional blocks of the plane.

3.3.1.2 Smart network and control plane
This plane hosts different communication and orchestration features, for
deploying and connecting virtualized functions. A set of enablers have been
selected as relevant (or, at least, interesting) for NG-IoT system realizations,
grouped into four functional blocks: “orchestration,” “software-defined net-
works,” “self-contained networks realization,” and “access networks manage-
ment,” as depicted in Figure 3.5. The smart orchestrator, designed considering
ETSI MANO specifications [10], is the main enabler of the plane. It is
in charge of controlling the lifecycle of other enablers (network and non-
network-related) to be deployed on top of the virtualized infrastructure,
managed by K8s, selected for being de facto standard toward cloud-native
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Figure 3.5 Enablers and functional blocks of the smart network and control plane.

paradigm [11]. Additionally, it performs intelligent resource scheduling
operations (i.e., selecting the optimal place of the continuum for deploying
an enabler) and applies communication rules and encryption among
enablers.

Different adoption strategies for SDN in NG-IoT have been studied [12].
This RA presents a block devoted to it, consisting of (i) a controller, which
manages the underlying SDN-enabled network; (ii) an auto-configurable
network enabler, which acts over the controller to set policies optimally;
and (iii) a traffic classification enabler, which identifies the type of traffic so
networking rules are applied properly. This functional block is complemented
by the programmatic rules that the orchestrator applies over the virtualized
network.

The functional block related to self-contained networks includes enablers
that provision secured channels over public or non-trusted networks. Three
enablers are envisioned: one for establishing VPN tunnels for connecting
isolated devices to a managed network and two for implementing SD-WAN,
which follows a controller-agent schema to connect delocalized networks
and to enable firewalling or application-level prioritization functions. Finally,
within the access network management block, a multi-link enabler has been
formalized, providing mechanisms for bonding different access networks
to work as a logical, single one, thus bringing redundancy and reliability
features.
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Figure 3.6 Enablers and functional blocks of the data management plane.

3.3.1.3 Data management plane
Traveling over the network layer, data will be shared, processed, and stored
to be later on consumed by business/administrator applications and services.
Five enablers are defined in this plane, separated into semantics and data
governance blocks as one can see in Figure 3.6, supported by security,
privacy, and trust mechanisms provided by enablers of such verticals. Data
governance enablers include (i) a long-term storage enabler (LTSE), offering
a dynamic, distributed space for highly available data persistence, accessible
via API; and (ii) an edge data broker enabler (EDBE), key element for realiz-
ing data pipelines (Section 3.3.5), providing mechanisms for distributing data,
filtering, and alerting, following scalable publication−subscription schemas
aligned with current IoT trends.

Complementary to the data storage and transportation, a semantic frame-
work is proposed to process (streaming and bulk), share, and present data.
This framework includes (i) semantic annotation, for lifting data to fit a
specific semantic format; (ii) semantic translation, for mediating between data
that follow different ontologies or data models; and (iii) semantic repository,
as a “hub” of data models, schemas, and ontologies, complemented with
relevant documentation.

3.3.1.4 Applications and services plane
The upper plane is devoted to provide human-centric, user-friendly access to
data, for both administrators and end users, including externals to a system
realization. Three functional blocks have been identified (see Figure 3.7),
with a set of enablers that, as occurs with the rest of the planes, could be
extended.
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The enablers allocated within the dashboards functional block are (i)
the tactile dashboard, i.e., the main entry point to the system that will be
used by administrators and users, with spaces accessible according to the
provided credentials. It can provide mechanisms to add graphical interfaces
to such application; (ii) the business KPI enabler, which allows administrators
to prepare representation figures for metrics and indicators to be consumed
by the stakeholders; and (iii) the performance and usage diagnosis enabler,
which collects both system and enablers performance-related metrics.

Then, for tactile applications, two enablers are defined: the mixed reality
and the video augmentation enabler. The former offers mechanisms for
human-centric interaction, based on real-time and visual feedback and data
from/to the system and the environment. It works jointly with hardware
equipment; so the provided features and representations are largely influenced
by it. The latter performs real-time computing vision functionalities over
images or video streams (particularly, object detection and recognition), with
recommended support from acceleration hardware. It should be highlighted
that these enablers focus on particular augmentation capabilities, and addi-
tional ones could be thought for providing additional features from tactile
and/or haptic interfaces.

Lastly, the OpenAPI manager allows exposing and monitoring API inter-
faces so that users and third-party systems can consume deployed enablers
of the system. This enabler should be properly integrated with security
enablers (i.e., identity manager and authorization server) to ensure that only
rightful users/systems have access and to expose documentation to ease their
respective usage.

Figure 3.7 Enablers and functional blocks of the applications and services plane.
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3.3.2 Node view

This view presents structural guidelines and recommendations to provision
nodes that can be later on leveraged in NG-IoT systems. The provided data
can be useful for stakeholders like hardware developers, edge devices, or
gateway providers, as well as developers and maintainers of an ASSIST-
IoT system. Nodes should not be understood as physical equipment but as
a virtualized resource (e.g., a powerful physical server might host several
virtual nodes); they can be placed on different tiers of the continuum (edge,
fog, and cloud) and will likely have varying computing capabilities. Thus, to
be ready as a node, a set of pre-requisites must be fulfilled:

• A K8s distribution must be installed (kubeadm and K3s encouraged),
with a compatible container runtime (Docker recommended) and a
Linux OS (the latter is not needed if K8s on bare metal is installed).

• A set of plugins for managing packages (Helm), storage classes
(OpenEBS), and local and multi-cluster networking (Cilium). These
specific plugins mentioned are not mandated but are compatible with
the enablers developed in ASSIST-IoT.

Figure 3.8 ASSIST-IoT node concept and spots.
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3.3.3 Development view

This view aims at offering some guidelines and recommendations to ease the
design and development of enablers, useful for developers and maintainers.
Despite the project developing enablers for the different planes and ver-
ticals, it is possible that future systems rooting from ASSIST-IoT might
require additional features. Enablers are to be designed respecting the prin-
ciples of the RA, following some common conventions and considering the
DevSecOps methodology [13] from the project. In particular, we have the
following:

• Virtualization: Enablers should be deployable independently, and each
of its components (inner functions) should be delivered in containers.

• Encapsulation: Enablers can communicate between each other, and
with external clients, via explicitly defined and exposed interfaces (typi-
cally but not limited to REST APIs). Enablers’ internal components are
not exposed by default.

• Manageability: Enablers should expose a set of basic endpoints and
logs (through stderr and stdout interfaces), following standard con-
ventions for providing their status (e.g., with HTTP response codes
and considering all the inner components), version (considering SemVer
specifications), API documentation (Open API specifications), and rele-
vant metrics (Prometheus-compatible format encouraged).

The process for designing and developing enablers is depicted in Fig-
ure 3.9, consisting in six main steps: (i) definition and formalization of
requirements, considering its key features, main (software and hardware)
constrains, and applicable use cases; (ii) breakdown of internal components,
including its exposed interfaces and its internal communication; (iii) ini-
tial design of the endpoints to expose, including the manageability ones
previously mentioned (i.e., /health, /version, /api, /metrics); (iv) baseline
technologies and programming languages to leverage, avoiding reinventing
the wheel while focusing on decentralization and resource optimization;
(v) if data are involved, (sector, regional, and national) privacy regulations
and ethical aspects should be considered; and once development starts, (vi)
DevSecOps methodology should be followed [13], ensuring that the final
result is secure by design. As additional tips, the use of verified container
images, initial proofs of concept considering Docker compose tool before
moving to K8s, and the provisioning of CI/CD pipelines for automating
DevSecOps processes, including unit, functional, and security testing, are
encouraged.
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Figure 3.9 Continuous enablers’ development process.

3.3.4 Deployment view

The deployment view addresses different concerns that can be useful, espe-
cially for network and system administrators (as well as developers and
maintainers), such as hardware provisioning (computation nodes and net-
working elements), K8s setup, and the deployment of enablers and their
integration to address a use case or business scenario.

3.3.4.1 Infrastructure and Kubernetes considerations
The computing continuum can be decomposed into tiers, each of them con-
sisting of a set of nodes, extending from end devices (smart IoT devices, and
MR/AR/VR interfaces) to edge (with one or multiple levels) and cloud, if
needed. Being K8s strongly encouraged as virtualized infrastructure manager,
the underlying connection among nodes must be IP-based (with the exception
of the access network, as interfaces between end devices and edge gateways
might involve other forms of communication, e.g., LPWAN and BLE). A
generic topology is presented in Figure 3.10. A system topology design
will strongly depend on the business scenario, security, and decentralization
aspects, as well as economic reasons.

Regarding K8s, computing nodes are grouped into clusters, where at
least one acts as master, in charge of control plane actions, and the rest as
workers (which execute workloads). Some aspects that should be considered
for a proper implementation include: (i) clusters should consist of nodes with
similar performance; (ii) a multi-tier topology suggests having a master in
control, rather than a master in charge of different tiers; (iii) if new nodes are
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Figure 3.10 Generic topology of an NG-IoT system.

added to an existing tier, better to do it as workers to avoid devoting more
resources to control plane tasks (unless done for high availability strategies);
and (iv) K8s management is outside the scope of the architecture, despite
requiring some minimum requirements (e.g., plugins and add-ons) that should
be provisioned by network administrators. In any case, best practices for K8s
security are encouraged [14] for any system realization.

3.3.4.2 Enablers deployment
The main and recommended tool for instantiating enablers over the man-
aged computing continuum is the smart orchestrator, considered an essential
enabler of the system. After provisioning the infrastructure, network, and K8s
clusters, the latter must be registered in the orchestrator (individually, or as
part of a group of clusters), and from this moment, a platform administrator
can deploy enablers over them, either manually or automatically based on
a desired policy. The orchestrator developed within ASSIST-IoT considers
Helm as the packaging technology, but other formats (custom-made based
on K8s manifests, Juju, or Kustomize) could have been used (and thus an
orchestrator designed based on the selected one/s).

It is perfectly possible to deploy enablers directly over the managed
continuum via Helm commands or utilizing third-party management software
like Rancher Fleet. However, some of the additional features provided by the
orchestrator, such as automatic application of networking rules, policy-based
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automatic scheduling, and mobility mechanisms for clusters without public
or/nor fixed IP addresses are no longer supported.

Regarding enablers integration, ASSIST-IoT does not force that every
expected or possible integration be realized, as there are just many arti-
facts, data schemas, technologies, etc. Still, when deemed necessary, some
enablers’ implementations made within the scope of the project have been
integrated. On the one hand, some cases were evident, like the semantic
suite (Section 3.3.1.3), the federated learning enablers (Section 3.4.3.2), or
the security enablers (Section 3.4.3.1) related to identity management and
authorization. On the other hand, other interactions were evaluated and, in
some cases, integrated requiring higher or lower effort, like the OpenAPI
manager with identity management, the manageability enablers with the
smart orchestrator, or the tactile dashboard with BKPI and PUD enablers,
among others. Besides, manageability enablers provide some mechanisms
to provision agents within the right spot of the continuum as “integration
bridges,” providing translation of transport protocols (e.g., MQTT to MQTT)
and basic data formatting capabilities.

3.3.5 Data view

This view, useful for data engineers as well as developers and maintainers,
provides an overview of the flow of data within a system, with respect to
their collection, processing, and consumption, specifying the actions made
by the enablers (and other artifacts) over them. ASSIST-IoT introduces
data pipelines as an abstraction design that represents such flows, avoiding
information related to the underlying hardware infrastructure or network-
related enablers. In essence, these pipelines present a linear sequence of steps
where data are transmitted between data processing elements, from a given
source/s (e.g., services, endpoints, devices, sensors, and outputs from another
pipeline/s) to an output/s or sink/s (e.g., database, dashboard, log gatherer,
source of following data pipeline/s, or simply deleted). Data travel as mes-
sages, through different paths, and having a specific format and content. An
example of data pipeline is presented in Figure 3.11. In such representations,
data sources, protocols and payload types, as well as enablers and services
involved should be easily identifiable, accompanied with dedicated textual
explanation when needed but trying to keeping them readable (i.e., avoiding
gratuitous details). In any case, these representations do not aim to substitute
other typical, dedicated UML or similar diagrams, but rather complement
them.
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Figure 3.11 Data pipeline example.

3.4 Verticals

Verticals represent or provide NG-IoT properties and capabilities that
(should) exist on different planes, either in an independent way or requiring
cooperation from them. Five verticals have been identified as crucial for the
development of NG-IoT systems, namely self-*, interoperability, scalability,
manageability, and security, privacy, and trust. In some cases, capabilities
are implemented through dedicated enablers (see Figure 3.12), while in
others, they are the result of the design principles embraced. As with planes,
some of them might not be needed for addressing certain use cases, and

Figure 3.12 Enablers addressing verticals.
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envisioning additional ones for bringing unavailable capabilities to a system
is not precluded.

3.4.1 Self-*

This vertical refers to enablers implementing system autonomy capabili-
ties, able to make intelligent decisions, where humans just manage them
by policies (or just installing them) rather that manually acting over the
involved mechanisms. According to IBM, eight conditions should be fulfilled
to consider a mechanism as self-* [15].

Particularly, five enablers have been identified to extend the capabilities
already present due to architecture design choices. (i) Self-healing enabler:
considering K8s provides a set of healing mechanisms over managed ser-
vices, this enabler extends them to the node itself, collecting data (e.g.,
battery and CPU usage, memory access, and network state), evaluating them,
determining, and applying the optimal healthy remediation process. (ii) Self-
resource provisioning: K8s also provides resource autoscaling mechanisms
for services − still, these are static, meaning that once their behavior is
set, they can only be changed manually. This enabler develops models of
other deployed enablers to forecast their behavior, modifying the performance
of these scaling mechanisms on-the-fly, without human intervention. (iii)
Location tracking and (iv) processing enablers: these enablers work together
for bringing contextual location data, with dedicated hardware and firmware
extensions, and providing configurable and flexible geofencing capabilities
based on such data, using either batch or streaming approaches. (v) Monitor-
ing and notifying enabler: responsible for monitoring devices and notifying
malfunctioning incidents, ensuring that telemetry data are sent and presented
while validating its own performance. (vi) Automated configuration enabler:
it allows users to define requirements (resources) needed to meet specific
functionalities, and reactions over external actions or change of the pool of
resources, all in an abstract way. In case of limited resources, the system
will automatically decide which functionalities are kept, modifying existing
configurations and emitting related messages and logs.

3.4.2 Interoperability

This vertical represents the ability of systems, devices, and/or applications
to communicate together on the same infrastructure or on another while
roaming. The IoT field, and by extension, NG-IoT systems, are heterogeneous
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in terms of hardware, data, and applications, and, hence, mechanisms that
ease devices connection, data sharing, and service communication are needed
to facilitate the adaptation of novel technologies and services. Interoperability
is present at different levels, rather than addressed as enablers: (i) technical,
when two or more information and communication technologies are able to
accept data from each other; (ii) syntactic or structural, when two systems
communicate and exchange data using compatible formats and protocols;
and (iii) semantic, which entails applications and systems sharing the same
understanding of the exchanged data.

Although any enabler has been directly assigned to this vertical, it is
present through different enablers of the architecture. For instance, SDN-
related enablers allow governing a networking infrastructure with hardware
from different vendors autonomously, based on policies; the semantic suite
brings processing and translation capabilities to store data and share them
following specific ontologies or data models, enabling effective cooperation
among IoT artifacts; also, the use of smart contracts coming from DLT-
related enablers of the next vertical, allowing metadata management and
non-repudiation from different sources or systems; in self-* localization
tracking, various geospatial data sources can be combined (UWB and GPS);
in federated learning (FL) suite (Section 3.4.3.2), enablers provide mech-
anisms to run on different clients and to accommodate training data from
different formats, etc. Besides, although an interoperability suite like that in
[16] could have been defined, its usage would require extensive knowledge
of the several available mechanisms, and, hence, implementing them as
independent enablers when needed is preferred instead.

3.4.3 Security, privacy, and trust

This vertical should be considered meticulously, as perceiving a system as
unsecure, untrusted, or privacy-disrespectful would destine it to fail. Many
mechanisms can be grouped under this vertical; the provided content is
extended in [17].

3.4.3.1 Security
This pillar involves several aspects, from good practices for development
and data access by design (e.g., DevSecOps) to enablers that provide con-
fidentiality, integrity, availability, authentication, and authorization. Here, the
following enablers have been defined:
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• Identity manager (IdM) and authorization enablers: They offer
(i) access control based on user/devices/system identity, and (ii)
authorization over protected resources. The ASSIST-IoT RA depicts a
decentralized approach, where decision-making features can be moved
from a central point to distributed endpoints, sharing security policies
(previously set by an administrator) to apply.

• Cybersecurity monitoring enabler, and monitoring agents: The cen-
tral enabler consolidates the data collected by the agents distributed
through the continuum to provide cybersecurity awareness, visibility,
and response against detected threats.

Besides, additional considerations are presented. First, the OpenAPI man-
agement enabler from the applications and services plane includes a gateway,
envisioned as primary access mechanism for (HTTP) third-party access.
In this way, a single point should be exposed, secured, and documented,
reducing the number of attack surfaces; and hence the IdM and authorization
enablers must be integrated with this one. Second, when MQTT is the main
communication protocol, different security mechanisms should be assessed,
especially when the network is not considered secured or trusted. These
include protection at (i) network level, providing tunnels between clients
and brokers; (ii) transport level, encrypting data using SSL/SSL and certifi-
cates; and (iii) application level, considering user-password credentials (or
Access Control List files) to grant or deny access, including the possibility of
allowing nodes to publish or be subscribed only to specific topics.

3.4.3.2 Privacy
Privacy aims at protecting the information of individuals or private data
from exposure in NG-IoT environments. In ASSIST-IoT, a set of rules for
preserving it during development has been made, and, in addition, an FL suite
for training ML algorithms in a decentralized environment has been designed,
in which actual data is not exchanged but only the trained models. This suite
is composed of (i) the central orchestrator, responsible for declaring the FL
pipeline and control the overall lifecycle, including job scheduling and error
handling; (ii) a repository, providing storage for ML algorithms, aggregation
approaches, and trained models, supporting the rest of the enablers; (iii)
local operations component, installed in the distributed nodes to perform data
format verification and transformation, local model training, and inference,
among other tasks; and (iv) training collector, which aggregates the models
updated by the managed nodes and redistributes the combined model.
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3.4.3.3 Trust
Trusts represents the level of confidence of the devices, data, or sys-
tem of an ecosystem [18]. The RA does not delve on best practices and
recommendations related to this, as there exist dedicated projects focusing
on it [19]; still, it defines a set of enablers, based on DLT, for easing the
implementation of trusted decentralized ecosystems: (i) logging and audit-
ing, for storing critical actions and having a trusted source of truth; (ii)
data integrity verification, based on hashed data; (iii) distributed broker, to
facilitate data sharing of devices from different edge domains; and (iv) DLT-
based FL enabler, an auxiliary component of the FL suite to manage ML
contextual information, preventing any data alteration. Before using them, it
is important to decide which events and data are critical, as data are replicated
on the ledgers, and storing many data can cause performance issues.

3.4.4 Scalability

The RA pretends enabling elastic implementations, where hardware (node
and system level), software, and services can be scaled up/down as seamlessly
for adopters as possible. In ASSIST-IoT, this vertical does not result from
the action of specific enablers, but rather due to design choices made and
the use of K8s (or any similar container orchestrator framework), primar-
ily. In this RA, we can find first hardware scalability, contemplating (i)
processing, having nodes with constrained resources, like PLCs, to high-
performance servers with large GPU arrays; (ii) storage, from simply flash
chips to large arrays of storage clusters; (iii) network interfaces, with nodes
having a single (wired and wireless) interface to others having several of
them, with aggregation capabilities; and (iv) system, considering small-size
to large-size, decentralized topologies, including possible business scenarios
with thousands of clusters. The GWEN also incorporates mechanisms fos-
tering this scalability dimension, through the expansion boards and modules
through which storage, access networks, and computation capabilities could
be expanded, if needed.

Besides, software scalability is also crucial, involving not just the deploy-
ment of services and applications but also the optimal scheduling of the
managed resources. Regarding the latter, the use of K8s distributions, along
with the smart orchestrator and resource provisioning enabler, guarantees that
once a (software) feature is deployed over the infrastructure as an enabler, it
(i) has its required resources, and (ii) can be scaled up/down automatically
based on current and forecasted usage. Besides, being a microservices-based



3.5 Conclusion 57

RA and using containers as virtualization paradigm, features are decoupled
by nature and can be developed and integrated quite easily, thanks to their
respectively exposed interfaces. Additional guidelines and best practices can
be found in [17].

3.4.5 Manageability

The last vertical responds to concerns related to the management of the
overall system and the required enablers. Tools are needed to register and
manage (large volume of) K8s clusters and enablers, including mechanisms
to (i) detect and inform about faults, (ii) allow configuration options of the
enablers to be deployed, (iii) enabling processes for storing and sharing logs
and metrics of enablers and clusters, and everything (iv) in a secure and user-
friendly manner. Along with the implementation of common endpoints for
enablers depicted in Section 3.3.3, the following manageability enablers have
been defined:

• Clusters and topology manager: It allows to register/delete clusters
to the system, ensuring that they are working properly and providing
graphical data of their distribution and hosted enablers.

• Enabler manager: Eases the management of enablers, in a graphical
way, from the registration of enabler repositories to their instantiation
(also configuration), logs consumption, and deletion.

• Composite services manager: It eases the flow of data between
enablers, by provisioning interoperability agents that provide proto-
col (e.g., MQTT-HTTP) and basic payload translations. It includes a
graphical interface to configure these agents, which are then deployed
optimally within the continuum.

3.5 Conclusion

This chapter describes the reference architecture developed within the
framework of H2020 ASSIST-IoT project, following cloud-native principles
adapted to the edge−cloud computing continuum for next-generation, tactile
IoT, providing a set of guidelines, best practices, and recommendations.
It is based on microservices, using containers and Kubernetes as main
virtualization technologies, as well as coining the concept of an enabler.
Functionalities will be delivered in the form of these, which will belong to one
of the planes (device and edge, smart network and control, data management,
and application and services) or verticals (self-*, interoperability, scalability,
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manageability, and security, privacy, and trust) of the multi-dimensional
approach of the architecture.

Since providing such information in an all-encompassing model would
hinder its comprehension, the architecture has been divided in five separated
views, namely functional, node, development, deployment, and data, each of
them of utility for a particular group of stakeholders. It should be highlighted
that this document, as well as the outcomes presented as the project’s deliv-
erables and code, is a reference for building tactile IoT systems, and, thus, it
should be taken as such, rather than a platform ready to be deployed and used
without performing any tailoring to the targeted business scenario.
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Abstract

AI has changed our lives in many aspects, including the way we (as humans)
interact with internet and computational devices, but also on way devices
interact with us, and among them, in most of the processes of the industry and
other socioeconomic domains, where machine learning (ML) based applica-
tions are getting increasing influence. Internet of Things (IoT) plays a key
role in these process interactions, by providing contextual information that
requires to be processed for extracting intelligence that would largely improve
them. However, the delivery of ML-based applications for IoT domains faces
the intrinsic complexity of ML operations, and the online interoperability
with IoT devices. In this chapter, we present the IoT-NGIN ML as a service
(MLaaS) platform, an MLOps platform devised for the delivery of intelligent
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applications for IoT. Its services for online deep learning (DL) training and
inference, ML model conversion and sharing, and zero-knowledge model
verification based on blockchain technology are also presented.

Keywords: MLOps, deep learning, online learning, model translation, zero-
knowledge model verification.

4.1 Introduction

Internet of Things (IoT) facilitates the extraction of information from sys-
tems, through devices and sensors connected to them. Companies owning
those systems can infer knowledge about their behavior and performance,
with the aim of improving their understanding of diverse aspects. As an
example, metrics gathered from sensors can be immediately used to trig-
ger an alert on the situation where a concrete metric value overpasses a
predetermined threshold. However, the increasing number of devices and
sensors is generating a huge volume of information that companies need
to face, a challenge identified by the Big Data 5 Vs [1]. As a result, a
simple system service could not be capable anymore to cope with the data
intricateness. Therefore, new solutions are required to face this complexity
and effectively and purposely infer valuable information from it. With the
development of new AI information extraction and ML-based inference
techniques and algorithms and the advent of increasing computation power,
notably based on GPUs and TPUs, it is now achievable to extract value from
huge volumes of data and even predict the future behavior of systems. These
breakthroughs will enable systems’ stakeholders to better comprehend their
company activities and improve future planning, leading to increase business
value.

Primary users of these ML-based techniques are data scientists and ML
engineers, who require a ML platform that can provide all the necessary
services to process data, train ML models, share, and deploy them. Imple-
menting and maintaining such an ML platform is a complex, time-consuming,
and costly endeavor, requiring expertise that most of the companies lack.
Therefore, a leading industry trend is addressing the provisioning of this
kind of ML platforms, by offering all the services required to build and
execute ready-to-use ML models. In addition, these ML platforms support
the development of custom-tailored ML systems for some specific use cases.
Such ML platforms are commonly referred to as machine learning as a service
(MLaaS).
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Companies leverage MLaaS to reduce the time and cost of integrating
their ML modeling and delivery procedures into their development and
CI/CD environments. By using MLaaS, data scientists can procure and pre-
process the data and train the model, by focusing on their core competency,
that is, in the ML development, rather than on the burden of taking care of the
underlying procedures and infrastructure, which are provided and managed
by the MLaaS.

Several MLaaS platforms are commercially available, either provided
by big Cloud service providers, such as AWS ML, Microsoft Azure ML
Studio, and Google Cloud Platform (GCP) ML Studio, or by specialized
companies (e.g., BigML, Domino, Arimo, etc.). On the contrary, there are
few MLaaS frameworks built around open-source services that support ML
development and delivery, such as Kubeflow, MLFlow, and AirFlow, although
they do not constitute a complete MLaaS platform. Building such a platform
is challenging because:

• Lots of different functions are required to build up a complete MLaaS.
• For the same function, there could be several open-source projects

to choose from. Determining the right one could require a long and
complex evaluation.

• Projects are envisioned, designed, and implemented for a particular
purpose, but scarcely concerned with their requirements of integration
with other external services.

• The complexity to install, configure, maintain, manage, and use inte-
grated services could be high.

• Further customizations and adaptations may be needed on the integrated
services to fit the functional and non-functional requirements of the
MLaaS.

The IoT-NGIN project has envisaged a holistic view for a complete
MLaaS platform, supporting ML development and delivery in the domain
of IoT, addressing the functional and non-functional requirements expressed
in the project, and its high-level architecture. This task has been realized by
seeking open-source projects, by selecting suitable components for specific
purposes, and by determining the procedures to integrate them together
in order to constitute a comprehensive framework. Besides, IoT-NGIN has
adopted GitOps technologies, such as IaC and ArgoCD to automate the
platform building and delivery.

The IoT-NGIN has implemented and delivered a minimum viable product
(MVP) of the MLaaS platform, aimed to validate the platform function itself,
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and provide support for the use cases of the project Living Labs and the
external projects that are adopting the IoT-NGIN technology.

The remainder of the chapter is organized as follows. Section 4.2 intro-
duces the functional and technical specification of the IoT-NGIN MLaaS
platform and its MVP implementation. The following sections describe addi-
tional ML services developed for MLaaS. In particular, Section 4.3 provides
the functional and technical specification, implementation details, and val-
idation results of the adaptive online deep learning service, while Section
4.4 does the same for model sharing, model translation, and zero-knowledge
model verification services. Section 4.5 concludes the chapter.

4.2 MLaaS

4.2.1 MLaaS features

The functional view of the IoT-NGIN MLaaS platform is shown in Figure 4.1.
In a high-level functional view, the platform is structured into i) the infrastruc-
ture hosting the platform and ii) the MLaaS services. This approach avoids
binding MLaaS to a specific hosting environment, so permitting MLaaS to be
delivered into diverse cloud infrastructures, including public, private, or even
in bare-metal ones.

As the MLaaS platform aims to offer complete support for the ML
development and delivery lifecycle, it includes the following functions:

• Data functions, including data acquisition, analysis, transformation, and
storage;

• ML modeling, including ML model training, evaluation, and model
transfer;

• ML deployment, including model sharing and translation;
• ML prediction, including model serving, batch, and real-time prediction.

Hosting infrastructure and monitoring/management tools are not part of
the MLaaS platform. Nonetheless, the infrastructure must provide network
access, computing resources, including CPUs/GPUs, and storage services.
IoT MLaaS adopts a container-based microservice architecture compatible
with Kubernetes clusters on bare-metal infrastructures.

As shown in Figure 4.1, the MLaaS platform consists of the following
functional blocks:

• IoT gateway: Includes services to receive data from IoT devices, either
through message queue brokers or HTTP/S REST API.
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Figure 4.1 MLaaS framework functional architecture.

• Messaging layer: Includes components that interface the IoT gateway
with other MLaaS upper services, by streaming the data events they
consume.

• Database: Includes services providing data storage capabilities, includ-
ing SQL and NoSQL databases, and time series services.

• Pipeline/workflow: Supports the building and deployment of portable,
scalable ML workflows.

• ML framework: Provides ML frameworks and libraries required to build
and train an ML model, including Tensorflow, Keras, PyTorch, scikit-
learn, etc.

• SDK: Provides the development and testing environment to build and
test ML models. A simple development environment supporting Python
and Rust (as future work) is provided, but not a state-of-the-art IDE.

• Model serving: Offers services to deliver ML models through a REST
API for prediction requests.
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• Model sharing: Offers services to share ML models, to be used for model
prediction, or for transfer learning. MLaaS also supports model transla-
tion across several popular ML frameworks. An external DLT system
can be used to verify the model integrity by leveraging blockchain
technology.

• Model deployment: Offers services to deliver ML models into the edge
computing or into IoT devices; so they can infer predictions.

• Dev tools: Includes services aiming at assisting ML modeling, including
notebook support and ML monitoring tools.

• DevOps: Includes CI/CD services to deploy new MLaaS services and
ML models.

• Infrastructure as a Code (IaC): Contains the manifests required to
configure the MLaaS platform.

4.2.2 MLaaS architecture, services, and delivery

The technical architecture of the reference implementation of the MLaaS
platform is shown in Figure 4.2.

Figure 4.2 MLaaS framework reference technical architecture.
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IoT-NGIN MLaaS uses Kubernetes as the main framework for the
container-based instantiation of the MLaaS microservice architecture. Kuber-
netes is complemented with other services, including:

• Istio: A service mesh used by MLaaS components, such as Kubeflow
and the Ingress gateway.

• Ceph: A unified storage service with an object block, being the default
storage class.

• Rook: A cloud-native orchestrator for Kubernetes, used to manage Ceph
storage.

• MetalLB: A load-balancer for metal Kubernetes clusters, used to allo-
cate external load-balancer IP addresses to the Istio and the Nginx
gateways.

MLaaS consists of several services hosted by the Kubernetes cluster.
Current IoT-NGIN MLaaS platform does not include them all, although
most of them, as some few services have not been required yet by the use
cases; so its inclusion is left for future work. Kubeflow is the main com-
ponent of the MLaaS platform. It offers ML frameworks (e.g., Tensorflow,
Keras, PyTorch, MXNet, MPI, XGBoost, etc.) for model training, tools for
pipelines/workflows implementation, and development tools such as Jupyter
notebooks. Complementing Kubleflow, MLaaS includes KServe, a model
inference service, for model serving. The IoT gateway is supported by i)
Mosquitto MQTT, a message broker and ii) NGINX-based HTTP/S access
to REST APIs. NGINX is a web server, also used as a reverse proxy and
ingress gateway. These IoT gateway services are used to ingest data coming
from IoT devices or digital twins. The messaging block, which exchange
data messages between the IoT gateway and the Kubeflow/KServe services,
is supported by i) Kafka, a distributed stream processing system with real-
time data pipelines and integration and ii) Apache Camel-K, a lightweight
integration framework for microservices. The storage block, which offers ser-
vices for model sharing, is mainly supported by MinIO, a Kubernetes object
storage, which can host ML models and other artifacts. The database block
is supported by several SQL and non-SQL databases, including i) Postgres,
an SQL object-relational database, ii) InfluxDB, a time-series platform with
querying, monitoring, alerting, and visualization features, and ii) Casandra,
a non-SQL distributed database. These services can be used for storing
structured data and time series for ML model training. The CI/CD block is
supported by i) ArgoCD, a declarative GitOps continuous delivery tool for
Kubernetes and ii) GitLab Runner, a CI/CD GitLab pipeline runner. ArgoCD
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is used to deploy and maintain the MLaaS platform from the IoT-NGIN Git
repository. GitLab Runner is used to upload ML models into IoT devices.
Secure access to MLaaS is supported by Keycloak, an AAI/IAM service with
SSO authentication for external services. The access to the MLaaS platform
is done either via an Istio Ingress gateway for some components such as the
Kubeflow dashboard and the KServe prediction services, or via the Nginx
ingress gateways for other components such as MinIO.

On top of the MLaaS platform, several services, developed by IoT-NGIN,
offer IoT-oriented ML features, including adaptive online deep learning,
model sharing and translation, and zero-knowledge model verification. These
services are introduced in the following sections.

The IoT-NGIN MVP reference implementation of the MLaaS platform
has been installed and configured by ArgoCD from service IaC mani-
fests hosted in the IoT-NGIN GitLab repository [2] following a GitOps
approach [3].

4.3 Adaptive Online Deep Learning

4.3.1 Introduction

IoT ecosystems consist of a large number of devices (sensors, processors,
and communications hardware) that are capable of collecting information
about a specific environment, processing that information and sending it
without any kind of human interaction. Hence, IoT devices generate dynamic
data flows resulting in a non-feasible way to train an ML or deep learning
(DL) algorithm in the traditional way (i.e., with a fixed dataset). Online
learning (OL) technique allows to train ML models with datasets obtained
from dynamic data flows. Thus, models can be retrained every time new data
gets available; so the model knowledge is extended continuously. Another
advantage of this technique is that models trained with OL can be adapted
in real time to changes in the data distribution, minimizing the impact of the
data drift problem. Therefore, OL technique can enable the adoption of AI in
scenarios where it was not feasible before.

4.3.2 Features

An OL service must offer at least two features based on the characteristics
of this AI approach: i) the dynamic training of ML models, as data become
available, and ii) the inference provision when requested, by using the latest
trained ML model. The dynamic training feature trains the model associated,
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by configuration, with the OL service, with datasets continuously fed into
the OL service through streaming. The inference provision feature offers pre-
dictions generated by the current trained associated model. Model snapshots
can be eventually stored in the MLaaS storage when significant performance
gains are achieved, regulated by some configurable policies.

To offer the abovementioned main features, OL service supports real-time
communication in order to receive the incoming data (see Figure 4.3). Among
the communication protocols that are most used in the IoT domain, the
Pub/Sub [9] pattern stands out, which allows different services to communi-
cate asynchronously with very low latency. Pub/Sub is made up of producers
and consumers. Producers communicate with consumers by broadcasting
events. A consumer must be subscribed to a specific topic where the publisher
is broadcasting on. The OL service supports real-time communication by
integrating Kafka and MQTT. Kafka is an event-based platform that supports
Pub/Sub as well as allows event streams to be stored and processed. In
addition to real-time data, the OL service also processes data that comes
through REST APIs.

Figure 4.3 Online learning service concept.
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Once the OL service receives the data, it uses an ML model to either i)
perform a new training or ii) provide inference based on the input data. For
this, the OL service supports some of the most popular frameworks for the
development of ML models, such as TensorFlow, Keras, PyTorch, Sklearn,
and Vowpal Wabbit. The OL service is deployed through the MLaaS KServe
framework, which enables serverless model inference, through an HTTP-
based REST API. However, as mentioned above, in IoT-NGIN applications,
the data is commonly transmitted using protocols other than HTTP. For this
reason, the deployment of the OL service requires an MQTT/Kafka-HTTP
binding in order to receive the data. The Camel-K framework offers some
integrators that perfectly fit this need.

4.3.3 Technical solution

This section describes the technical architecture details of the OL service.
Figure 4.4 depicts all components present in the OL service.

As commented in a previous section, data is often sent through streaming
flows in IoT scenarios, and the OL service instance only offers an HTTP
endpoint; so it does not support, by default, PUB/SUB protocols such as
MQTT or Kafka. Thus, a binding acting as a mediator between PUB/SUB and
HTTP is needed. The binding is implemented using Camel-K. Whenever new
data is published in the broker, the Camel-K binding receives it and redirects
it to the HTTP REST API endpoint of the OL service. The binding can be
seen as a Kafka/MQTT consumer, which is subscribed to a specific topic and
when it receives new data, it redirects it to the OL service.

Figure 4.4 Online learning architecture.
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When new data is published to retrain the model, the OL service processes
this data and performs a training step. It analyzes the model losses and val-
idation metrics and only in case the overall model performance is improved
this model version is updated in the MLaaS storage (in this case, in MinIO),
replacing the previous one.

Online model training is triggered on demand, by IoT devices, appli-
cations, or users, either by directly accessing the HTTP endpoint or by
streaming through PUB/SUB on concrete topics. In the former case, a dataset
is provided in batches, while in the latter case, dataset is provided in stream-
ing, so that the dataset batch is created by the OL service once enough data is
received. Next, data is pre-processed. The pre-processing procedure depends
on the ML model architecture and the data structure, and it is use-case spe-
cific. KServe allows injecting into the OL workflow a module specialized in
the dataset pre-processing stage, known as Transformer. Thus, the Predictor
module for training and performing predictions remains independent of the
use case and can be reused in any scenario. The only module that needs to be
customized to each use case is the Transformer.

In the model inference scenario, predictions are requested by the IoT
device, application, or user. The request can include an array with either
i) some input data or ii) an empty array. After processing the request, OL
returns the prediction when input data is provided, or it returns last available
prediction when it is empty. This is useful when working for use cases
requiring the forecasting of time series forecasting.

Another module optionally included in the OL service is the Explainer,
powered by KServe. This module incorporates, to the OL workflow, an XAI
layer that provides an explanation for the prediction performed by the ML
model. It consists of a REST API endpoint that is waiting for the input data
of the inference request. This module is optional and must be implemented
by the ML model developer. If included, the OL offers an explanation to the
prediction.

The OL service is deployed using KServe framework through Kubeflow.
Kubeflow is utilized to deploy and execute ML workflows and KServe allows
to serve ML models on arbitrary AI frameworks. The ML workflow contains
the KServe implementation for deploying the OL service, and it is declared
within a Kubeflow pipeline. The execution of this pipeline creates an OL
service instance in MLaaS, exposed through an HTTP API REST endpoint.
This instance encloses an ML model, waiting for incoming data in JSON
format, either to be updated (i.e., retrained) or to perform an inference (i.e.,
prediction).
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Figure 4.5 OL service internal architecture.

OL service modules have been implemented in Python since it offers a
large ecosystem of libraries for AI. OL service is composed of the following
modules (see Figure 4.5).

• Predictor (Create KServe service). It is responsible for deploying the
REST API service within the OL service. It creates an HTTP endpoint
that exposes the OL API for model update or prediction. The main
library used in this module is KServe.

• Transformer. It receives a raw dataset and performs the data pre-
processing stage. Therefore, it contains all functions needed to prepare
the data for the ML model. This module is use case dependent; so it
changes for each scenario.

• Explainer. It receives the pre-processed inference input data and returns
the significance of each feature in the prediction. It is powered by
KServe and must be implemented by the ML model developer.
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• Online learning module. This API links the previous module to the
backend module. It is responsible for choosing the correct backend and
transmitting the model update or prediction requests.

• Streaming connector. This module provides tools to support real-time
protocols. This module is not being used because KServe only sup-
ports HTTP connections, but it is implemented in case future versions
of KServe start working with streaming data. The main libraries that
have been used for its implementation and testing are Kafka and
Paho-MQTT.

• MinIO connector. It provides the required tools to download and upload
the ML models. This version stores the trained ML model in MinIO stor-
age each time the model performance gain overpasses a given threshold.
This module is based on the MinIO library.

• Backend. Modules are responsible for including required functions to
perform ML model updates or predictions in each framework. The first
version includes the following frameworks: Sklearn, Vowpal Wabbit,
TensorFlow, and Pytorch.

Apart from the main OL service implementation, additional developments
are also required for having the service deployed. They are listed below along
with a brief description.

• OL service adaptation: This is the initial step and consists of configuring
the OL service to set different parameters such as the MinIO host and
the buckets where the ML models are stored, the backend (framework
that was used to implement the model) to use in order to perform the
model update or the prediction.

• Create the Docker image: Once the OL service is configured, it is
required to wrap it within a Docker image that will be uploaded in a
Docker registry so that Kubeflow can include it into the pipeline.

• Define KServe YAML manifest: This manifest defines the configuration
of the OL service when deployed. It defines the name of the inference
service, the number of replicas, the CPU limits, or the Docker image to
use, among others.

• Create Kubeflow pipeline: At this point, we have the Docker image
ready to use and the KServe YAML manifest that defines the OL service.
The next step is to create a Kubeflow pipeline to incorporate the KServe
YAML manifest and thus be able to run it.

• Run Kubeflow pipeline: This step deploys the OL service as an HTTP
inference service.
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• Define Camel-K binding: Camel-K binding consists of a YAML file that
defines the broker and topics in which data is being dumped and the
prediction service deployed in the previous step in order to resend the
data.

4.3.4 Evaluation

This section describes a customized implementation of the MLaaS OL service
and its evaluation on a smart energy forecasting scenario, which is depicted
in Figure 4.6.

This smart energy scenario consists of a power-voltage (PV) electric grid
(EG), whose status metrics are monitored by attached IoT devices. These met-
rics are published into a MQTT broker in specific topics and consumed by the
OL service. The OL service hosts a specific ML model that is continuously
trained as soon as new data is available.

The objective of the OL service is to forecast the EG power generation
within the next 24 hours, giving a training dataset representing generation
in the last 24/36 hours, published in the MQTT topic for power generation.
This OL service faces the problem of time series forecasting, where the data
becomes available as time goes by, which is a common use case for OL.

Once new data arrives at the OL service, it proceeds with the pre-
processing step so that the data is prepared to be processed by the ML model

Figure 4.6 Smart energy forecasting scenario.
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either for training the model or for inferencing the model in order to obtain
forecasting. The following steps summarize the pre-processing stage (see
Figure 4.7).

• Extraction of power value: The IoT devices transmit three-phase electric
voltage and current data; hence, it is required to extract power value from
these data.

• Resampling of the power data: Since the sampling rate in the smart
energy scenario is too low, around 1 second, it is needed to resample
the power data by aggregating all the values received within 1 hour
and computing its average power. For this purpose, the Pandas library
is used.

• Data scalation: ML presents higher performance and stability when all
values are scaled between 0 and 1. Therefore, the power data is scaled
by using the max−min scale strategy with pre-processing functions from
the scikit-learn library.

• Time series windowing: The univariate time series forecasting algo-
rithms take vectors as input. This step creates an input vector that
contains the scaled averaged power per hour that is used to update the
model or perform a prediction. The vectors are created by using different
tools from Pandas and Numpy.

After the pre-processing stage, data is ready to train the ML model.
However, so far, we have not provided any information about the architecture
of the ML model hosted by OL service. The selected model architecture
is based in recurrent neural networks (RNNs) [6] since we are facing time
series forecasting problems. RRNs have demonstrated to work well when
facing time series data, although they present some disadvantages such as the
vanishing gradient problem [8]. After some evaluation, the selected layer is
the gated recurrent unit (GRU) [7] because it solves the vanishing gradient
problem suffered by the original RNN and presents faster convergence rate
than other types of RNN such as long short-term memory (LSTM) variant.
After the recurrent layers, we add two fully connected layers to apply a

Figure 4.7 OL pre-processing stage.
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linear transformation to the outputs of the GRU layers. Figure 4.8 depicts
the architecture scheme.

Figure 4.8 DL architecture for smart energy forecasting OL service.

Most of the time series forecasting problems faced with DL use the
mean square error (MSE) between real values and model outputs as the loss
function since it is one of the simplest to use. The neural network and the
training procedure are implemented using the Pytorch library. This library is
one of the most extended DL libraries, thanks to its easy-to-use framework
with a large number of tools for DL.

To validate that the selected DL model architecture is a valid solution
for this power forecasting scenario and deliver a ready-to-use OL forecasting
service based on the trained DL model, we started by collecting power dataset
for a time frame of 20 days. A data analysis was carried out to find out trends,
seasonality, and correlation between power samples. After the analysis, we
found out a daily seasonal component; so we could assume a period of 24
hours. After performing a slight experimentation, the OL service uses the
training hyper-parameters shown in Table 4.1.
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Table 4.1 Hyper-parameters for the OL service.
Hyper-parameter Value
Epochs 50
Learning rate 0.005
β1 0.9
β2 0.99
Optimizer Adam
Loss function Mean squared error
Batch size 128

We train the DL architecture during 50 epochs with a batch size of 128
samples. We also use Adam optimizer [14] with a learning rate of 0.005 and
β1 and β2 coefficients present values of 0.9 and 0.99, respectively.

Figure 4.9 shows the actual power data (orange line), inferences per-
formed by the DL model (blue points) and the forecasting intervals with
a 90% of confidence interval (blue area). It is important to note that the
forecasting intervals can be computed since the errors between the actual
data and the model predictions present a distribution that can be considered
as Gaussian.

To assume errors that come from the Gaussian distribution, they have
been subjected to normality tests: Shapiro−Wilk [10], Anderson−Darling
[11], and D’Agostino−Pearson [12]. These tests consist of statistical hypoth-
esis tests and allow checking whether the data contains certain property. Thus,
two hypotheses are defined: the null hypothesis and the alternative hypothe-
sis. The null hypothesis supports that the data probably comes from a normal
distribution while the alternative hypothesis defends that the data present a
different distribution. The statistical test returns a probability known as p-
value. If this result presents a value lower than the defined significance level
(0.05 in this case), the null hypothesis must be rejected; so the data distri-
bution cannot be assumed as normal. Table 4.2 shows the p-values obtained.
These normality tests have been implemented by using the Statsmodels and
Scipy libraries.

Table 4.2 Normality test p-values.
Normality test Power generation forecasting
Shapiro−Wilk 0.47
Anderson−Darling 0.76
Agostino−Pearson 0.10

The model can learn the seasonal variations that the generated power
seems to have. Moreover, the inferences performed using the validation
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subset (data not included during training) offer significant good performance
since the MSE obtained is 0.009 (see Figure 4.9).

OL solution includes an optional component to add an XAI dedicated
REST API endpoint to provide explanations to the model output and obtain
model predictions transparency. For this purpose, we have used the Cap-
tum library, which is an open-source Python library specialized in model
interpretation methods built on Pytorch.

Captum allows to use different XAI methods to compute the impor-
tance of each input feature in the model prediction. Among several methods
tested, DeepLIFT (deep learning important features) [13] provided best
results; so it is the selected XAI method. This method belongs to the XAI
backpropagation-based approach. This approach tries to highlight the input
features that are easily predictable from the output.

DeepLIFT consists of on decomposing the output prediction of a neural
network on a specific input by backpropagating the contribution of all neurons
in the network to every feature of the input. It compares the activation
of each neuron to its reference activation (a default or neutral input) and
assigns contribution scores according to the difference. DeepLIFT also can
separate positive from negative contributions; therefore, the features that have
a positive impact on the prediction can be discriminated from the ones with a
negative impact.

Figure 4.9 Power generation forecasting.
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To verify whether DeepLIFT provides reasonable explanations, we have
carried out a small evaluation of the power generation forecasting model. For
this purpose, we have selected 1 input vector with 36 power measurements.
We use DeepLIFT to obtain information about the features that have shown
the highest relevance to return the prediction and we represent the contribu-
tion scores of each of the samples, as shown in Figure 4.10. Those features
with high positive contribution are represented with green points, those that
do not present an impact on the prediction are in yellow, and features that
present negative contribution are in red. Therefore, DeepLIFT conclusion is
the more recent the power sample, the more relevant it is.

At this point, both DL model and DeepLIFT methods have been validated
and the OL service deployment can be carried out. The DL model is stored
in MinIO so that the OL service can update it or can use it to perform
predictions.

The deployment works in the same way described in the previous section.
OL service implementation is configured so that the service loads and saves
the model in the specific MinIO bucket and uses the Pytorch backend to
train or predict, since the model has been defined by using this library.
Furthermore, the XAI module script is added to the OL implementation. Then
the OL service is wrapped in a Docker image, which is uploaded to a Docker
registry. Later, the KServe YAML file is created for the service. The next step
consists of creating the Kubeflow pipeline and executing it; so the OL service

Figure 4.10 XAI analysis of power generation forecasting.
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is deployed with an HTTP endpoint. Finally, the Camel-K binding is created
indicating the MQTT broker address with the specific topic.

MLaaS online learning service code is available at the IoT-NGIN GitLab
repository [4].

4.4 Model Sharing, Model Translation, and
Zero-knowledge Model Verification

4.4.1 Introduction

The main motivation for the zero-knowledge verification framework is to
provide a mechanism for ensuring the following:

1. The training phase of a machine learning model exclusively involves the
inputs declared by the model owners.

2. Replicability of the training phase.
3. Immutability of the results of the training phase (i.e., trained model).
4. Ability to create an intermediate representation of the trained model in

a common machine learning framework.

Since the training phase of an ML model is a deterministic process
(provided the required initial conditions, including the seeds for any operation
involving PRNG, e.g., batch normalization, and excluding non-deterministic
models, i.e., VAE), by having full control of the datasets involved, the
model architecture and hyper-parameter values, we can ensure that the model
weights resulting from the training are the direct result from the inputs
provided [18]. For this reason, to ensure that the resulting weights of a trained
model exclusively involve the provided datasets, the training phase must be
carried out in the premises of the system. To provide the ability for verifying
and tracing the lineage of all inputs of the models, a platform for storing all
relevant metadata and datasets involved is required. Additionally, the pos-
sibility for creating an intermediate representation of the model maximizes
the compatibility of the registered models across a wide range of execution
platforms, avoiding lock-in of the models in their original machine learning
frameworks.

4.4.2 Features

In this section, we will introduce the services that make up the architecture of
the system, and their responsibilities.
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Model sharing service – features overview:

The model sharing service oversees the model training phase and storage of
the results, given a model implemented in one of the supported ML backends,
a set of hyper-parameter values, and the datasets involved. In addition to this,
it is also in charge of providing access to, and enforcing access rules for the
registered datasets and models.

The model registration process depends on the following inputs:

• model architecture implemented in one of the supported ML backends;
• an existing dataset in the system, for which the company and model

developer are granted access to;
• hyper-parameter values for the model.

For each registered model, and all its associated inputs, a smart contract
containing all the relevant metadata to ensure the reproducibility of the
results of the training phase is deployed in the blockchain via the zero-
knowledge verification service (see next subsection). The static files for the
model architectures, resulting model weights and training metadata, as well
as the datasets involved are stored in an object storage repository, to enforce
control over the full storage lifecycle. To ensure the isolation of company
resources in the shared object storage instance, each company resources
are stored in independent buckets, with access credentials scoped to the
company’s resources. These credentials are obscured away from the end users
and are generated and used exclusively in a programmatic manner by the
system

Model training service – features overview:

The model training service oversees the training phase for each model reg-
istered via the model sharing service. To perform the training phase for a
registered model, it first validates all the necessary inputs (as described in the
introduction of the model sharing service).

Zero-knowledge model verification service – features overview:

The zero-knowledge model verification service provides a framework for
end-to-end verification of stored models, and dataset identification. The
blockchain is based on the Quorum blockchain service [16], which is an open
source private blockchain platform with a fully capable implementation of
the Ethereum virtual machine. For each model and dataset stored, there is a
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corresponding smart contract deployed in the blockchain. When deploying an
Ethereum smart contract, the Ethereum virtual machine (EVM) stores internal
bits of information, which are accessible when transacting with the contract.
In this manner, we use smart contracts as sources of truth for all the relevant
metadata for datasets and models. The metadata stored in the blockchain
differs for models and datasets. As mentioned before, the objective is to
store all the necessary metadata to verify and ensure the traceability and
replicability of trained models. For this reason, one of the key pieces of
stored metadata for trained models is a hash of the model weights, which
allows the model sharing service to ensure the integrity of the artifact in the
object storage repository. For datasets, as computing the hash of large files is
a computationally intensive task, we store relevant statistics (unidimensional,
matrix), as well as sample sizes, and total samples. By storing the hash of
the model representation in the deployed smart contract, we can ensure the
integrity of the stored models. We also store other model metadata, such as
input and output vector sizes, and other relevant information regarding the
datasets involved in the training phase.

Model translation service – features overview:

The model translation service provides a framework for generating an inter-
mediate representation for machine learning models implemented in several
frameworks. It leverages ONNX [17], a machine learning framework used as
an intermediate compatibility layer between other popular machine learning
frameworks, by providing an open format for representing machine learning
models. One of the main use cases for needing an intermediate representation
is due to hardware optimization concerns. Depending on the framework in
which a machine learning model has been developed, the framework’s back-
end implementation may apply different optimizations to different hardware.
The goal of using ONNX is to be able to access the implemented hardware-
specific optimizations avoiding the lock-in of the implementation in a par-
ticular framework, allowing the development of machine learning models
in an open format that can be used to leverage the hardware optimizations
implemented by other frameworks regardless of the original implementation’s
backend. There exist implementations for providing compatibility layers with
ONNX for the most popular machine learning frameworks, e.g., PyTorch,
Tensorflow, and scikit-learn. Some of these implementations are community
efforts (i.e., open-source implementations), and in other cases such as in
PyTorch, support is built in the framework.
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4.4.3 Technical implementation

In this section, we will provide further details about the technical implemen-
tation of the services, and further insight into their interactions, as shown
in Figure 4.11. Before further introducing the services individually, we will
mention some guiding architectural and engineering practices followed in
the development phase. We have followed a microservices approach for the
design and development of the services. All the introduced services are imple-
mented in Python, using the FastAPI framework. The OpenAPI specification
for the services is generated dynamically by FastAPI. Documentation for the
services is offered via Swagger, provided by FastAPI. Clients for the services
APIs are programmatically generated with the OpenAPI generator library
by using the OpenAPI specifications provided by FastAPI. For deployment,
we followed a container-based approach, using Kubernetes as the container
orchestration framework of choice.

Figure 4.11 Internal architecture.

Model sharing service – technical details of implementation:

The access to the MLaaS block storage (powered by a MinIO instance) layer
is handled exclusively by this service. Abstractions are provided for storage
and retrieval of any size datasets and model architecture artifacts, as well as
the results of the training processes. When storing datasets, and depending
on the nature of each dataset, relevant statistics are collected and stored
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in the blockchain, in addition to storing the dataset in the block storage.
Equivalently for model registration petitions, relevant metadata is extracted
from the user’s uploaded file and stored in the blockchain service in the form
of an Ethereum smart contract. Each dataset and model is provided with
a unique ID that is exposed to the user, and stored in an internal MLaaS
relational database. For authorization purposes, each entry of this database
registers the developer and its company in order to restrict the access of these
assets. Authentication and authorization for storing and accessing models is
implemented with MLaaS Keycloak. The JWT tokens provided by Keycloak
provide with all necessary information for the model sharing service to
enforce access rules for the tenants.

Upon model registration requests, the model sharing service will ini-
tiate a model training job, by means of the model training’s HTTP API
using its Python client implementation. Equivalently, communication with
the blockchain service is achieved by means of the blockchain service’s
API Python client. For models for which their training jobs have finished
successfully, the model sharing API allows for the download of the training
results, after verifying the integrity of its associated artifacts by means of
comparison of the hash stored in the blockchain contract, and the hash of the
artifact upon download from the object storage layer. This service relies on
a relational database in which, for each registered model, information about
the company, developer, and smart contract address is stored.

The following operations are implemented in the HTTP REST API:

1. dataset and model registration (contract and storage in block storage
layer);

2. dataset and model download.

Zero-knowledge model verification service – technical details of
implementation:

The blockchain is powered by an instance of Quorum (MLaaS DLT), a private
distributed ledger technology (DLT) implemented as a fork of the Ethereum
blockchain. In our use case, a single member runs all the nodes that make
up the network. Quorum supports private transactions (supported by Tessera,
a component for private transaction management), in which encrypted data
can be transferred between network participants and stored in a way such
that only the involved participants can see the data. It is fully compatible
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with the Ethereum APIs and implements full support for smart contracts. To
interact with the blockchain, we use the Web3.py Python library, and use
the Solidity language specification for developing the smart contract code.
The service uses separate addresses for each company to interact with the
blockchain. These addresses’ private keys are never shared with the end
users. Using separate addresses for each company reduces the surface attack,
limiting the exposure of any leaked private key to the scope of the company.
Smart contracts are therefore deployed to the accounts issued for each of the
companies.

The Ethereum virtual machine (EVM) runs contract code to completion
or up to transaction gas (currency for covering transaction costs) exhaustion.
However, Quorum allows for free-gas networks, and since it is a single
member network, there exist no incentives for requiring gas for transacting in
the network. In addition to the deployment of smart contracts for models and
datasets, the service also implements the ability to fetch all stored metadata
for already deployed contracts.

The following operations are implemented in the HTTP REST API:

1. deploying of smart contracts for datasets in the blockchain;
2. deployment of smart contracts for models in the blockchain;
3. fetching all metadata stored in a contract address.

Model translation service – technical details of implementation:

The model translation service provides a compatibility layer between three
of the most widely spread ML frameworks (Pytorch, Tensorflow, and scikit-
learn) by providing a managed service on top of ONNX [17]. Requests for
model translation are allowed for all models already registered and for which
their training jobs have finished successfully.

The following operations are implemented in the HTTP REST API:

1. generate intermediate representation in ONNX for an existing model.

Model training service – technical details of implementation:

The model training service is implemented as a Kubernetes custom operator,
using the framework Kopf. Model training jobs are modeled as custom Kuber-
netes resource definitions (CRD), which include all the relevant information
for the operator to process the training job.

On model registry, model developers must also specify a Docker image
to be used as the environment for the model training. This requirement is set
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in order to provide model developers with maximum flexibility as well as
allowing model developers to share the same environment across their local
model development and training, and the training procedure performed in the
model training cluster, essentially abstracting end users from any possible
overhead introduced by the zero-knowledge verification process.

The results of the training are treated as output artifacts and must be stored
in a specific output directory. This output directory is a mount of a Kubernetes
persistent volume claim (PVC), and the contents of the PVC will be stored as
a result of the model training job in the block storage upon an exit code that
is received from the training container.

The custom resources are processed by the implemented Kubernetes
operator in a queue-like manner and can be processed in either a sequential or
parallel manner, depending on the availability and scalability of the hardware.

The model sharing service, upon the reception of a model registration
request, will create an instance of the custom resource definition in the
training Kubernetes cluster, with all the relevant input for the cluster to
schedule the training job. This input contains:

• pointer to the UID of target model architecture;
• pointer to the UID of the target datasets;
• image registry link for the Docker training image;
• all relevant model starting conditions (e.g., PRNG seeds), exposed as

environment variables to the containers running the specified Docker
image.

The following operations are implemented in the HTTP REST API:

1. register model training jobs (creates the CRD in the target Kubernetes
cluster);

2. check processing status for model training jobs.

The implementation code of the MLaaS services model sharing, model
translator, and zero-knowledge verification service is available at the IoT-
NGIN GitLab repository [15].

4.4.4 Evaluation

To exemplify the usage of the zero-knowledge verification framework, we
will introduce the following test case, in which we register the Pix2Pix
generative model [19] and the CMP facade dataset [20] and, after its training,
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generate the intermediate representation of the trained model in the ONNX
framework (see Figure 4.12).

The Pix2Pix model implements a cGAN (conditional generative adver-
sarial network), which is able to map input images to output images of a
learned distribution from the training samples. For our use case, we will use
building facades as the training input, and we expect the trained model to
produce artificial facades, based on the learned latent distribution from the
CMP facade dataset.

Figure 4.12 Evaluation process.

Before being able to register the model in the system, it is necessary to
register all its associated datasets in the model sharing service (in our case,
the CMP facade dataset). To do that, we make an HTTP POST request to
the datasets endpoint in the model sharing service. The HTTP POST request
is a multipart request, including the model architecture file and the initial
metadata for the model (e.g., sample number, sample dimension, etc.).

curl --request POST\

--url http://<mlaas_model_sharing> /dataset/\

--header ‘Content-Type: multipart/form-data’\

--form model=@model\
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--form ‘metadata={ ‘‘sample_dimension’’: ‘‘(500,500)’’, ‘‘sample_num’’
: 606}}’

Once the dataset is successfully registered in the system, we proceed with
the registration of the model. In a similar way to the dataset registration
process, to register the model in the system, we make an HTTP POST
request to the model registration endpoint in the model sharing service.
This POST request is also a multipart request, with the file containing the
model architecture developed in the original machine learning framework,
and the required model metadata (e.g., ID of the training dataset, input sample
dimensions, total number of parameters, and initial conditions for all the
hyper-parameters of the model, and link to the registry hosting the training
Docker image).

curl --request POST\

--url http://<mlaas_model_sharing>/model/\

--header ‘Content-Type: multipart/form-data’\

--form model=@model\

--form ‘metadata={ ‘‘model_params’’: { ‘‘sample_dimension’’: ‘‘(500,
500)’’, ‘‘params’’: ‘‘<json_params_initial_cond>’’}, ‘‘data_params’’:
{ ‘‘dataset_id’’: ‘‘<dataset_id>’’}}’

In the model registration step, the model sharing service, upon verifying
all necessary inputs, will trigger a new job in the model training service
to schedule the training of the model and its associated datasets using the
specified Docker image.

The model training service will then execute the training job, scheduling
the Kubernetes deployment, and executing until an exit code is received from
the container. Upon receiving a graceful exit code, it will then copy all the
contents of the persistent volume attached to the container into the block
storage layer, via the model sharing service. In this step, the model sharing
service will also update the smart contract associated with the model with the
metadata of the final trained model (e.g., model weights hash). We can verify
the updated metadata by making a GET request to the model sharing service
metadata endpoint:

curl --request GET\
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--url http://<mlaas_model_sharing> /metadata/<model_id>

From this step onwards, the model is ready to be used for inference, being
able to download it securely using the model sharing service, or to create
an intermediate representation of the trained model in ONNX via the model
translation service.

curl --request GET\

--url http://<mlaas_model_sharing>/model/<model_id>

To create an intermediate representation of the model, the developer must
perform an HTTP POST request to the model translation service, specifying
the ID of the trained model:

curl --request POST\

--url http://<mlaas_model_translation> /translate /<model_id>

Note that the service will reject any petitions for registered models for
which its training jobs are not completed. Upon receiving the request, the
model translation service will then perform the conversion of the model from
the initial framework to ONNX and will store the results of this operation
under a new ID (i.e., a new model). This new model will have all the
invariant metadata of the original model, except for the changing metadata,
e.g., backend (i.e., framework) of the model, model hash. Note that there was
no training step involved in the model translation step. This is since ONNX
allows for model conversion without the need of re-training the model.

Therefore, the model is now available in the original backend under the
ID associated upon its registration in the system, and the ONNX version of
the same model is also available under a newly assigned ID (as received in the
response of the model translation service API call). It is necessary to assign
different IDs as the zero-knowledge verification framework treats models as
individual, independent units, due to the uniqueness of the metadata involved
in the verification process.

4.5 Conclusion

This chapter has introduced the IoT-NGIN concept of MLaaS, its main
features, and the implementation details of the MVP instantiated in
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the IoT-NGIN cluster. It has also provided the functional and technical
specification of additional MLOps services incorporated into MLaaS:
services required for MLOps in the IoT domain, such as the adaptive online
learning service, intended for the ML model training and inference from
streaming datasets, or other services that extend the MLOps functionality,
such as the model sharing, model translator, and zero-knowledge model
verification, which are not part of the MLOps frameworks available in the
open-source community.

MLaaS is being used by IoT-NGIN use cases for the MLOps management
of ML-based applications in the IoT domain. In particular, the usage of
MLaaS for online model training and inference for smart energy forecasting
has been used in the evaluation of the online learning services. The adoption
of MLaaS in the other IoT-NGIN use cases will be the focus of development
in the rest of the IoT-NGIN project.
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Abstract

Federated learning (FL) is a novel methodology aiming at training machine
learning (ML) and deep learning (DL) models in a decentralized manner in
order to solve three main problems seen in the artificial intelligence (AI)
sector, namely, (a) model optimization, (b) data security and privacy, and (c)
resource optimization. FL has been established as the “status quo” in today’s
AI applications especially in the industrial and critical infrastructure (CI)
domain, as the three aforementioned pillars are invaluable in assuring their
integrity. CIs include important facilities such as industrial infrastructures
(smart grids, manufacturing, powerlines, etc.), medical facilities, agriculture,
supply chains, and more. Deploying AI applications in these infrastructures
is an arduous task that can compromise the CI’s security and production
procedures, requiring meticulous integration and testing. Even a slight mis-
take leading to the disruption of operations in these infrastructures can have
dire consequences, economical, functional, and even loss of life. FL offers
the needed functionalities to galvanize the integration and optimization of
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artificial intelligence in critical infrastructures. In this chapter, we will outline
the application of federated learning in decentralized critical infrastructures,
its advantages and disadvantages, as well as the different state-of-the-art
techniques used in the CI domain. We will showcase how the centralized
ML approach transitions into the federated domain while we will show
practical examples and practices of deploying the federated learning example
in representative CIs, like, power production facilities, agricultural sensor
networks, smart homes, and more.

Keywords: Federated learning, artificial intelligence, data security, critical
infrastructures, model optimization, resource optimization.

5.1 Introduction

5.1.1 Definition and motivation

Federated learning (FL) is a distributed machine learning technique that
allows multiple devices or entities to collaboratively train a model while
keeping their data on-device. In federated learning, the data is distributed
across a large corpus of devices or entities. This approach trains an AI model
on the remote device using the local data and then sends only the model to
a specified aggregation unit. There, a new and optimized global model is
created by aggregating the model updates from all the devices. This approach
allows for the training of models on large amounts of data without the need
to transmit or centralize it, thus addressing the challenges of data privacy,
security, and resource allocation.

The methodology was first introduced by the Google Research team in
a 2016 paper titled “Communication-Efficient Learning of Deep Networks
from Decentralized Data” [1]. It represents an advancement from traditional
distributed machine learning and is designed to address the challenges of
training AI models without the need to transfer data, for reasons related to
computation, allocation, and privacy.

The motivation behind FL is to enable machine learning in scenarios
where data is distributed across devices or is sensitive and cannot be cen-
tralized. For example, in the case of personalized healthcare, data may be
collected from multiple devices such as wearables, smartphones, and hos-
pitals. In these scenarios, it is not practical or secure to centralize the data
and allows for the training of models without compromising the privacy and
security of the data. Additionally, this approach can be applied in mobile
computing, where data is distributed across millions of mobile devices [2],



5.1 Introduction 97

Figure 5.1 Federated learning concept.

and it allows training models on this data without the need to transmit large
amounts of data over the network.

Federated learning also has the potential to democratize machine learning
by enabling the participation of a large number of devices and entities in the
training process. This can lead to more diverse and representative datasets,
and also allows for training models in remote or underserved areas where
data may not be easily accessible.

Federated learning can also be used to improve the performance of models
in edge computing applications. By allowing devices to train models locally,
federated learning can reduce the need for transmitting large amounts of
data over the network, which can be beneficial in low-bandwidth or high-
latency environments. Additionally, federated learning can enable the training
of models that can be deployed on resource-constrained devices, such as IoT
sensors or mobile phones.

5.1.2 Federated learning domains

Federated learning is an approach that aims to leverage the benefits of
distributed AI model training. This approach is centered around three main
pillars:
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• Model optimization: Improves the model optimization process [3],
[4] for the local node by providing an aggregated (global) model that
contains knowledge accumulated by the aggregated models from all the
devices.

• Data privacy: Preserves the integrity, security, and privacy of the data
by keeping it at the edge nodes, rather than transferring it to a central
infrastructure.

• Resource optimization: Designed to optimize [3], [5] the use of
resources by communicating only the model parameters and some meta-
data between the federated server and the federated clients, instead of
transferring the entire dataset. This conserves network resources and
avoids possible bottlenecks, leads to lower latency, and allows for the
distribution of the computing power needed for the AI model train-
ing among various nodes. Additionally, it enables to use the remote
machines for the training process only when they are not used for other
purposes, are connected to a steady power supply, and/or when there is
a stable internet connection, which reduces the energy consumption of
the federated process.

5.1.3 Use cases and applications

Federated learning has a wide range of use cases and applications, including
but not limited to the following:

• Personalized healthcare can be used to train models that can predict a
patient’s health status or risk of developing a certain condition. This can
be done by aggregating data from multiple devices such as wearables,
smartphones, and hospitals. FL allows for the training of models without
compromising the privacy and security of the patient’s data, which is
particularly important in the healthcare industry.

• Mobile computing can be used to train models on the large amounts of
data generated by mobile devices such as smartphones and tablets. This
can be used to improve the performance of mobile applications, such as
natural language processing, image recognition, and more. For example,
federated learning can be used to train models that can predict the battery
life of a mobile device based on usage patterns.

• Internet of Things can be used to train models on data collected from
IoT devices such as sensors and cameras. This can be used to improve
the performance of edge computing applications, such as image and
video processing, anomaly detection, and more.
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• Banking and finance can be used to train models that can predict fraud-
ulent transactions, by leveraging data from multiple banking institutions
to train AI model, without actually transferring any data.

• Natural language processing can also be used to train language models
by aggregating data from multiple sources without compromising the
privacy of the data.

These are some examples of the utilization of the federated learning
methodology in a variety of different popular domains. However, FL is
continuously being adapted and tested to new applications as it is slowly
becoming the baseline for machine learning in modern distributed infrastruc-
tures.

Figure 5.2 Simple federated learning architecture.
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5.2 How Federated Learning Works

5.2.1 Overview of the architecture and process

Federated learning is a distributed machine learning methodology that allows
for the training of deep learning models on a large corpus of edge devices.
In this approach, models are trained locally on the edge devices, and their
weights are sent to a central server where they are combined to form a global
model using an algorithm such as federated averaging. The global model is
then sent back to the remote devices for use. The central server distributes
an initial global model to a population of federated devices, each of which
holds a set of local data and a local model. These models are trained on
the local data and the model weights are then retrieved by the central server
to be combined using a predefined fusion algorithm, to create a new global
model containing the new knowledge accumulated from the local models.
This process is repeated for a number of iterations until the global model
converges. Figure 5.3 shows a common process (strategy) followed to realize
an FL training between a server and a corpus of devices. Figure 5.3 showcases
a simple FL strategy for realizing a training session.

To get an idea about the modeling of the methodology process, we can
depict a mathematical formula. Of course, since the process is directly con-
nected to the fusion algorithm used, the FL process can be defined in a number
of ways. For simplicity, we shall use the federated averaging algorithm to
explain the process. Eqn (5.1) shows the process of fusing the local models
from the remote devices in one global model [6].

wk
G =

1∑
i∈N Di

N∑
i=1

Diw
k
i . (5.1)

Equation (5.1) Federated aggregation algorithm (FedAvg).
Here, the global model on the kth iteration is represented by wk

G and the
remote ith model at that iteration is represented by wk

i . Each node holds a set
of local data Di∈N and local models wi.

5.2.2 Key components

For the implementation of the described architecture, the system defines three
main components [7] in order to realize the operation of the training, namely,
a) the orchestrator, b) the aggregator, and c) the worker/client. Figure 5.2
shows how these components fit into the federated architecture.
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Figure 5.3 Simple federated learning pipeline.

5.2.2.1 Orchestrator
The orchestrator is responsible for managing the federated learning process,
including initiating the FL session, selecting the population of devices,
organizing the data, algorithm, and pipeline, setting the training context,
managing communication and security, evaluating the performance, and,
finally, synchronizing the FL procedure.

5.2.2.2 Aggregator
The aggregator is responsible for incorporating the updates from the local
models into the global model. In some cases, the orchestrator also acts as the
aggregator, particularly for smaller networks or certain security or operational
requirements. The aggregator also implements security and privacy measures
to protect the FL server and workers from any malicious actors.

5.2.2.3 Worker
The worker, also known as the party, is responsible for the local training that
takes place during the FL training session. The worker is the owner of the
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data and updates its model based on the newly received version of the global
model after the local training and global model generation by the aggregator.
The worker has the option of participating in the FL session or not, depending
on resource allocation or criticality.

The abovementioned components established the foundation of the
methodology. Depending on the type and nature of the deployment, these
components can have additional responsibilities and placement or some extra
components might be added. The different types of FL are described in the
next section.

5.2.3 Types of federated learning

There is a variety of different federated learning application types that depend
on a multitude of characteristics. A main characteristic that defines the type of
the methodology applied is the way that data and their features are distributed
and used by the different nodes. In particular, based on the data, we have the
following:

• Horizontal federated learning: This type of approach trains models
on data that is horizontally partitioned across different devices or enti-
ties. For example, training a model on data from different hospitals or
different companies (Figure 5.4).

• Vertical federated learning: This type of federated learning trains
models on data that is vertically partitioned across different devices or

Figure 5.4 Horizontal federated learning.
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Figure 5.5 Vertical federated learning.

entities. For example, training a model on data from different features of
the same patient (Figure 5.5).

• Federated transfer learning: This type of federated learning is focused
on adapting a model pre-trained on one dataset to another related dataset
(Figure 5.6).

However, the type of the federated learning approach used is not limited
to the distribution of the data for the specific use case but depends on other
characteristics such as the deployment constraints, the criticality of the data

Figure 5.6 Federated transfer learning.
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and infrastructure, and the nature of the task tackled. These preconditions
orient the methodology and technique to adapt to the problem at hand and
include the following approaches:

• Multi-party federated learning: This type of FL is similar to horizontal
FL, but the data is under multiple parties’ control. This type of federated
learning is useful for the scenarios where data is not centralized but
spread across multiple parties and each party wants to keep their data
private.

• Federated meta-learning: This type of FL is focused on training a
model that can adapt to new tasks or domains quickly by leveraging
knowledge from previous tasks or domains.

• Federated domain adaptation: This type of FL is focused on adapting
a model trained on one domain to work on another domain.

• Federated few-shot learning: This type of FL is focused on training a
model that can learn to classify new classes with only a few examples.

• Federated reinforcement learning: This type of FL is focused on
training a model using the reinforcement learning approach on the edge
devices.

5.2.4 Model fusion algorithms

As mentioned before, the underlying core of the training procedure is the
aggregation algorithm that undertakes the fusion of the distributed models
into one optimized global model. Thus, the aggregation algorithm is a crucial
component of FL as it determines the final performance of the global model.
The most commonly used aggregation algorithm is federated averaging,
which takes the average of the local models’ weights to form the global
model. However, there are other aggregation algorithms that can be used
depending on the specific use case. For example, some algorithms weigh
the contributions of the local models based on the quality of their data or
the computational resources available on the device. These algorithms can
help to mitigate the impact of data availability and device heterogeneity.
Additionally, some algorithms use techniques such as differential privacy to
protect the privacy of the data on the edge devices during the aggregation
process. Overall, the choice of aggregation algorithm can have a significant
impact on the performance and privacy of the final global model and should
be carefully considered when implementing FL. Table 5.1 presents some of
the common and state-of-the-art fusion algorithms that are widely used in
different settings.
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Table 5.1 Common fusion algorithms used in FL.
Algorithm Year Description Benefits
FedAvg [1] 2017 An iterative model aver-

aging FL framework
Reduces communication
cost by locally computed
updated aggregation

Zoo [8] 2018 Composable services to
deploy ML models locally
on edge

Reduces latency in data pro-
cessing, and minimizes the
raw data revealed

FedPer [9] 2019 Federated learning with
personalization layers

Improves results with data
heterogeneity, and commu-
nication cost

FedAsync
[10]

2019 Asynchronous federated
optimization framework

Improves flexibility and
scalability and tolerates
staleness

FedCS [11] 2019 Client selection for FL
with heterogeneous
resources

Improves performance and
reduces training time

BlockFL [12] 2019 Blockchained federated
architecture

Optimizes communication,
computation, and latency

FedMa [13] 2020 Federated matched aver-
aging algorithm for FL

Improves accuracy and com-
munication cost

FedAT [14] 2020 Synchronous intra-tier
training and asynchronous
cross-tier training

Improves accuracy and
reduces communication cost

5.3 Federated Learning vs. Traditional Centralized
Learning

Federated learning is different from traditional centralized learning [15] in
several ways. The most significant difference is that in traditional centralized
learning, the data is collected and stored in a central location, where it is used
to train the model. In contrast, federated learning keeps the data on the edge
devices and trains the model locally on each device. This allows for the train-
ing of models on large amounts of data without the need to transfer it and also
the ability to handle non-independent and identically distributed (IID) data.
Additionally, federated learning preserves data privacy and security as the
data never leaves the edge devices. This makes federated learning particularly
well-suited for scenarios where data is sensitive or distributed across multiple
devices. However, it is important to keep in mind that federated learning has
its own set of challenges such as communication overhead, data availability,
and model divergence.
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Table 5.2 Comparison between federated and centralized learning.
Federated learning Traditional centralized learning
Data remains on edge devices Data is collected and stored in a central loca-

tion
Model trained locally on each device Model trained on centralized data
Suitable for non-IID data Assumes data is IID
Preserves data privacy and security Data privacy and security may be at risk
Requires communication between
devices

No communication required between devices

Scales horizontally and vertically Scales vertically
Suitable for sensitive or distributed
data

Not suitable for sensitive or distributed data

Can handle many edge devices Limited by the amount of data that can be
centralized

Can have challenges such as commu-
nication overhead and model diver-
gence

Fewer challenges than federated learning

5.3.1 Advantages and disadvantages of federated learning

By itself and as it is probably apparent, the federated learning approach is vast
and, in its range, it encapsulates major advantages but also some drawbacks.
As in all fields, the optimal deployment of federated learning is the fine line
between the tradeoff of these advantages and drawback and strictly depends
on the application of the methodology. For example, there might be some
applications that require better model generalization but in expense of the
communication efficiency of the network. Table 5.3 enumerates some of these
advantages and disadvantages of federated learning in order to provide a
better view of its utility.

5.3.2 Real-world examples of federated learning

5.3.2.1 Smart farming
In smart farming, federated learning can provide several benefits [16] by
allowing for the training of models on data that is decentralized and spread
across multiple devices or entities. The use case integrates IoT data from
crops and animal care infrastructures, AR smart glasses, and other heteroge-
neous IoT devices, which can be difficult to source and gather in a central
place to train a single AI model. By utilizing federated learning, it allows
to train models on data that is distributed across great distances, making it
possible to:
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Table 5.3 Advantages and disadvantages of federated learning.
Advantages Disadvantages
Collaborative learning:
Allows multiple devices or entities to collabo-
ratively train a model while keeping their data
on-device. This allows for the training of models
on large amounts of data without the need to
transmit or centralize it.

Data availability:
Data availability can be an issue in
federated learning, as not all devices
or entities may have access to the same
data or may have data of different
quality.

Data privacy and security:
Allows for the training of models without com-
promising the privacy and security of the data.
This is particularly important in scenarios where
data is sensitive or distributed across multiple
devices.

Communication overhead:
Requires communication between the
devices or entities, which can be a
bottleneck, especially if the devices
are located in different geographical
locations.

Edge computing:
Allows devices to train models locally, which
can reduce the need for transmitting large
amounts of data over the network. Additionally,
it enables the training of models that can be
deployed on resource-constrained devices, such
as IoT sensors or mobile phones.

Model divergence:
Can suffer from model divergence,
where the local models may not con-
verge to a common global model due
to the non-IID data distribution on the
devices.

Handling non-IID data:
It is particularly well-suited for training models
on non-IID data that is commonly found in the
real-world scenarios.

Latency:
Can suffer from latency issues, as it
requires communication between the
devices or entities to exchange model
updates.

Scalability:
It is highly scalable and can handle a large
number of devices or entities.

Complexity:
Can be complex to implement and
requires a lot of communication and
coordination between the devices or
entities.

• Formulate best practices for farming and livestock production in expand-
ing the specific market by discovering weaknesses in the agricultural
systems and providing insightful predictions to help end-users make
informed decisions about their infrastructure’s operations.

• Formulate rules and quantified metrics for optimum conditions in terms
of (animal) behavior, psychiatry, food quality, nutrition, and agricul-
ture environment by training models on the diverse data sources from
different scenarios.

• Increase farm and livestock production by using AI-supported strategies
that improve agricultural systems’ sustainability, productivity, and risk.
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• Provide feedback on how to ensure proper decision support by using
the knowledge accumulated from the local models to improve the global
model.

5.3.2.2 Smart, sustainable, and efficient buildings
In the use case of smart, sustainable, and efficient buildings, FL can provide
several benefits [17]. By using IoT data in smart buildings to optimize the
energy footprint and automate building management using AI-based solu-
tions, FL can be used to train models on large amounts of data from multiple
devices or entities, while keeping the data on-device. This allows for the
training of models on large amounts of data without the need to transmit
or centralize it, which can help to preserve the privacy and security of the
data.

5.3.2.3 Industrial supply chains
In the context of the industrial supply chain use case, FL can provide sig-
nificant benefits by improving the forecasting accuracy [18] for fulfilling the
demand from retailers and agencies, who are attempting to satisfy the demand
from their consumers. This is achieved by utilizing the abundance of product
codes, complexity of certain manufacturing processes, and short lifetime of
most products in the supply chain, which make production scheduling and
market-oriented forecasting challenging. In this frame, FL allows for the
collaborative training of models across different supply chains of the end-
user, without the need to transfer or centralize the data. This can improve
the forecasting accuracy by leveraging the knowledge and data from different
product codes produced by the end-user. Additionally, the use of FL can pro-
tect the data privacy and resources of the end-user’s infrastructure, by keeping
the data on-device, and avoiding the need for centralizing and transferring it.
Furthermore, by applying this technique to optimize the forecasting accu-
racy and using the heterogeneous data from different product codes, it can
lead to the end-user’s better decision making and better supplier−customer
relationship.

5.3.2.4 Industrial infrastructures
In the use case of mixed reality and ML-supported maintenance and fault
prediction of IoT-based critical infrastructure, the benefit of FL is its ability to
predict the behavior of industrial devices, such as controllers, in order to iden-
tify potential defects and malfunctions. This enables the end-user to monitor
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and prevent problems in the operation of each industrial infrastructure. The
technique is applied to a large number of industrial devices that are divided
and installed in decentralized optical switches. The use case makes use of the
ability of federated learning to handle many edge devices, both horizontally
by scaling to more devices such as small form-factor pluggable (SFP) mod-
ules or switches and vertically by applying a hierarchical model optimization.
This allows for more efficient and accurate predictions and maintenance
operations for the critical infrastructure.

5.3.2.5 Medical sector
Federated learning can bring several benefits to the medical sector [19], [20],
particularly in a use case of a collection of hospitals across a large distance.
Some of the benefits include:

• Data privacy and security: Allows for the training of models without
compromising the privacy and security of the patients’ data. This is
particularly important in the medical sector where data is sensitive and
regulated.

• Handling non-IID data: It is particularly well-suited for training mod-
els on non-IID data, which is commonly found in the medical sector. By
training models on the local data from different hospitals, the models can
learn from diverse patient populations, resulting in more robust models.

• Edge computing: Allows hospitals to train models locally, which can
reduce the need for transmitting large amounts of data over the network.
Additionally, it enables the training of models that can be deployed on
resource-constrained devices, such as mobile devices used by clinicians
and nurses.

• Collaborative learning: Allows multiple hospitals to collaboratively
train a model while keeping their data on-device. This allows for the
training of models on large amounts of data without the need to transmit
or centralize it.

• Scalability: It is highly scalable and can handle a large number of
hospitals across a large distance. This makes it suitable for large-scale
healthcare studies and research.

• By using, hospitals can train models on their local data without sharing
any sensitive information across the network, while still being able
to build models that generalize well to different patient populations.
This can lead to better diagnosis, treatment, and ultimately patient
outcomes.
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5.4 Implementing Federated Learning

Implementing federated learning requires a few key components. First, a
centralized server is needed to aggregate the models trained on the local
devices and distribute the updated global model back to the devices. Second,
there should be a mechanism for the local devices to communicate with the
central server and securely exchange model updates. Third, a mechanism for
data partitioning is needed to ensure that the devices are training models on
non-overlapping data. Fourth, a method for combining the local models into a
global model, such as federated averaging, is necessary. Lastly, it is important
to have a way to evaluate the performance of the model and monitor the FL
process. Additionally, it is important to have a good understanding of the
underlying deep learning model and the data that are being used. It is also
important to consider the security and privacy aspects of the FL process, as
well as the network infrastructure to ensure that the devices can communicate
effectively with the central server.

5.4.1 Tools and frameworks available

Since its introduction, federated learning has continuously been explored and
integrated into a variety of commercial and industrial applications. To support
the migration from conventional deep learning, a lot of diverse frameworks
have been proposed and used to both deploy or experiment with the FL
methodology. Table 5.4 enumerates some of the most used frameworks that
exist today.

5.4.2 Challenges

Despite the many potential benefits of federated learning, there are still some
challenges that need to be addressed before it can be widely adopted. These

Table 5.4 Available federated learning frameworks and tools.
Framework Type
Tensorflow federated [21] Research
FATE [22] Production
Flower [23] Production/research
PySyft [24] Production/research
IBM federated [25] Production/research
Leaf [26] Research
OpenFL [27] Production/research
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include issues related to data privacy and security, as well as the need for
robust methods for aggregating updates from multiple devices. Additionally,
it requires the design of efficient algorithms to handle the high-dimensional
and non-IID data across the devices, and more. Therefore, it is an active area
of research and development, with many ongoing efforts aimed at addressing
these challenges and making the approach more practical and widely applica-
ble. Common challenges in the federated learning domain include problems
that derive by its innate nature, such as:

• Untrusted sources: O ne of the challenges is the presence of untrusted
sources, which can be devices or entities that may not have the same
level of security or data privacy as the other participants. This can lead
to potential breaches of security or privacy and can compromise the
integrity of the model.

• Adversarial attacks: FL is also vulnerable to adversarial attacks, where
an attacker may attempt to manipulate the local models or the global
model, leading to a decrease in the accuracy of the model.

• IID and non-IID data processing: FL requires the data distributed
across the devices or entities to be identically independently distributed
(IID), which is not always the case. In scenarios where data is non-IID,
the local models may not converge to a common global model, leading
to a decrease in the accuracy of the model.

• Synchronization problems: FL requires coordination and communica-
tion between the devices or entities, and synchronization problems can
occur if the devices or entities are not able to communicate or coordinate
effectively.

• Small number of participants: FL requires a large number of devices
or entities to participate in order to effectively train a model. If the
number of participants is small, the model may not be able to effectively
learn from the data.

• System infiltration: In FL, since the data is distributed across multiple
devices or entities, it can be vulnerable to infiltration by malicious actors
who can attempt to access the data or manipulate the models.

5.5 Conclusion

Federated learning is a novel methodology created on the basis of distributed
training of AI models, heavily oriented at keeping the distributed data private
while also optimizing the models and the resources used. It is particularly
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useful in the industrial and critical infrastructure domain, as it allows for
the integration and optimization of AI in these systems without compro-
mising their integrity. FL offers several advantages in terms of deployment,
scalability, and security; however, it also poses some challenges in terms of
implementation, communication, and model optimization, especially when
considering the distribution of the distributed resources. It is a status quo
in today’s AI applications. The chapter focuses on introducing the basics
of the federated learning methodology, the application of FL in decen-
tralized critical infrastructures, outlining the advantages and disadvantages
and different techniques used in the field. It provides practical examples
of FL’s deployment in various infrastructures such as power production
facilities, agricultural sensor networks, and smart homes and more while also
summarizing the currently available sources.
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Abstract

Machine learning (ML) plays a growing role in the Internet of Things (IoT)
applications and has efficiently contributed to many aspects, both for busi-
nesses and consumers, including proactive intervention, tailored experiences,
and intelligent automation. Traditional cloud computing machine learning
applications need the data, generated by IoT devices, to be uploaded and
processed on a central server giving data access to third parties raising
privacy and data ownership concerns. Federated learning (FL) is able to over-
come these privacy concerns by enabling an on-device collaborative training
of a machine learning model without sharing any data over the network.
However, model sharing can also potentially reveal sensitive information.
Therefore, federated learning needs additional privacy-preserving techniques
to enable fully private machine learning model sharing and training. In this
chapter, privacy-preserving techniques for federated learning are studied.
In addition, a comparative analysis of state-of-the-art federated learning
frameworks against privacy-preserving techniques is presented. The analysis
comprises the identification of main advantages and disadvantages for eight
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FL frameworks as well as the investigation of the frameworks under criteria
related to their FL features and privacy preservation options.

Keywords: Federated learning, privacy preserving, Internet of Things, artifi-
cial intelligence, machine learning.

6.1 Introduction

Artificial intelligence (AI) produces insights by automatically identifying
patterns and detecting anomalies on data collected or generated using IoT
sensors and other devices. Machine learning (ML) is almost everywhere
nowadays, from small wearable devices and smartphones to powerful super-
computers ensuring fast and accurate data analysis. Moreover, IoT devices
generate a great amount of data every day and, thus, raise significant concerns
about privacy and ownership of the collected or generated data.

Traditional machine learning applications require their training and test-
ing data to be located in a central cloud server. This raises privacy and
data ownership concerns. Furthermore, IoT devices are already capable of
processing a vast amount of data due to their powerful hardware specifica-
tions, making it possible for local data processing and analysis. Thus, edge
computing is witnessing great interest especially after the emergence of 5G.

Nevertheless, data privacy is the most fundamental objective regarding
data access and processing. This has led to the elaboration of strict data
privacy legislations such as the Consumer Privacy Bill of Rights in the
U.S. and the European Commission’s General Data Protection Regulation
(GDPR). For example, Articles 5 and 6 of the GDPR state that data collection
and storage should be restricted to only what is user-consented and decidedly
indispensable for processing.

To address privacy issues, Google [1] introduced federated learning (FL),
a specific approach in edge computing. Federated learning is able to over-
come the privacy concerns that emerge in a central cloud-based architecture
by enabling an on-device collaborative training of a machine learning model
without sharing any data over the network. This is achieved by initializing
the training of a global machine learning model on a central server for a few
iterations to obtain some initial weights. These model weights are then sent
to the participants (data owners), which use their own resources to locally
train the machine learning model. After training, each client sends its own
updated weights to the server, which is responsible to aggregate the weights
from all the different clients and produce a new global model. This process
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is repeated for several iterations until the global model reaches a certain
desired accuracy level or reaches the limit set for the number of iterations.
Federated learning aims to train an ML model privately by sharing model
parameters (weights of the model) than sharing the data itself. This feature
enables machine learning models to run on local and private data. However,
model sharing can also potentially reveal sensitive information. Therefore,
FL needs additional privacy-preserving techniques to enable fully private
machine learning model sharing and training. Differential privacy (DP) and
secure multiparty computation and homomorphic encryption (HE) constitute
the most popular privacy-preserving techniques for FL systems.

6.2 Privacy-preserving Federated Learning

6.2.1 Federated learning frameworks

Several open-source federated learning frameworks have been developed to
apply distributed learning on decentralized data but also to enhance privacy
and security. Google proposed TensorFlow Federated [2], an open-source
framework for federated learning and other computations on decentralized
data. Another open-source federated learning framework is PySyft, which
was introduced by OpenMined [3]. PySyft is suitable for research in FL and
allows the users to perform private and secure deep learning. PySyft is also
integrated into PyGrid [4], a peer-to-peer platform for federated learning and
data privacy, which can be used for private statistical analysis on the private
dataset as well as for performing FL across multiple organization’s datasets.
WeBank’s AI department introduced FATE (federated AI technology enabler)
[5], an open-source framework that supports FL architectures and secure
computation of various machine learning algorithms. FATE is an industrial-
grade framework mostly oriented toward enterprise solutions. The authors in
[6] presented Flower, a friendly open-source federated learning framework
that is ML framework agnostic and provides higher-level abstractions to
enable researchers to experiment and implement on top of a reliable stack.
Another promising open-source federated learning framework is Sherpa.ai,
which is presented in [7] and incorporates federated learning with differential
privacy. Sherpa.ai results as a combination of machine learning applications
in a federated manner with differential privacy guidelines. FedML [8] is
an open-source federated learning framework and benchmarking tool for
federated machine learning. FedML supports three computing paradigms: on-
device training for edge devices, distributed computing, and single-machine
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simulation. FedML promotes diverse algorithmic research due to the generic
API design and the comprehensive reference baseline implementations.
Another well-known open-source federated learning framework is the Pad-
dleFL [9]. In PaddleFL, researchers can easily replicate and compare dif-
ferent federated learning algorithms while they can easily be deployed in
large-scale scenarios. Leaf [10] is a modular benchmarking framework for
federated learning with applications including federated learning, multi-task
learning, meta-learning, and on-device learning. OpenFL [11] is another
open-source federated learning framework for training ML algorithms using
the data-private collaborative learning paradigm of FL. OpenFL works with
machine learning pipelines built on top of TensorFlow and PyTorch and is
easily customizable to support other machine learning and deep learning
frameworks. NVIDIA FLARE [12] is a domain-agnostic, open-source, and
extensible SDK for federated learning, which allows porting existing ML/DL
workflow to federated settings and supports common privacy preservation
techniques. In the following sub-sections, a more extended analysis is given
for each framework. In Section 6.3.2, a thorough comparative analysis on
these federated learning frameworks is presented toward the scope of
IoT-NGIN.

6.2.2 Privacy preservation in federated learning

While FL is resilient and resolves, up to a point, data governance and
ownership issues, it does not guarantee security and privacy by design. A
lack of encryption can allow adversaries to abduct personally identifiable
data directly from the processing nodes or interfere with the communication
process, expose network vulnerabilities, and perform attacks. In addition,
the decentralized nature of the data complicates data handling and cura-
tion. Moreover, in the case where algorithms running on the nodes are
not encrypted, or the updates are not securely aggregated, the possibility
of data leakage grows. Additionally, the algorithms can be tampered with,
reconstructed, or get stolen (parameter inference), which can be strictly
forbidden for most applications. Federated learning can be vulnerable to
various backdoor threats (bug injection, inference, and model attacks) on
different processing steps. Therefore, additional measures are essential to
protect data from adversarial attack strategies such as data poisoning and
model poisoning attacks. In Table 6.1, three major attacks against the dataset
with their description and a basic example for each case are listed, while in
Table 6.2, algorithmic-based attacks are presented.
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Table 6.1 Various attacks against the data in a federated learning system.
Attacks against the
dataset

Description Example

Re-identification attack Recover an individual’s
identity by exploiting
similarities to other datasets
and exposing the data
characteristics.

Exploiting similarities
between data distributions
and actual values from other
datasets in which the same
individual is contained.

Dataset reconstruction
attack

Determine an individual’s
characteristics from the
training process without
accessing the data itself.

Using multiple statistical
information (probabilities,
distributions, etc.) to get
data points that correspond
to a single individual.

Table 6.2 Major attacks against algorithms that run in a federated learning system.
Attacks against
algorithm

Description Example

Adversarial attack Manipulation of the input to
an algorithm with the goal
of altering it, most often
in a way that makes the
manipulation of the input
data impossible to detect by
humans.

Compromising the compu-
tation result by introducing
malicious training examples
(model poisoning).

Model-
inversion/reconstruction
attack

Derivation of information
about the dataset stored
within the algorithm’s
weights by observing the
algorithm’s behavior.

Using generative algorithms
to recreate parts of the train-
ing data based on algorithm
parameters.

In general, the goal of an adversary during data poisoning is to alter the
data according to their preferences. This can be done by ingesting a mixture
of clean and false data into the training flow. For example, in [13], the result
of an image classification learning task can be vulnerable to a data poisoning
attempt by a mislabeling or a false-labeling operation. Wang refers to differ-
ent defense mechanisms from simple data management to more sophisticated
and robust approaches. Data sanitization is a rather basic defense, while prun-
ing (removing neurons in a network) seems more reliable. Nonetheless, the
pruning technique raises concerns regarding privacy-preserving in federated
learning. In [14], [15], and [16], some legitimate defenses for these attacks are
proposed, although backdoor attacks become stronger and more adjective.
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Model poisoning attack refers to partial or full model replacement during
training. The authors in [17] and [18] describe possible attacks and argue
about various defenses (SMC, DP, etc.). Generative adversarial networks
(GANs) [19] can be one of the most vicious threats in federated learning.
The authors in [20] exploit defenses against GAN-based attacks and present
the anti-GAN framework to prevent adversaries from learning the real distri-
bution of the training data. On the other hand, GANs in [21] are utilized as a
defense mechanism against adversarial attacks in federated learning systems.
As a conclusion, FL is vulnerable to various attacks and great attention must
be given to the defense mechanisms and tools; otherwise, it will not be
possible for an FL system to fulfill its privacy-preserving objectives.

6.2.3 State-of-the-art approaches in privacy-preserving
federated learning

Although FL enables on-device machine learning, it does not guarantee
security and privacy. The fact that the private data are not shared with the
central server is for sure an advantage; yet, there are ways to extract private
information from the data. After the shared model is trained on the user’s
device based on its own private data, the trained parameters (model weights)
are sent to the central server, and through an aggregation mechanism, the
global model is composed. During the model transfer, it is possible for an
adversary to extract information about the private data from those trained
parameters. For example, in [22], the authors indicate that it is possible to
extract sensitive text patterns, e.g., the credit card number, from a recurrent
neural network that is trained on users’ data. Therefore, additional mecha-
nisms are required to protect data disclosure from attack strategies, which are
subject to privacy-preserving methods in FL. The major approaches that can
be employed in FL for data protection are differential privacy, homomorphic
encryption, and secure multiparty computation.

Differential privacy (DP) is a method that randomizes part of the mecha-
nism’s behavior to provide privacy [23], [24]. The motivation behind adding
randomness (either Laplacian or Gaussian) into a learning algorithm is to
make it impossible to reveal data patterns or insights that correspond either
to the model and the learned parameters or to the training data. Therefore,
the DP provides privacy against a wide range of attacks (e.g., differencing
attacks, linkage attacks, etc.) [25]. The method of introducing noise to the
data can result in great privacy but may compromise accuracy. Therefore,
there is a tradeoff between applying differential privacy and achieving a high
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level of model accuracy. However, the authors in [25] present a method,
which applies privacy-preserving without sacrificing accuracy.

Another privacy-preserving technique is the secure multiparty compu-
tation (SMC), a well-defined cryptographic-based technique that allows a
number of mutually suspicious parties to jointly compute a function before
training a model while preserving the privacy of the input data [26], [27]. In
the case of ML applications, the function can be the model’s loss function
at training, or it could be the model itself during inference. The challenge
of applying SMC on a large-scale distributed system is the communication
overhead, which increases significantly with the number of participating
parties.

Homomorphic encryption [28] secures the learning process by applying
computations (e.g., addition) on encrypted data. Specifically, an encryption
scheme is characterized as homomorphic, when standard operations can be
applied directly to the cypher data, in such a way that the decrypted result is
equivalent to performing analogous operations to the original encrypted data
[29], [30]. For machine learning methods, homomorphic encryption can be
applied when training or inference is performed directly on encrypted data
(cyphertexts). In scenarios, where large mathematical functions are imple-
mented to cyphertext space, a major bottleneck of homomorphic encryp-
tion emerges. The properties of homomorphic encryption schemes confront
several limitations, related to encryption performance.

Alternative hybrid approaches that combine SMC with DP and account
dishonest participants exist. In [31], authors confront the inference risk of
SMC and the low accuracy that DP presents due to the noise injection
by combining them. Furthermore, they propose a tunable trust parameter
attribute by additively HE, which considers many trust scenarios. HybridAl-
pha method [32] establishes a multi-input functional encryption (public-key
cryptosystem) scheme to prevent inference attacks on SMC. HybridAl-
pha introduces a trusted third party to derive public keys to parties who
intend to encrypt their data before training. Wang [33] presented HDP: a
differential private framework for vertical federated learning (cross-silo).
HDP-VFL does not rely on HE or on third-party collaborators to assure
data privacy; therefore, it is easy to implement and is rather fast. Chain-
PPFL [34] can achieve privacy-preserving without compromising the model
accuracy using SMC and DP in a “trust-but-curious” way. The proposed
communication mechanism constructs a serial chain frame that transfers
masked information between participants. In addition, chain-PPFL does not
require encryption or obfuscation before transmitting information because
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it uses the P2P encrypted secure transmitted channel, thus requiring less
resources. The authors in [35] present a fully decentralized federated learning
process (BlockFlow) as a more resilient approach against adversarial and
inference attacks. BlockFlow adopts blockchains as computational platforms
and, contrarily to other methods, does not require a central trusted part. Unlike
other methods, there is no need for a centralized test dataset and different
parties share DP models with each other.

6.2.4 Comparison of federated learning frameworks considering
privacy preservation

Considering the extensive analysis presented above, for the FL methods/tools
and the privacy-preserving approaches, comparative analysis for federated
learning frameworks is conducted and presented in this section. The compar-
ison refers to the FL frameworks analyzed in Section 6.2.1 and for which the
main benefits and drawbacks are briefly presented in Table 6.3.

The comparison among the FL frameworks listed in Table 6.3 is based on
the following criteria:

• Criterion 1: This criterion is based on basic federated learning features.
The operating system support, the federated learning categorization,
e.g., if it supports cross-silo or cross-device setups, which machine
learning and deep learning libraries (TensorFlow, PyTorch, etc.) do the
framework supports and if there is a Federated attack simulator.

• Criterion 2: This includes three computing paradigms; the standalone
simulation that gives the possibility for a user to apply FL scenarios
in simulation; the distributed computing capability that shows if an FL
framework is capable of performing in a distributed environment where
participants are different devices; the capability of on-device training
for IoT and other mobile devices that normally have limited hardware
resources.

• Criterion 3: If FL frameworks include common FL algorithms and
configurations like federated average [36], decentralized FL, vertical FL,
and split learning [37].

• Criterion 4: An essential characteristic for an FL framework is the exis-
tence of privacy-preserving mechanisms and also what types of privacy-
preserving methods are supported by the frameworks. In cases where
privacy-preserving techniques are not presented, the FL framework must
give the capability to integrate such mechanisms.
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Table 6.3 Main pros and cons of the federated learning frameworks.
FL framework Main pros Main cons
NVIDIA
FLARE

1. It supports training in real-life
scenarios
2. It supports a high number of
clients
3. It is customizable, supporting
the integration of ML models
implemented via state-of-the-art
ML frameworks, such as Ten-
sorFlow and PyTorch
4. It supports privacy reserving
methods, such as percentile pri-
vacy, homomorphic encryption,
and MPC, which can also be
combined
5. It comes with good documen-
tation and large community

1. It does not support on-device
training
2. Its performance drops as the
number of parties increases
3. It does not support heteroge-
neous clients

FATE 1. Production ready
2. High-level interface
3. Provides many FL algorithms
4. Containerized − Kubernetes
support

1. It does not establish any differ-
ential privacy algorithms
2. Its high-level interface relies
too much on a poorly documented
domain-specific language
3.It does not have a core API;
so developers must modify the
source code of FATE to imple-
ment custom FL algorithms
4. It does not use GPUs for train-
ing

Flower 1. Provides a template API that
allows users to easily transform
ML pipelines to FL
2. Very easy to develop and ML
framework-agnostic
3. Supports a great number of
clients
4. It is really customizable

1. It does not have any differential
privacy algorithms
2. It is relatively new and the sup-
port community is not that big
3. It does not provide secure
aggregation

PySyft &
PyGrid

1. Rather easy to use
2. It has the largest community
of contributors among the FL
frameworks

1. PySyft is only for one server
and one client (duet) and can run
only in simulation mode
2. PyGrid is needed in order to
develop real FL scenarios

TFF 1. It integrates seamlessly with
existing TensorFlow ML mod-
els

1. As of the time of writing, it
can be used only in the simulation
mode because it does not support
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Table 6.3 (Continued.)
FL framework Main pros Main cons

2. It is easy to use due to its
familiarity

the federated operation mode
2. The data used for training can-
not be loaded from the remote
worker itself but must be parti-
tioned and transferred through the
central server

Sherpa.ai 1. Relatively easy to use because
of the Jupiter notebooks, etc.
2. Implements FL algorithms
and it is easy to customize them

1. Poor documentation
2. Small community with only
seven contributors
3. The project’s repository is not
active (4+ months after the latest
update)
4. Can run only in the simulation
mode
5. Limited applicable scenarios

FedML 1. On-device training for edge
devices including smartphones
and Internet of Things (IoT)
2. Distributed computing
3. Growing community
4. Multi-GPU training support

1. No privacy-preserving tech-
niques are applied. Only a secure
aggregation technique is imple-
mented
2. The multiple available modules
for different situations might lead
to drawbacks and create overheads

PaddleFL 1. It provides a high-level
interface for some basic and
well-known FL aggregators and
implements a differentially pri-
vate algorithm
2. It provides enough privacy-
preserving methods such as DP,
MPC, and secure aggregation

1. It is fairly difficult to use it
because it uses a little-known DL
platform
2. It has poor documentation and
has a small community − only 12
contributors
3. It is not compatible with other
frameworks and that is a major
drawback

Leaf 1. It provides some basic
federated learning mechanisms
such as the federated averaging
aggregator
2. It is modular and adaptive
3. It enables reproducible
science

1. It does not provide any
benchmark for preserving privacy
in an FL setting
2. It does not offer as much
official documentation or tutorials
3. Limited federated learning
capabilities; it is mainly for
production purposes

• Criterion 5: In order for an FL framework to be flexible and adaptive,
documentation, tutorials, and community support are significant.
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Table 6.4 Federated learning framework comparison ( 1
2

).
FL framework NVIDIA

FLARE
FATE Flower PySyft +

PyGrid
TFF

Standalone
simulation

Yes Yes Yes Yes Yes

Distributed
computing

Yes Yes Yes Yes Yes

On-device
training
(mobile, IoT)

No No Yes −
depends on
the network

Yes No

FedAvg Yes Yes Yes Yes Yes
Decentralized
FL

Yes No Yes No No

FedNAS No No Yes No No
Vertical feder-
ated learning

Yes Yes No No

Split learning Yes No Yes Yes No
Privacy-
preserving
methods

Yes
(HE,
percentile
privacy,
exclude
Vars, DP)

No (Yes)
(PATE −
implemented
in IoT-NGIN,
known as
FedPATE
[39])

Yes
(SMC,
HE)

Yes
(DP)

DP noise type No No Yes No No
Adaptive
differential
privacy

No No No No No

Subsampling
methods
to increase
privacy

No No No No No

Documentation
and
community
support

Large Partial
−
mostly
in Chi-
nese

Yes
Growing
rapidly

Yes Yes

Secure aggre-
gation

Yes Yes Future imple-
mentation

No

• Criterion 6: Secure aggregation [38] algorithm implementation to
further enhance privacy.



128 Analysis of Privacy Preservation Enhancements in Federated Learning

Table 6.5 Federated learning framework comparison (2/2).
FL framework Sherpa.ai FedML PaddleFL OpenFL
Standalone
simulation

Yes Yes Yes Yes

Distributed
computing

No Yes Yes Yes

On-device
training
(mobile, IoT)

No Yes No No

FedAvg Yes Yes Yes Yes
Decentralized
FL

No Yes Yes Yes

FedNAS No Yes No No
Vertical feder-
ated learning

No Yes Yes Yes

Split learning No Yes Yes Yes
Privacy-
preserving
methods

Yes
(DP)

No Yes
(SMC, DP)

Yes
(SMC, DP)

DP noise type Yes No Yes Yes
Adaptive
differential
privacy

Yes No Yes Yes

Subsampling
methods
to increase
privacy

Yes No Yes Yes

Documentation
and
community
support

Yes Stable Partial Partial but
growing

Secure aggre-
gation

No Future imple-
mentation

Yes Yes

• Criterion 7: Nowadays, training on GPUs especially for deep learning
tasks is essential. Especially for limited hardware resources on devices,
GPUs have shown remarkable computation capabilities compared to
CPUs.

• Criterion 8: All the FL frameworks in comparison are open-sourced but
with different licenses and therefore of different usage limitations.

• Criterion 9: More general properties and characteristics of the FL
frameworks. To be more specific, an FL framework must be easy to use,
adaptive, preserve interoperability, flexibility, and privacy.
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The characteristics of each FL framework against the nine identified
criteria are tabulated in Tables 6.4 and 6.5.

Based on the tables above, privacy-preserving methods are available
for NVIDIA FLARE, Flower, PySyft & PyGrid, TensorFlow Federated,
Sherpa.ai, PaddleFL, and OpenFL; however, the exact privacy-preserving
methods supported differ across the FL frameworks. On the other hand,
Flower, PySyft & PyGrid, and FedML support on-device training.

6.3 Conclusion

This chapter has provided a critical review of federated learning theory, tools,
and algorithms in relation to providing string privacy protection guarantees
for individual nodes’ data and models. We have explained why federated
learning is necessary for privacy-preserving machine learning with many
clients on decentralized data. We have proceeded with providing an extensive
comparative analysis over open-source FL tools, mainly under the prism
of privacy preservation, providing guidance for experimentation, according
to underlying application requirements. Considering the outcomes of this
analysis, three FL frameworks (NVIDIA FLARE, and Flower with PATE and
TFF) have been selected for applying privacy-preserving federated learning
in pilot use cases. Specifically, the project considers NVIDIA FLARE in
“Traffic Flow & Parking Prediction” and “Crowd Management” use cases
in the Smart City Living Lab, as well as in “Crop diseases prediction &
irrigation precision” in the Smart Agriculture Living Lab. Moreover, Flower
(integrated with PATE) has been considered in training ML models for
classification tasks, relevant to the scope of the “Crop diseases prediction
& irrigation precision” use case, as well. In addition, research on training ML
models in large-scale settings for tabular data classification in the scope of
network attack detection has been considered for the Smart Energy Living
Lab. Future work aims at enhancing privacy in state-of-the-art open source
FL frameworks, suitable for researching FL under real settings in the context
of ensuring data privacy across the integrated IoT, edge, and cloud continuum.
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Abstract

AI/ML techniques play a key role in 5G/6G networks providing connectivity
to IoT devices. In such scenarios, not only is it necessary to run time-sensitive
applications with strict latency requirements without human intervention, but
it is also key to apply automation techniques at both the application and the
network levels. The chapter is composed of three sections. In the first section,
we present different cloud native (CN) technologies enabling scalable, cost-
efficient, and reliable IoT solutions. The second section details different
distributed and hierarchical monitoring frameworks and metrics collection
schemes as inputs to AI engines. In the last section, application placement
problems focused on delay minimization in geographically distributed single-
cluster environments are first discussed. Afterwards, application placement
issues ensuring latency requirements for the applications and energy con-
sumption in distributed multi-access edge computing (MEC) systems using
AI pipelines are presented.

Keywords: AI/ML, edge computing, edge intelligence, edge optimization,
edge automation, 5G/6G networks, IoT, monitoring frameworks, distributed
MEC, application placement.
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7.1 Introduction to Intelligence at 5G/6G Networks Edge

Edge computing refers to bringing computing resources and capabilities
closer to the devices that generate or consume data. This can help to reduce
latency, improve performance, and increase security. It also facilitates both
edge automation and intelligence. On the other hand, according to 5GPPP,
high-performance next generation networks will be operated via a scalable
management framework enabling service provisioning time from 90 hours
to 90 minutes, by reducing the network management OPEX by at least
20% compared to current networks [1]. A promising solution to achieve
5G networks with a level of intelligence similar to that of humans as well
as lower levels of latency is the combination of artificial intelligence (AI)
and edge computing. AI at the edge refers to the use of AI algorithms
and models at the edge of a network, closer to the end-user generating or
consuming the data, which results in performance improvement and latency
reduction.

7.1.1 Edge automation

7.1.1.1 State of the art
Two of the main international organizations and standardization bodies,
namely 3GPP and ETSI, have defined requirements, features, and key tech-
nologies in the context of the 5G edge. The 5G 3GPP system architecture
[2] is intended to support edge computing by enabling services such as the
Internet of Things (IoT), industrial solutions, smart energy, connected health,
autonomous driving and more. Another contribution from 3GPP involves
studying the management aspects of edge computing, where several edge
scenarios and use cases are explored and potential deployment solutions
are discussed [3]. Following this line of work, enhancements regarding
edge computing management and connectivity models have been proposed
[4], which include a number of concepts such as self-organizing networks
(SON) and network data analytics function (NWDAF). SON is an automa-
tion technology designed to streamline and simplify planning, configuration,
management, optimization, and healing. SON architectures are conceived in
three variants, centralized SON, distributed SON, and hybrid SON. Each
variant is a key technology with the main aim of integrating legacy mobile
radio access networks (RAN) [5]. Recent advancements in AI/ML techniques
have led to an increased interest in SON with cognitive features combined
with the software/hardware decoupling movement – via network function
virtualization (NFV), and/or multi-access edge computing (MEC) – leading
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to greater network agility. NWDAF was introduced to provide a standard
method to collect data supporting 5G core network functions and operation
administrations and management systems [6].

ETSI has also published several reference architectures and specifications
of the aforementioned NFV and MEC initiatives. By using zero-touch net-
work and service management (ZSM), end-to-end network management can
be achieved with minimal or no human intervention. ZSM facilitates collabo-
rative management interactions between all layers of the network through the
use of closed-loop automation, AI, adaptive ML, and cognitive technologies
[7], abstracting the 5G network edge resource management. On the radio side,
open RAN refers to the disaggregation movement of hardware and software
in wireless telecommunications as well as to create open interfaces between
them [8].

7.1.1.2 Key enablers
To meet edge automation expectations several vital technologies are required,
including distributed data collection, real-time processing, and edge automa-
tion for 5G slicing. Both distributed data collection and real-time processing
require streaming, in-memory storage management, and computing close to
the edge in order to minimize latency and maximize bandwidth. In addition,
stakeholders need to plan, design, and activate several customized network
slices rapidly to provide customers with different 5G services. Slice elasticity,
the ability to scale up or down in response to performance changes, also has
become a must. To this end, by forecasting the upcoming traffic with AI/ML
techniques, network slices can be optimized by minimizing resource usage
while meeting quality of service (QoS) or customer requirements. A critical
component of successful 5G service delivery is network slicing. A network
slice is considered as a collection of networking and computational resources
forming a dedicated network that provides an end-to-end connectivity to
hosted applications and services [9]. Stakeholders are able to plan, design,
and activate several customized network slices on demand. Moreover, slice
elasticity, which is defined as the ability to scale up or down in response to
variations in performance, is critical. In this regard, AI/ML techniques play
an important role, since forecasting the upcoming traffic allows the slice to be
adjusted (using a proactive rather than reactive model) to minimize resource
consumption, meet QoS requirements, and perform lifecycle management
tasks on existing slices.
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7.1.2 Edge intelligence

5G/6G networks and AI/ML are closely related with edge devices of limited
computing power are able to leverage 5G/6G network edge intelligence by
distributing the computation, which is driven by the use of AI/ML techniques
and distributed intelligence. A joint perception environment could be formed
of real-time metrics collected from devices in the network. A perception
environment of this type groups decisions in order to enhance the efficiency,
productivity, and safety of several 5G edge applications. Such shared intelli-
gence will be enhanced by the use of a hybrid and distributed architecture. By
combining 5G edge networks with MEC architectures, distributed learning
[10], and collaborative intelligence [11], real-time distributed intelligence and
collaboration are becoming tangible. Intent-based networking [12], which
has recently been applied to the RAN, is another promising idea that is
undergoing development and adaptation for B5G networks.

7.1.2.1 State of the art
A flexible and hybrid architecture, both centralized and distributed, is critical
for edge intelligence architectures. In terms of communication, a number of
developments have been made, including direct device-to-device and multi-
hop communication, which are mentioned in 3GPP standards [13]. They
have been combined with 5G scenarios via the cellular vehicle-to-everything
(V2X) paradigm to meet KPIs in verticals such as autonomous driving. In
terms of radio management, intent-based RAN management is becoming
increasingly important. It consists of altering the configuration of the RAN
from the setting of technical parameters to the specification of connectivity
services, allowing service providers to prioritize users and services based on
their device capabilities and use cases.

Another integral part of edge intelligence is real-time access and analysis
of data, along with concepts such as explainable AI (XAI), named data
networks, joint optimization of communication and computing, distributed
machine learning, and meta-learning, which are examples of technologies
that will pave the way for B5G and 6G edge networks [14].

7.1.2.2 Key enablers
XAI is a set of methods and techniques for producing accurate and explain-
able models, along with explaining how and why the algorithm arrives at a
specific solution, leading to an output that is comprehensible and transparent
for humans. Another technology that is helping to meet the increasingly
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ambitious performance requirements is multi-access traffic management at
the edge. By using the multi-access protocol and multiple access manage-
ment [15], different technologies can be handled seamlessly. A multi-access
protocol stack consists of two layers; a convergence sublayer that manages
access path selection, multi-link aggregation, and more multi-access-specific
tasks, and an adaptation sublayer that handles tunneling, security, and NAT.

In addition, joint optimization of computation and communication is quite
a transcendental point to take into account in 5G/6G networks, as it helps to
improve performance while managing both computation and radio resources
intelligently. Lastly, distributed and federated learning are techniques that
enable edge intelligence without transferring data to the cloud. Such learning
techniques employ a collaborative learning model in which each element
has a partial view of the system. As opposed to fully distributed learning
where nodes must collaborate peer-to-peer, federated learning manages the
collaboration through a central coordinator.

7.1.3 Edge computing and 5G/6G: a cloud native architecture

The current edge computing ecosystem is dynamic and evolutionary, which is
the combination of the classic edge computing with several existing technolo-
gies and techniques including cellular networks, CN, and AI/ML. Thus, there
is no de facto standard set of tools for implementing 5G/B5G edge computing
architectures; however, the direction of such edges is becoming clearer. A
number of factors have been identified as driving the adoption and evolution
of edge architectures [16]. These include connectivity, applications exposed
via APIs, the use of increasingly intelligent orchestrators, service exposure
and optimization, and free open-source software [17].

From a technological point of view, CN technologies seem to be a perfect
fit for edge architectures. In order to meet emerging 5G standards and provide
flexibility for multi-vendor managed networks, edge solutions that are based
on automation and intelligence need to be designed and developed as cloud-
native architecture. The concept of CN is to decompose applications into a
set of microservices that can be developed and deployed independently, in
order to accelerate and optimize the DevOps lifecycle of software systems.
A container orchestrator is responsible to schedule microservices to run
on compute nodes by packaging them into lightweight containers. The CN
approach is concerned with the way applications are developed and deployed,
rather than only the place where they are executed [18]. Kubernetes, also
known as k8s, has been adopted by the Cloud Native Computing Foundation
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(CNCF) [19] as the open-source management tool for microservice-oriented
applications. In CN architectures, streaming solutions such as Kafka [20]
and Rabbit-MQ [21] are seamlessly integrated, along with publish−subscribe
protocols such as MQTT [22] and data lake technologies such as Spark,
which, by generating insights on edge nodes, reduces the need to transport
data all the way to the cloud. In spite of the fact that these technologies were
developed for different requirements, they complement each other perfectly
in certain circumstances.

Container technology and Kubernetes orchestration framework provide
scalability, cost-efficient, and reliable solutions. Hybrid k8s clusters with
heterogeneous architectures provide the flexibility needed for the successful
implementation of IoT applications. As the number of microservices in a
scenario increases, it can be challenging to understand the interactions and
identify and track errors. The service meshes can be used to resolve this
problem [23], where linkerd [24] are currently being positioned as the de
facto solution to the problem. Due to the operator’s trend, Kubernetes has
evolved from a declarative to an imperative model, where a set of controllers
perform the required actions to match the intended state. OpenShift [25] is
an example of a tool that adopts this concept, while several aspects, such as
multi-cluster management, multi-cloud connectivity solutions, and workload
migration, require further investigation.

Furthermore, 5G/6G edge architectures could benefit from the adoption
of extended Berkeley filter packer (eBPF) technology [26]. It is emerging
that different tools based on this technology, such as Cilium [27], allow a
code to run within the kernel without the need to compile the entire kernel,
providing unparalleled flexibility, as well as promising improvements in key
areas such as security, networking, and monitoring, where AI will have a
significant impact.

7.2 Distributed Telemetry

The field of intelligent networking has gained momentum in recent years
due to the popularity of machine learning models and artificial intelligence
systems in the telecommunications industry [28]. The concept of intelligent
networking is mainly concerned with optimizing the management and perfor-
mance of different network segments, such as radio, computing, and transport
networks, each of which has heterogeneous objectives and approaches. As
an example, some concepts, such as SON, address autonomic or cognitive
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self-managed networks [29]. Nevertheless, to cope with those characteristics,
cognitive self-managed systems require strong telemetry systems to be aware
of the behavior and performance of each of the elements composing the
network infrastructure and the service communications. It is the consistent
metrics that feed into the self-management systems enabling intelligent
management models to achieve better results and, therefore, improve the
performance of communication networks. However, due to the nature of
current networks, thons of metrics gathered from segments that span several
administrative domains significantly increase the complexity of the telemetry
systems. This means that telemetry systems should be able to provide well-
organized and differentiated metrics from each source so that they may be
able to expose metrics per customer, per service, and per network element on
demand.

As 5G networks are based on cloud-native and distributed services,
multiple logical networks can be created and coexisted in a common infras-
tructure through technological enablers such as NFV [30], software defined
networking (SDN) [31], and edge/cloud computing. Logical networks refer
to the network slicing communication paradigm enabled by 5G networks by
nature, which allows for the allocation of slices per service and per client.
Since network slicing spans different network segments, edge computing
must be capable of dealing with network slicing capabilities [32]. To meet the
performance requirements and quality of service expected by users, several
critical, time-sensitive, and less-consuming services are being moved to edge
computing [33]. As a result, intelligent systems are also moving toward edge
environments so that they can manage different services running at the edge
that may belong to different vertical clients or network slices. Telemetry
systems must adapt to paradigms such as network slicing, multi-tenancy, and
multi-domain as well as to environments so that they can monitor aspects of
these services in a flexible and dynamic manner. Monitoring systems may
have to update their sources where metrics are collected frequently when
services change.

Basically, the telemetry systems are a control framework that gives a
detailed view of the state of a system. It allows assuring the desired oper-
ation of infrastructure resources as well as to analyze the performance of
each virtualized service. The monitoring systems have existed since the
emergence of IP networks with the aim to mitigate failures, attacks, and
undesired behavior. As networks have evolved, monitoring systems have
adapted and sophisticated their metrics acquisition models to better address
unpredictable (proactive) and predictable (reactive) situations that violate
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operator-provided service level agreements (SLAs). Addressing proactively
a monitoring situation means foreseeing events that can be mitigated in
advance through the execution of specific actions. Proactive methods are
based entirely on machine learning models that analyze patterns in historical
data and anticipate future behavior. This is the core concept where intelligent
networks are built. However, reactive methods refer to executing actions
at the exact moment that an event occurs, which violates the SLAs. This
principle has been widely used in most control systems. However, since the
democratization of machine learning models, control systems are tending to
use hybrid control methods depending on the requirements of SLAs and use
cases. However, the performance methods are independent of the monitoring
systems but depend on the type and quality of metrics they receive from the
monitoring systems. Consequently, monitoring systems must meet the needs
of each method to assure adequate control of services and resource infras-
tructure. In terms of monitoring system design, it is difficult to anticipate all
the needs of the methods, but if they provide better visibility of each of the
elements that comprise the communication service, the methods will be more
likely to provide better performance.

In this context, previous research has focused on specific aspects of moni-
toring. For example, in [34], the authors make a study on traffic differentiation
detection where they focus on presenting strategies and tools to monitor
network traffic. On the other hand, in [35], the authors present a survey
on network security monitoring. Here, the paper reviews the approaches
and tools focused on network security aspects. In [36], the authors focus
their attention on an exhaustive study of platforms for monitoring cloud
environments. They detail both licensed and open-source tools. The important
aspect of a monitoring system is to be able to perform all these types of
monitoring with a single robust telemetry framework.

The following sections will provide a detailed description of the hier-
archical and distributed monitoring architectural framework for 5G and 6G
networks that provide flexibility and visibility of metrics obtained from both
communication services and network infrastructure. Section 7.2.1 gives a
detailed description of each component composing the architectural frame-
work.

7.2.1 Hierarchical and distributed monitoring framework

The main objective of the distributed and hierarchical monitoring framework
is to collect, organize, and expose the data flow, resource, and configuration
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metrics generated by each of the network segments. The system is hierar-
chical because its components are distributed across several layers of view
or management levels where data is aggregated, filtered, and isolated. This
allows metrics to be persisted and exposed at different levels, even with
different levels of granularity. The different levels of monitoring are fed by
separate and distributed monitoring agents deployed by the operator in each
network segment.

Figure 7.1 illustrates the design of the architectural framework of the
hierarchical and distributed monitoring system. In this case, two levels of
metrics abstraction are defined. In addition, each level allows centralizing
and persisting the metrics obtained from the network segments. This makes
it easier for each network segment to have several monitoring agents and a
common metrics centralizer. For example, for access networks such as Wi-
Fi, small cells, and eNBs, monitoring agents could be deployed for each of
them to interact directly and to extract the metrics generated in each network
equipment. These monitoring agents are then aggregated to the first-level
aggregators, where the metrics can be exposed and visualized by customers
and operators. The same case would be for NFV infrastructure (NFVI) nodes,
where there will be several types of monitoring agents deployed, both for the
NFV node itself and for each of the virtualized network functions (VNFs)
running on it. Similarly, these metrics may be aggregated, exposed, and
visualized by one or more top-level aggregators, depending on the need
of the use cases or customers. However, the communication service and
network infrastructure of a network operator may be composed of multiple
access networks, NFVI nodes, and transport networks; so there will be
multiple first level aggregators. This is the motivation behind the use of a
second level of aggregation, where the metrics collected by the first level
aggregators are centralized. The second level of aggregation allows a network
operator and customers in general to have a global view of the current state
of the network infrastructure and the communication services running on
it. It facilitates filtering by first-level aggregation nodes, without having to
worry about which monitoring agent is being referred to when extracting a
metric.

7.2.1.1 Monitoring agents
Monitoring agents are software tools that interact directly with network ele-
ments. They can be run directly on the network equipment or they can be run
as services in edge/cloud computing. Monitoring agents are known as node
exporters, which take all the metrics and push them to the top-level aggregator
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so that they can be understood and visualized. There are monitoring agents
designed by default for different types of network elements, while others
can be customized (pushgateways) and run as a set of scripts that interact
directly with the operating system of the network element to extract the
metric.

7.2.1.2 Aggregators – monitoring servers
Aggregators are instances of time series databases (TSDB) in charge of
collecting and centralizing the metrics exposed by the monitoring agents.
The aggregators persist the metrics for a given time to allow operators,
users, or other components to access the historical information provided
by the monitoring agents. In addition, they allow metrics to be visualized
and operationalized to contextualize them in human-understandable units
of measurement. Currently, many of the network services are deployed in
conjunction with a metrics aggregator dynamically, which generates the need
to implement a static second-level aggregator. There are several alternatives

Figure 7.1 Architectural framework of the distributed and hierarchical monitoring system.
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in the TSDB market; however, the most popular ones are Prometheus1,
InfluxDB2, TimeStream3, and TimescaleDB4

7.2.1.3 Centralized aggregator – monitoring server
The centralized aggregator is in charge of collecting the metrics exposed by
the first-level aggregators. In other words, it adds the first-level aggregators as
direct targets and is not aware of the number of monitoring agents that exist
in the system. This level of abstraction allows operators to dynamically scale
and manage first-level aggregators that are dynamically deployed alongside
network services. On the other hand, the centralized aggregator also allows
visualizing the metrics exposed by all monitoring agents by filtering them by
each first-level aggregator. One tool that acts as a centralized aggregator is
Thanos5. It has the same working principle as Prometheus.

7.3 AI Pipelines for the Edge-to-cloud Continuum

While the development and deployment of 5G mobile networks is ongoing,
extensive research efforts are currently being directed toward the require-
ments of future 6G mobile networks, covering aspects such as architecture,
enabling technologies, key features, and requirements. Among these, network
cloudification is one clear 6G architectural trend. Moreover, 5G network
developments are already paving the way to support a massive number of
end devices across the cloud continuum [37].

Research challenges related to the massification of end devices in 5G
networks are often related to the placement of applications and network
functions that might be distributed across multiple devices spanning the cloud
continuum [38], and to the optimization of strict latency, reliability, and
bandwidth requirements.

As the 6G paradigm introduces a shift to the full digitalization of the
real world, some additional critical aspects need to be considered, such as
efficient interworking with IoT devices, the support of advanced, novel edge
computing solutions, and adequate cloud support for network operation. In
this regard, the native support of AI and ML in 6G can provide innovative

1 https://prometheus.io/
2 https://www.influxdata.com/
3 https://aws.amazon.com/es/timestream/
4 https://www.timescale.com/
5 https://thanos.io/
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solutions, for example, related to the optimization of network functions and
distributed applications [39]. AI and ML techniques will become critical to
automate decision-making processes in 6G and enable the implementation of
predictive orchestration mechanisms.

However, the intertwining of communication and computation algorithms
in 6G requires suitable in-network governance mechanisms. In particular,
every infrastructure and service component in the network must be control-
lable by the tenant, which requires very versatile, pervasive, and automatic
resource control capabilities [40]. This calls for the design of a 6G-native AI
fabric that caters for the diversity of resources and end devices across the
cloud continuum, which should be able to provide not only novel, natively
embedded governance capabilities but also the ability to optimize the use of
resources in the network in an energy-efficient manner.

7.3.1 Native AI for distributed edge-to-cloud environments

6G is promising to become a networking technology whose management and
behavior are meant to be closer to human’s brain reasoning. The vision must
also include the native incorporation of AI processes capable of handling
network functions more efficiently (e.g., intelligent network management and
wireless resource configuration) as well as training and executing AI-based
models [41], [42].

Networking ecosystems have also evolved from the point of view of
the distribution of the radio and computational resources. In this regard,
future mobile networks are expected to be fully geographically distributed
and managed by different entities and operators, and even based on sev-
eral administrative domains (see Figure 7.2). Related to this, the highly
distributed telemetry systems at different network segments make available
huge data volumes which, although provide a full vision of the system’s
status, also multiply the difficulty in knowledge extraction. Therefore, despite
the improvement expected in availability level and network performance,
together with the high-dimensional data, it will greatly increase the com-
plexity of management and error handling, making it impractical for human
operators [43]. For that reason, an AI-enabled architecture able to build
knowledge natively and act autonomously is the goal of 6G networks.

Adopting the aforementioned AI processes as well as regular user appli-
cations at the edge of the network brings, however, new challenges to
next-generation networks. Undoubtedly, the increase in heterogeneity of both
edge nodes and application requirements, the computational limitation of
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Figure 7.2 Example of a highly distributed and independently managed edge infrastructure.

the edge nodes, and the dynamic change of user demands make intelligent
resource management approaches able to ensure the data privacy become
essential [44]. More specifically, application and function placement can be
considered one of the key resource allocation problems, especially as we deal
with highly heterogeneous and distributed infrastructure involving computa-
tional and communication resources [45], [46]. Therefore, there is a need for
intelligent and distributed placement solutions that provide decisions without
sharing the data belonging to each administrative domain or independent
system.

In this regard, distributed and federated learning have been demonstrated
to provide excellent performance due to the ability to collaboratively build
a model without data transferring, therefore avoiding data privacy issues
and extra overheads in the data transmission process [47], [48]. Similarly,
reinforcement learning has shown promising results in tackling this challenge
in centralized scenarios, such as in the works proposed in [49] and [50].

Most of the recent research related to application placement is related
to either (i) computational offloading at the edge from end-user devices, (ii)
latency-aware processes at the radio side, and (iii) edge infrastructures where
telemetry data is not distributed, or in which the various nodes are managed
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by the same orchestration entity. On the one hand, offloading approaches for
energy saving in the mobile devices tend to neglect the energy consumption
of the edge servers, which are also more resource-constrained than cloud
infrastructures. This issue could be made worse by uneven distributions of
users in the geography, which could also make edge placement algorithms
waste energy having nodes with very low resource utilization instead of
being powered off. On the other hand, the maximum latency supported by
applications must also consider the link delay depending on the placing node
and the processing time. In essence, it should ensure that besides meeting the
application requirements, also the QoS constraints are ensured in a unified
manner, especially for the time-sensitive applications. In the next subsections,
these problems are greatly discussed, especially when they are addressed
by AI processes in highly distributed (and administratively independent)
systems.

7.3.1.1 Energy saving in distributed edge computing
Extensive research has been performed in MEC to optimize the energy
consumption of computationally intensive tasks, given the limited resources
of the servers used. Application placement algorithms are increasingly impor-
tant at the edge since, among other consequences, computational tasks
offloaded to the cloud can result in lower utilization of MEC resources
and higher power consumption. The performance of applications could be
affected due to the demanding application requirements that can limit the stor-
age and capacity of end devices. In addition, in future 6G networks, expected
to be extremely geo-distributed in terms of computational resources, cen-
tralized orchestration approaches could lead to constant interaction between
central entities and result in energy consumption.

The state of the art highlights the need to focus on the placement of
applications and workloads that produce lower energy consumption. More-
over, it is to be considered not only the energy consumed by the application
itself when it is running but also some transactions when moving applications
across several nodes. This can be the case of the follow-me scenario. In this
case, energy consumption on edge servers, migrations from edge servers to
cloud servers and between edge servers must be taken into account. In addi-
tion, other approaches suggest maintaining the edge servers in an idle state
or low consumption and activating the server when a new application arrives.
However, not all works consider all possible sources of energy consumption,
because depending on the use case, it might be more necessary to prioritize



7.3 AI Pipelines for the Edge-to-cloud Continuum 149

the minimization of expenditure in some sources of consumption than in
others.

Numerous research contributions that attempt to solve this problem aim to
strike a balance between performance metrics and energy efficiency. Machine
learning techniques have been widely used in this topic, due to their ability to
make predictions from data and to obtain assumptions about the environment
without prior knowledge. For application placement, forecasting methods
predict periodic changes from time series considering the edge node data
as input and the geographic location information [51]. The authors of [52]
aim to reduce the total energy of each user, including local computation and
wireless transmission energy under a federated learning approach. However,
the energy consumption on only the terminal side is addressed in [53]. Rein-
forcement learning and its variants are oriented to minimize the long-term
energy consumption and have been demonstrated to be a good alternative for
these kinds of scenarios [54]. For instance, some authors consider application
placement with multiple metrics in dynamic environments as a problem to
solve with distributed learning approach [53].

7.3.1.2 Latency-aware AI processes in edge computing
As stated previously, one of the key enablers of the incoming generation of
network services is the ability to bring the processing power near to the final
user, using edge computing as a tool to decrease the potential delays in end-to-
end communications. The management of this delay is particularly important
in ultra-reliable low-latency communications (URLLC) as an inappropriate
delay would generate misbehavior in time-sensitive applications, affecting
use cases as diverse as smart living, Industry 4.0, or autonomous vehicles
[55]. Essentially, selecting the proper host to implement the service applica-
tion placement is critical if the stringy delay requirements of the applications
are to be fulfilled. Contrary to what might be expected, the host’s selection
is not a trivial labor, as different elements contribute to the final decision.
However, it is not sufficient to consider the current delay of the proposed
hosts. Additionally, it is essential to account for the processing delay after the
application has been instantiated in the server, the computational characteris-
tics of the host, the distance between the host and the users, and an increasing
number of secondary parameters.

Considering the previously mentioned constraints, human decision-
making would be time-consuming and error-prone, making it necessary
to implement an automated decision-making system instead. Traditional
optimization models include the use of algorithms that perform numerical
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analysis and mathematical optimization methods [56], [57]. However, con-
sidering the dynamicity of the network, a system that is able to adapt to this
type of changes is necessary, excluding the possibility of using traditional
optimization models. Incidentally, machine learning models excel in this type
of conditions and are natively suited to handle data in time-series format and
with an abundance of data categories. Machine learning models can solve
optimization problems successfully and accurately and at the same time being
flexible enough to adapt to the unique changes of the network, showing more
generalization capabilities than its traditional counterpart.

As such, ML processes have been proven to be suitable for solving the
best placement location for delay-constrained applications. When deployed
on a centralized point of the network architecture, ML models use as input
the parameters that are monitored through the network orchestrator or the
network management service. These parameters are affected directly or indi-
rectly by the end-to-end delay; so it is especially important to measure KPIs
that are linked with the propagation delay, the processing delay, and the radio
communication delays, among others. Under this statement, the authors of
[58] look to maximize the quality of experience (QoE) by analyzing packet
loss rate, packet error rate, and latency under a two-level deep reinforcement
learning model that suggests the best application position. Similarly, in [59],
a deep reinforcement learning model is introduced, which uses transmission
delay, propagation delay, and execution delay to reach a compromise between
the application requirements and the server capacity. Finally, the work in
[60] uses parameters directly obtained from the end-users, in a deep rein-
forcement learning configuration, to generate a tradeoff between the current
performance delay-oriented and the cost of running the application. To do
so, it searches for a balance between the delay experienced by the user and
the cost taken from the network provider while distributing the application.
Consequently, according to the state of the art, deep reinforcement learning
is a good fit for scenarios whose initial inputs are unknown and adapts well
to the latency-related metrics in application placement problems, providing
flexibility and adaptability to an ever-changing network environment.
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Abstract

This chapter debates on the use of Machine Learning (ML) to support edge-
based semantic matchmaking to handle a large-scale integration of IoT data
sources with IoT platforms. The chapter starts by addressing the interop-
erability challenges currently faced by integrators, the role of ontologies
in this context. It continues with a perspective on semantic matchmaking
approaches, and ML solutions that can best support a cognitive matchmaking.
The chapter then covers a use case and pilots that are being developed with
a new open-source middleware, TSMatch, in the context of the Horizon
2020 EFPF project, for the purpose of environmental monitoring in smart
manufacturing.

Keywords: Machine learning, semantic technologies, matchmaking.

8.1 Introduction

Manufacturing environments are becoming increasingly digitized to improve
the overall process and business efficiency. Sensors and actuators (Internet
of Things devices) are heavily integrated into manufacturing environments,
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and interconnected to edge and cloud via heterogeneous communication
protocols, such as the Message Queuing Telemetry Transport (MQTT) [1] or
the Open Platform Communications Unified Architecture (OPC UA) [2], [3].
The integration and discovery of sensors and their interconnection to the edge
or cloud implies heavy human intervention, being error prone. Moreover, as
devices within an devices within an industrial environment are often acquired
from different vendors, interoperability at different levels (device, protocol,
domain, etc.) [4] is a significant issue in IoT.

Semantic sensor technologies [4], such as the Web of Things (WoT),
provide a way to define IoT devices via expressive, uniform descriptions
of metadata and data meaning, thus assisting in lowering the barrier of
interoperability between IoT devices and IoT platforms.

Similarly, IoT services can be seen as a subset of web-based services, and,
therefore they can be described via semantic technologies.

Therefore, describing semantically IoT devices and services is a method-
ology that provides a way to lower the interoperability barrier. However,
semantic data annotation is still being tied to specific protocols. For instance,
OPC UA specifies robotics specifications, which are not necessarily compat-
ible with the specifications provided by other protocols.

Semantic matchmaking can assist in bringing this level of automation to
IIoT. In this context, semantic matchmaking relates with using the mean-
ing and information content provided by IIoT device descriptions (Things
Descriptions (TD)) to match it with the meaning of offered IIoT services,
e.g., environmental monitoring, abnormal pattern detection, etc.

Currently, semantic matchmaking requires the use of ontologies to dis-
cover semantic similarity between the two semantic descriptions − in the case
of this work, Thing and Service − to detect the “semantic distance” between
the two elements.

Ontologies are therefore a key component of semantic interoperability,
as they provide the foundation and capability for devices to interpret and
infer knowledge from datasets. However, the application of ontologies is
complicated due to three major problems: i) fragmentation and vendor-lock;
ii) cross-domain interoperability; iii) lack of open tools and application exam-
ples [5]. Fragmentation may be reduced via the development of information
models that are universal, based on open standards, such as the ETSI Smart
Applications Reference Ontology (SAREF) [6], and not based on specific
protocols or vendors. Cross-domain interoperability requires a new approach
to ontologies, in particular, the application of a universal language and a uni-
versal universal approach that can assist the mapping between domain-based
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ontologies, such as that happening with the methodology of the Industrial
Ontology Foundry-core (IOF-core)1 for industry, and the core ontology for
biology and biomedicine (COB)2 for the biomedical domains. SAREF is a
key reference in this context.

While ontologies provide an easier way to interpret data across IIoT
infrastructures, the need for a higher degree of automation still persists.

The focus of this chapter, therefore, relates with a debate on the definition
and use of semantic matchmaking in IIoT environments, to improve the
overall interoperability. The main contributions of this chapter are as follows:

• To provide an understanding of semantic matchmaking and the under-
lying semantic technologies that are applied in the context of IIoT
environments.

• To explain the current challenges and propose guidelines to circumvent
them.

• To explain how semantic matchmaking can be applied in the context of
edge−cloud environments.

The chapter is organized as follows. After this introductory section,
Section 8.2 provides background on semantic matchmaking. Section 8.3
presents a specific applicability case derived from the application of an open-
source semantic matchmaking middleware, TSMatch. Section 8.4 explains
the current challenges faced when applying semantic matchmaking between
IoT Things and services. Section 8.5 debates on proposals to further support
an intelligent, adaptive, and semantic matchmaking for IIoT. Section 8.6
concludes the document.

8.2 Semantic Matchmaking and Current Approaches

In general, semantic matchmaking refers to the mapping between two con-
cepts, entities, or descriptions focusing on how similar the semantic meaning
of the matched concepts is, while identifying the relationship between them
[6].

Semantic matchmaking is used in various fields such as web services
[7], [8], information retrieval [9], [10], and in various vertical domains
such as vertical domains such as smart cities [11] or health [12]. A typ-
ical application of semantic matchmaking in the context of web services

1 https://industrialontologies.org
2 https://obofoundry.org/ontology/cob.html
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is service composition, where several existing web services are combined
using semantic matchmaking between the services’ descriptions, to provide
enriched descriptions of services. There are also several scenarios where
semantic matchmaking is applied to retrieve information. The most common
is web search engines and recommendation systems. Semantic matchmaking
has also been used in vertical domains as an interoperability solution to enable
communication between various entities.

Semantic matchmaking is especially useful for large-scale IoT environ-
ments, since the large number of connected devices/Things need to effectively
communicate between each other and with other services, to reach its full
potential. However, applying semantic matchmaking to IoT needs to be
adjusted to the specific conditions and needs of IoT environments, e.g.,
the diversity of attributes for sensors, the different units applied, etc. An
additional challenge to address in the context of IoT environments is the
matching of devices/Things across different vertical domains, as fine-grained
matching is required. For example, semantic matchmaking should be able to
differentiate between a temperature sensor of an environment and a temper-
ature sensor of a machine and accordingly match the adequate sensor to the
service request.

There are several methods and technologies used to achieve semantic
matchmaking depending on the scenario, requirements, and the type of enti-
ties to be matched. Overall, semantic matchmaking can be categorized in
three main approaches: knowledge-based, statistical, and hybrid [19].

Knowledge-based approach refers to using a predefined knowledge con-
taining statements such as rules, facts, and constraints to provide a semantic
match between entities. A common example of such an approach is ontology-
based matching, where reasoning is used to find similarities and relations
between the semantic description entities.

Knowledge-based semantic matchmaking approaches tend to be accurate
and provide fine-grained matching since they are based on pre-built and
expert knowledge and models combined with logical reasoning. However,
they may lead to false negatives caused by the limitations of the knowledge
used. For example, if two concepts are semantically synonymous but defined
differently in their terminological definitions, the similarity between the two
is not captured and a reasoner would fail to find the match between the two
concepts. Moreover, knowledge-based semantic matchmaking approaches
are complex, require long design time, demand high maintenance to keep
the knowledge-base up to date, and are associated with long processing time
[16], [17].
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A statistical approach is based on analyzing the frequency of occurrence
of certain terms used in the semantic descriptions of the entities to be matched
and use statistical tools such as lexical resources (e.g., WordNet3)/distance
measures (e.g., cosine similarity) or ML (e.g., clustering techniques [13]) to
define their semantic similarity. Statistical-based semantic matchmaking is
considered to be less complex compared to the knowledge-based approach;
it also tends to require less processing time due to less complex computation.
However, for applications that require fine-grained matching, statistical-based
approaches are usually not suitable since the processing and transformation
of the data causes loss of semantic information, thus leading to more generic
matching.

Hybrid approach refers to semantic matchmaking solutions that combine
both knowledge-based and statistical approaches to mitigate the advantages
and disadvantages of both approaches [14], [15]. Hybrid approaches may
assist in overcoming the disadvantages of both the knowledge-based and
statistical categories. However, identifying the effective way to combine and
take advantage of both techniques remains a challenge.

8.3 TSMatch, an Example of Semantic Matchmaking for
IIoT

TSMatch [22] is an open-source middleware4 that supports semantic match-
making between IoT data sources (Things) and IoT services. TSMatch
contributes to solve the challenge of semantic interoperability, by providing
an automated matchmaking solution between IoT devices and IoT services,
which relies on semantic technologies. The proposed solution is based on the
following two assumptions: i) each IoT device has a semantic description; ii)
each IoT service can be described semantically based on an ontology.

The TSMatch middleware has been developed and applied in industrial
environmental pilots (TRL6) in the context of the Horizon 2020 European
Connected Factory Platform for Agile Manufacturing (EFPF) project5,
and a demonstrator is available and interconnected to the EFPF data spine via
the fortiss IIoT Lab.

3 https://wordnet.princeton.edu/
4 https://git.fortiss.org/iiot_external/tsmatch
5 https://www.efpf.org/
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Figure 8.1 Example of a smart facility interconnected to an IoT platform.

As an example that may assist in understanding the operation of semantic
matchmaking, let us consider Figure 8.1 standing for a smart factory
shopfloor, integrating multiple sensors.

In the shopfloor, machines from different vendors, with coupled sensors
attached on them, are expected. Moreover, sensors are also used to monitor
the environment, e.g., CO2, temperature, humidity, etc. Employees of this
facility are using wearable devices, tablets, and smart phones, which also
have sensing capabilities. In this scenario, different IoT platforms have been
acquired to different vendors. Therefore, each platform considers different
semantic standards to support an interoperable data exchange. Data exchange
is supported by a data bus across the factory, and the different platforms rely
on specific communication protocols to exchange data, e.g., OPC UA, MQTT
Sparkplug, etc. Different services, e.g., data analytics tooling, environmental
monitoring services, and certification services, are interconnected to the data
spine via software-based connectors that have been specifically devised for
this purpose, by the different vendors, or by an integrator.

Some of these services run on the so-called edge (close to the field-
level devices, e.g., on the shopfloor) and others run on the cloud. On this
scenario, the semantic matchmaking process can occur on the cloud or on the
edge. Placing the matchmaking on the edge is expected to lower latency and
also reduce energy consumption, as most of the data processing (including
aggregation) is performed closer to the end-user.

TSMatch (rf. to Figure 8.2) aims at providing this type of support, being
developed to run as an edge-based service. Following a client-server approach
and consisting of multiple containerized microservices, TSMatch comprises
a server-side, the TSMatch engine, and a TSMatch client. The TSMatch
engine is composed of two main functional blocks and several interfaces:
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• Semantic matchmaking. Performs semantic matchmaking between IoT
Things descriptions (stored on a database) and ontologies. The result is
a set of enriched data nodes, which are also stored in a database.

• Data aggregation. Sensor data aggregator.
• Ontology interface. Provides support for ontologies to be imported into

TSMatch.
• Connectors. Different connectors, e.g., Mosquitto to RabbitMQ;

HTTP/REST, etc.

The input and output of the matchmaking and data aggregation processes
are stored on a local Neo4J database, storing Things descriptions, service
descriptions, ontologies, and new data nodes (aggregated Things based on a
category, e.g., temperature measurement).

The end-user interacts with the TSMatch engine via an Android app
(TSMatch client). Moreover, TSMatch relies on the following external
components:

• An MQTT broker. TSMatch currently relies on an MQTT broker
based on Mosquitto as message bus. The TSMatch client and engine
interconnect to the Thing discovery: IoT Thing discovery is supported
via Coaty.io6.

• Service registry. Holds a set of service descriptions. Currently holds
environment monitoring service specification examples based on OWL
and WSDL, which the user can select via the TSMatch client.

8.3.1 Setup

The TSMatch operation considers two phases. During setup, TSMatch
performs discovery of existing IoT devices via the coaty.io open-source
middleware, and ontologies can also be imported.

For discovery, it is assumed that IoT devices have an integrated coaty
agent or are interconnected to a hub that holds such agent. Therefore, when an
IoT device boots up or becomes active after a period of inactivity, it publishes
its TD via coaty. These TDs are stored on the local database co-located to
the TSMatch engine. The semantic matchmaking module subscribes to Thing
discovery events. When a new TD is received, or when there is a change in the
TD, then the semantic matchmaking process computes the new data elements

6 https://coaty.io/
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Figure 8.2 High-level perspective of the TSMatch architecture.

as described in the next subsection and stores the new data nodes on the local
database (graphDB).

8.3.2 Runtime

Before running the semantic matchmaking algorithm, the TD files as well
as the names of the ontology elements are pre-processed to clean up the
data, i.e., to perform tokenization, remove punctuation, etc. After the pre-
processing step, the TDs are passed to one of the selected semantic match-
making algorithms. The algorithm matches the given TDs to the ontology
elements. Then a relation is created in the graph database between each TD
and the ontology nodes that it is being compared with.
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Figure 8.3 Description of a service enriched with information from the FIESTA-IoT
ontology.

An example of a TD description is provided in Figure 8.3, where the
“name” and “description” attributes (first level attributes) will be used by the
algorithm to perform a check against ontologies’ categories. The algorithm
performs multiple interactions based on a depth search on the respective
provided ontology/ies.

The matchmaking relies on a Natural Language Processing (NLP) neural
network-based approach that has been compared with i) a statistical approach,
based on sentence similarity; iii) a clustering-based approach. The NLP
neural network model-based approach (W2VEC) has been tested and shown
to achieve better results in comparison to a clustering approach derived from
K-means, and to a cosine similarity approach [23]7,8.

After matches are found, the relations between the nodes representing
sensor descriptions and specific categories of ontologies are created.

The third step on the algorithm concerns data aggregation. Upon receiving
a service request, the data aggregation module checks for the aggregated TD
nodes on the database, subscribes (via MQTT) to data from the respective

7 https://github.com/fiesta-iot/ontology.
8 https://git.fortiss.org/iiot_external/tsmatch/-/tree/master/dataset/ontology
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sensors, and performs data aggregation based on a simple average function.
Based on the service example described in Figure 8.3, the algorithm discovers
TDs stored in the database with a stored relation to “Illuminance,” “Lux,”
“LightSensor,” and “Environment.”

Ontology nodes also on the database. It sends a response back to the
requesting service (on the TSMatch client), providing information about the
sensors, based on the TDs as shown in Figure 8.4. Moreover, the algorithm
gets data from the respective IoT devices (via MQTT, as a subscriber) and
then performs data aggregation (simple average) and periodically sends the
results to the requesting service, as shown in Figure 8.5.

Figure 8.4 TSMatch client, interface that obtains the available descriptions of existing
sensors in an infrastructure in real time.
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Figure 8.5 TSMatch, temperature monitoring, aggregated results derived from the TSMatch
ML-based matchmaking process.

8.4 Semantic Matchmaking Challenges for IoT

As mentioned earlier, semantic matchmaking can be applied to various fields
including IoT; however, with each field of application, new requirements and
challenges are to be considered. Based on the scenario described earlier, the



168 IoT Things to Service Matchmaking at the Edge

objective is to semantically match the semantic description of IoT Things
with Services, to achieve a finer data matching, and to be able to pro-
vide enriched data-based services. Besides providing semantic matchmaking
between the IoT Things attributes (e.g., temperature attribute) and the service
input signature, other aspects need to be considered, as follows:

• Integration of functional and non-functional requirements. To
ensure a match that supports interoperability between the IoT Things
and the services, non-functional requirements beyond security may be
relevant to be integrated. An example of a non-functional requirement
could be data compliance aspects, for instance.

• Integration of user requirements. Users in this scenario can be the
manager of the facilities where the IoT Things are located. Such user
requirements can be provided in the form of user preferences (e.g.,
preference in terms of non-functional service requirement, for instance,
cost), but also in the form of quality of experience (QoE) feedback (e.g.,
level of satisfaction with the outcome of a specific match process). This
way, the user can put constraints on the type of IoT data to be utilized
and shared with services or specify the bandwidth constraints that may
impact the frequency and data rate.

• Integration of context-awareness. The aim is to consider the surround-
ing context of Things (e.g., room temperature for a specific sensor
installed on a machine in a room) together with Things attributes (e.g.,
temperature provided by the sensor itself). This would provide fine-
grained and more accurate matching since it allows the differentiation
between sub-types and application of IoT Things.

• Integrate in the semantic approach design energy awareness and
processing time reduction. To meet far edge constraints, use semantic
approaches that reduce the processing time (e.g., real-time requirements)
and power consumption, among other aspects.

• Interoperability across domains. IoT is applied to various vertical
domains. In many IoT scenarios, communication and integration across
domains is required; hence, it is necessary to reduce the limitation asso-
ciated with using a knowledge-based approach mainly due to the risk of
having incomplete and complex models that require high maintenance.

• Integration of a feedback loop to the user, to improve QoE. Provide
useful feedback to both the user and the service about the matching
process (e.g., ranking of matches, information about the criteria selected
for the match).
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Figure 8.6 IoT Things to service semantic matchmaking approach.

• Integration of a learning approach. IoT solutions are constantly evolv-
ing; hence, building a matching solution that is able to learn from the
previous matches to improve future matches is key.

8.5 Evolving Semantic Matchmaking at the Edge

To fulfill the requirements of semantic matchmaking between existing IoT
Things and services at the edge, we propose the following five-step approach
as illustrated in Figure 8.6, which are further described in the next subsec-
tions.

1. Hybrid semantic matchmaking: After discovering the available IoT
Things descriptions and receiving the service semantic request, use
a hybrid semantic approach to match both the functional and non-
functional requirements of the service with the IoT Things while
considering user requirements (e.g., QoE) as constraints.

2. Categorization: Group IoT Things based on the semantic matchmaking
results, to reflect the degree of matched requirements.

3. Tradeoff: In case of a partial match of functional and non-functional
requirements of the service, use tradeoff analysis to optimize for a
specific goal to support the identification of an optimal set of IoT Things.

4. Ranking: Considering the results of the categorization and the tradeoff
analysis, rank IoT Things sets and highlight the match criteria and
optimization goal to the user and the IoT service to support further
decisions.
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5. Feedback loop: Use previous matched results to learn and optimize the
hybrid semantic matchmaking and tradeoff analysis.

8.5.1 Hybrid semantic matchmaking

Hybrid semantic matchmaking brings together the advantage of both
knowledge-based and statistical categories. A novel approach also needs to
fulfill the requirements described in Section 8.3. Such a hybrid approach
is based on an algorithm that takes into consideration the novel aspects of
integrating IoT service requirements, IoT user requirements, and IoT Things
attributes.

Such an automated semantic matchmaking algorithm needs to be able to
find similarities between criteria required by the service, the user, and the
features of the existing IoT Things.

First, the main parameters to be matched for the service are the service
functional requirements meaning the service requested IoT input data and
the service QoS, for example, sampling rate, resolution, or delay of the
IoT data. Second, the user requirements or QoE refer to the user criteria to
accept/be satisfied with the provided functionality and integration between
the IoT Things and the service. Such a user could be the manager of the
environment hosting the IoT Things. For instance, a user can specify require-
ments regarding the network usage, IoT Things energy consumption in case
of battery-operated IoT Things, or the type of data shared, e.g., public (i.e.,
services requesting such data can have access without permission), private
(i.e., requires permission from the user), or restricted data (i.e., cannot be
shared with external services). Finally, some of the key aspects of the IoT
Things descriptions to be considered in the semantic matchmaking are as
follows:

• The IoT Things observed property, for example, temperature, occu-
pancy, and presence.

• The IoT Things observation type, which refers to the value type created
based on environmental stimuli, for example, 27◦C.

• The IoT Things feature refers to the specific feature we are observing or
measuring its property, for example, environment, machine, human, etc.

• The IoT Things spatial property is the area of observation or location,
for instance, a factory in a specific city.

• The IoT Things capabilities group the set of specifications that describe
aspects of the provided observations such as range and accuracy.

Now that we identified the various concepts to be matched, the next
step is to use hybrid semantic matchmaking to identify which IoT Things
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fulfill the needed requirements. Thus, the main phases of the hybrid semantic
matchmaking approach are illustrated in Figure 8.7.

As a first step, IoT Things are discovered using an IoT crawler or a web
of things search engine (WoTSE). These tools can assist in automatically
identifying existing IoT devices in an infrastructure, and in storing their TDs
[18]. Then, relevant concepts for matching are retrieved from the descriptions,
e.g., IoT Thing name, observed property, feature of interest, spatial property,
capabilities, pre-processed, stored, accuracy, sampling rate, etc. This is an
ongoing process to update, remove, or add IoT Things information to reflect
the current state of the IoT environment.

The second step aims at organizing and grouping the IoT Things informa-
tion. The goal is to match the incoming service requests with a subset of IoT
Things relevant for the service instead of the full set to reduce processing time
and computations. Different machine learning methods can be used for that
purpose, for instance, clustering and categorization methods. Clustering algo-
rithms are unsupervised learning techniques used to group similar data points
without prior knowledge of the groups, while categorization algorithms are
a supervised learning technique where a model is trained to predict the
category/class based on labeled data. In IoT scenarios, the categories are not
predefined and depend on the set of IoT Things available in an environment.
Creating a fine list of IoT Things categories would be challenging and would
need to be updated constantly to reflect the constant development of new

Figure 8.7 Steps of the proposed hybrid semantic matchmaking approach.
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solutions. Thus, unsupervised learning techniques such as clustering methods
seem to be more suitable for grouping a set of IoT Things without prior
knowledge of the groups and classes available in the environment. Different
clustering methods can be selected, such as centroid-based clustering (e.g.,
k-means), ensity-based clustering (e.g., Density-based Spatial Clustering of
Applications with Noise (DBSCAN)), hierarchical clustering (e.g., agglomer-
ative hierarchical clustering), or distribution-based clustering (e.g., Gaussian
mixture model), to name a few.

Selecting the adequate unsupervised learning technique would need to
consider the following requirements:

• IoT Things information is non-numerical data that may have different
dimensions and incomplete information.

• Small number of IoT Things in the environment.
• Limited computation power on the edge.
• Varying number of clusters depending on the IoT Things available in the

environment.

A potential unsupervised learning technique to investigate is hierarchical
clustering since it is known to handle non-numerical data with different
dimensions and incomplete data. It does not require a predefined number
of clusters, can determine the number of clusters based on the data, and is
able to work with a small amount of data. However, the main disadvantages
of hierarchical clustering are its high computational complexity and lack of
scalability, especially for large amounts of data. Hence, different clustering
methods might be used depending on the scale of the IoT environment in
consideration.

The third step relates to retrieving and pre-processing relevant informa-
tion from the service, e.g., service description text, location, domain, service
input, and required QoS. As the fourth step, the algorithm can use a distance
(similarity) matrix to match the service-requested information (functional
requirements) to the centroid of each cluster to identify the most relevant
cluster of IoT Things. In step 5, the algorithm would apply a knowledge-
based approach to semantically match the service-requested information with
the selected cluster. Depending on the specific identified cluster domain, a
specific ontology could be considered, or a standard (such as SAREF) may
assist in interoperability across different domains/different ontologies.

Finally, a rule- and condition-based approach is used to identify if the
selected IoT Things meet the required QoS requirements of the service and
the user QoE. Thus, the input from the user and the requirements from the
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service should be extracted based on which the set of rules are developed.
Then, performance data from the IoT Things are analyzed against these rules
to determine if they meet the service requirements. It is important that the
IoT Things performance data are updated over time along with an ongoing
evaluation to assure that these requirements are met over time.

The proposed hybrid semantic approach has the advantage of using
clustering techniques and similarity matrix to reduce the problem space of
the ontology matching, leading to less processing time while maintaining
fine-grained matching. Moreover, existing standard ontologies can be auto-
matically selected and used depending on the scenario, hence removing the
need to develop and maintain a cross-domain ontology. Different concepts
from different stakeholders are included in the matching process to ensure a
comprehensive IoT Thing to service matching solution. However, the match-
ing accuracy is influenced by the clustering algorithm, which may cause false
positives and the selected ontology form the knowledge-based matching ;
therefore, it is important to use the feedback loop to help automatically adjust
the clustering parameters and select the adequate ontology to improve the
precision.

8.5.2 Categorization

Based on the semantic matchmaking, the next stage is to categorize and group
the IoT TDs based on the level of identified matches. Therefore, we propose
the following categories, which can be derived from the results of the hybrid
semantic matchmaking process.

• Exact match: When all three selection criteria are met, which include
the IoT service required IoT data input, QoS, and the user QoE.

• Functional match: When only the functional requirements are matched.
For example, a set of IoT Things that can provide the environmental
temperature at location A is found; however, they do not meet both the
user QoE and the IoT service QoS.

• Intersection match: Refers to having a functional match plus partially
matched QoS and QoE requirements. This is a challenging category
since IoT Things falling in this category would need to be ranked. For
example, if one set of IoT Things fulfills all functional requirements plus
two service QoS and one user QoE while another set meets all functional
requirements plus one (different) IoT QoS and one (different) user QoE,
how can both sets be compared?
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• No match: When the service functional requirements cannot be
matched.

8.5.3 Tradeoff

For the intersection match category, a further analysis is required to rank the
set of IoT Things that fall into this group. The analysis should enable the
comparison between different QoS and QoE requirements to permit ranking.
One option is to use tradeoff analysis to serve a specific optimization goal.
The optimization goal can be either defined by the user or derived from the
operation domain and adjusted using the feedback loop. A domain-based
tradeoff analysis, for instance, would optimize to fulfill the domain-specific
requirements; therefore, the requirements relevant to the domain in question
have higher value and hence higher ranking.

Using the categorization of IoT Things combined with the tradeoff anal-
ysis matching, the goal is to identify the optimal set of IoT Things among
available ones by ranking them and providing useful information to the
service and the user regarding the selection criteria such as the list of matched
concepts and the optimization goal used. We proposed the following ranking
classes:

• Perfect match: Provide a list of IoT Things that match perfectly
functional, QoE, and QoS requirements.

• Intersection match: If no-perfect match is not available, select a set of
IoT Things that match the functional requirements as well as partial QoS
and QoE requirements. This ranking is affected by the tradeoff process
since it creates various IoT Things selections, taking into consideration
the optimization goal of the tradeoff analysis.

• Functional match: A set of IoT Things that only fulfill the functional
requirements.

8.5.4 Feedback Loop

Based on the IoT service selected/used set of IoT Things compared to the
identified optimal set of IoT Things, a feedback loop can be established to
enable learning. Various information can be adjusted such as automatically
associating a tradeoff goal to a specific domain, identifying relevant QoS and
QoE for a specific IoT domain, adjusting the clustering algorithm’s param-
eters, re-evaluating the similarity measures used, or reducing the processing
time by focusing on specific aspects most relevant for the service category.
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8.6 Conclusion

Semantic matchmaking provides a way to tackle some interoperability chal-
lenges in IoT environments, via the use of semantic definitions of sensors,
actuators, machines, and IoT services. Based on standardized approaches,
and on the use of supervising-based approaches, it is feasible to reduce
the operational cost of setting up and maintaining large-scale IoT infras-
tructures. While there are solutions, such as TSMatch, which perform such
matchmaking already with some degree of freedom, the increasing variety
of vendor-based approaches across different vertical domains require an
approach that considers unsupervised learning.

Hence, in this chapter and to further provide an answer to the challenges
of semantic matchmaking between IoT Things and services on the edge,
a five-step approach is proposed. The approach includes using a hybrid
semantic matchmaking to match between the IoT Things extracted informa-
tion and the service requests, categorize the matching results based on the
completeness of the match, use tradeoff analysis to decide on the ranking
of partial matches, rank the IoT Things subset from no-match to perfect-
match, select the optimal IoT Things subset that meets the service request
and finally use a feedback loop to improve the process. Overall, the approach
aims to optimize on the edge identification of an optimal set of IoT Things
to fulfill the requirements of the service including its quality of service while
considering the user requirements and the specifications of IoT scenarios and
use cases as constraints.
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Abstract

Performance and energy efficiency are key aspects of next-generation AIoT
hardware. This chapter presents a scalable, heterogeneous hardware platform
for accelerated AIoT based on microserver technology. It integrates several
accelerator platforms based on technologies like CPUs, embedded GPUs,
FPGAs, or specialized ASICs, supporting the full range of the cloud−edge-
IoT continuum. The modular microserver approach enables the integration
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of different, heterogeneous accelerators into one platform. Benchmarking
the various accelerators takes performance, energy efficiency, and accuracy
into account. The results provide a solid overview of available accelerator
solutions and guide hardware selection for AIoT applications from the far
edge to the cloud.

Keywords: IoT, machine learning, AIoT, microserver, deep learning, (far)
edge-computing, FPGA, accelerator, energy-efficiency, performance classifi-
cation.

9.1 Introduction

Looking into novel architectures optimized to accelerate the computation of
neural networks, adaptable and scalable hardware solutions tailored to the
applications’ requirements are a key component. A fully featured, hetero-
geneous hardware platform integrating several accelerators is described and
evaluated in the following. Over the last years, a large number of diverse
DL accelerators in the form of special ASICs or IP cores, as well as GPU-
or FPGA-based solutions, have been introduced in the market. This chapter
focuses on benchmarking, and a comparative evaluation of selected accel-
erators regarding performance, energy efficiency, and accuracy is performed.
Together with the seamless integration of DL into the IoT hardware platforms,
the benchmarking methodology is used for further optimizing applications
toward performance and energy efficiency. The presented work has been
part of the VEDLIoT project [1]. In this chapter, we present a summary
of the results obtained. More details are available in the respective project
deliverables [2], [3].

9.2 Heterogeneous Hardware Platform for the
Cloud-edge-IoT Continuum

This section deals with the hardware architecture and presents the different
accelerators evaluated. It also acts as an introduction and classification for the
different accelerators used in the benchmarking section.

The hardware platform can be used as a joint infrastructure for different
developments. It supports a wide range of AIoT applications that can be
addressed using a flexible communication infrastructure and exchangeable
microservers. Figure 9.1 shows the RECS platforms covering application
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RECS – from edge to cloud
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Figure 9.1 Overview of modular and scalable RECS platforms.

domains from embedded/far-edge computing toward cloud computing. All
platforms commonly target heterogeneous computing with tightly coupled
microservers. The cloud computing platform RECS|Box consists of either
two or three rack units and aims for high-density applications using hundreds
of microservers with high-bandwidth communication requirements. t.RECS
houses up to three microservers in one rack unit and focuses on edge comput-
ing scenarios with low-latency demands like image and video processing use
cases or 5G base stations. u.RECS rounds off the range of the RECS family
toward low-power and compact embedded computing.

Microservers are based on industry-standard computer-on-module
(COM) form factors, allowing for flexible and heterogeneous processing. On
the one hand, RECS|Box and t.RECS support microservers that are based
on COM express and COM-HPC server and client standards. The u.RECS,
on the other hand, supports multiple compact form factors for far-edge
computing, including SMARC, Jetson NX, Xilinx Kria, and Raspberry Pi
compute modules.

9.2.1 Cloud computing platform RECS|Box

The RECS|Box platform is available in two different chassis sizes. The small
chassis with 2U (Durin) is meant as a starter chassis, mainly for evaluation
and non-datacenter use cases, while the 3U (Deneb) chassis is to be used in
larger installations. The RECS|Box server architecture supports microservers
based on x86 (e.g., Intel Xeon), 64-bit ARM mobile/embedded SoCs, 64-
bit ARM server processors, FPGAs, GPUs, as well as other PCIe-based
acceleration units. The smaller Durin can be equipped with up to 9 high-
performance (HP) microservers or with 48 low-power (LP) microservers,
and the larger Deneb can host 27 HP microservers or 144 LP microservers.
The large amount of microservers inside the systems requires a sophisticated
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Figure 9.2 Communication architecture of RECS|Box platform.

communication infrastructure. Therefore, the RECS|Box comes up with
multiple communication standards depicted in Figure 9.2.

The basis is the Ethernet network. It provides multiple 1 and 10 Gbit/s
links to every microserver. Furthermore, it is internally switched and supports
upstream bandwidth toward the top of the rack (ToR) switch up to 120 Gbit/s,
combining three 40 Gbit/s links. In addition to the Ethernet communication
infrastructure, a dedicated high-speed low-latency (HSLL) communication
network is integrated into the RECS|Box architecture. It consists of two
levels. On the physical level, the HSLL can directly connect high-speed serial
links between microservers, as commonly available in FPGA modules. For
processor-driven microservers (e.g., x86 based), the second level is PCIe-
based direct host-2-host communication. Similar to the Ethernet network, it
is internally switched and provides bandwidth of up to 56 Gbit/s to every
microserver. The bandwidth toward a PCIe ToR switch is up to 336 Gbit/s,
combining three 112 Gbit/s links.

9.2.2 Near-edge computing platform t.RECS

While the RECS|Box cloud hardware, described in the section above, focuses
on data center applications, the edge server architecture supports local appli-
cations with high demands for low-latency, safety, and security. Especially
applications with user interaction require local (pre-) processing and reduc-
tion of large amounts of data, which are difficult to achieve using a cloud-
based approach. Three microserver modules of the COM-HPC standard
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Figure 9.3 Communication architecture of t.RECS platform.

can be placed on the carrier board, supporting microservers based on x86
(e.g., Intel Xeon), 64-bit ARM server processors, FPGAs, GPU SoCs (e.g.,
NVIDIA Jetson AGX), as well as PCIe-based acceleration units via the PCIe
expansion slot.

The t.RECS has a powerful and scalable communication infrastructure as
shown in Figure 9.3. It is derived from the RECS|Box cloud platform and
provides the basis for closely coupled heterogeneous compute nodes. The
internal bandwidth for Ethernet, as well as HSLL, is the same as that in the
RECS|Box, but the external bandwidth is reduced to single external links of
40 Gbit/s for Ethernet and 112 Gbit/s for HSLL.

9.2.3 Far-edge computing platform u.RECS

The architecture of the u.RECS is presented in Figure 9.4. The two integrated
module slots support the SMARC 2.1 standard and the NVIDIA Jetson
NX standard. In addition to the two module slots, a PCIe M.2 slot and an
mPCIe slot are integrated, which can be used to add further accelerators or
communication methods, such as 5G, to the u.RECS. Furthermore, commu-
nication options, e.g. Ethernet or PCIe and energy measurement methods, are
integrated on the board to make the u.RECS a perfect fit for a wide range of
AIoT use cases.

The NVIDIA Jetson NX module slot is capable of supporting Xavier
NX and Orin NX SoC modules. These modules have ARM CPUs combined



184 A Scalable, Heterogeneous Hardware Platform for Accelerated AIoT

USB 3            

power sensingGPIOCSIUSB 3            

USB 3 Mux

SMARC 2.1

FPGA
x86

ARM

Nvidia

Xavier

Jetson NX

M.2 M-Key
Accelerator / Storage

mPCIe
Accelerator / 

Communication

GigE

Switch

BMC

ESP32

With WiFi 

and BLE
SpE

Phy

Single Pair 

Ethernet

2x RJ45

with PoE

LoRa

USB-C Power

COM
Brick

HDMI            

Barrel Plug
PCIe x4

PCIe x1

PCIe x4

GigEGigE

PCIe x4

USB 3

GPIOCSIUSB 2            HDMI            

USB 3

μ.RECS

Figure 9.4 Architecture of u.RECS platform.

with latest NVIDIA GPU technology. Support for the SMARC 2.1 standard
gives the u.RECS access to a wide range of COMs and ML accelerators, as
SMARC modules are available in the market through different module man-
ufacturers, such as Congatec, ADLINK Technology, or others. The SMARC
slot can be equipped with, among others, the following types of microservers:

• ARM CPU (e.g., i.MX 8)
• x86 CPU (e.g., Atom CPU)
• FPGA (e.g., Xilinx Zynq UltraScale+)

There are a number of additional ML accelerators that can be equipped in
or connected to an M.2 or mPCIe slot. Additionally, it is possible to connect
accelerators via USB 3.0 and access them from one of the compute modules.
Furthermore, with the u.RECS, it is possible to measure the energy of an
accelerator connected via USB. Accelerators supported this way include:

• Intel Myriad X
• Hailo-8
• Google Coral

9.3 Accelerator Overview

There are many accelerators available for a wide range of applications, from
small embedded systems with power budgets in the order of milliwatt to cloud
platforms with a power consumption exceeding 400 W. Figure 9.5 provides
an overview of the different accelerators using a double logarithmic plot,
grouping them into three groups, depending on their peak performance values
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(in giga-operations per second). It should be noted that values provided by
the vendors are used; so no normalization regarding technology, precision, or
architecture is performed. On average, an energy efficiency of about 1 Tera
Operation per W (1 TOPS/W) is achieved. In the following paragraphs, the
main characteristics of the three performance groups are discussed.

Ultra-low power (<3 W): The ultra-low power group of accelerators is
mainly devices integrating energy-efficient, microcontroller-style cores com-
bined with compact accelerators for DL-specific functions. They are focusing
on generic IoT applications like the Maxim MAX78000, the Ambient Scien-
tific GPX-10, or the BrainChip Akida, providing only simple analog or digital
interfaces. Other devices such as the Greenwave GAP 8 and GAP 9, the
Canaan Kendryte K210, or the Kneron KL530 and KL720 also aim at vision
processing, providing an additional camera interface. Typically, those devices
are directly designed into the application itself without using a modular or
microserver-based approach, simply because all interfaces and peripherals
are integrated. Only the Bitmain Sophon BM1880 and Intel Myriad X are
providing a generic USB interface and are designed to act as accelerator
devices attached to a regular host processor. None of these devices integrates
external memory controller interfaces. Based on its wide availability, the Intel
Myriad X device is included in the benchmarking activity.

Low power (3−35 W): While the previous group of accelerators is focusing
on applications with a very low-power envelope (often in a battery-powered
environment with no special requirements regarding cooling), the low-power
group of accelerators includes accelerators for a wide range of applications
in automation and automotive. All devices include high-speed interfaces for
external memories, and peripherals, as well as high-speed communication
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toward other processing devices or host systems, such as PCIe, proving
excellent capabilities for a modular, microserver-based approach as supported
by the RECS platform. Apart from the Hailo-8, the FlexLogix InferX X1,
and the VSORA Tyr family, which are designed as dedicated accelerators
attached to an external host processor, all devices include powerful, general-
purpose application processors, capable of running a fully fledged Linux
operating system. In addition to specialized ASICs including the Coherent
Logix HX40416, the Blaize El Cano, or the Huawei Ascend 310, this group
also includes embedded GPUs from NVIDIA, in particular, the Jetson family,
starting from the Nano and TX2, via the Xavier NX and Orin NX devices all
the way up to the AGX Xavier. The Xilinx Versal Core AI VC1902 and Versal
Edge AI VE2302 are explained in detail in the following section.

High performance (>35 W): The high-performance group of accelerators
includes devices with up to 450 W of TDP, suitable for both inference and
training use cases, typically deployed in the form of a PCIe extension cards
for edge or cloud servers. Besides the classical NVIDIA Tesla GPGPUs
including Tesla V100, A100, and H100, also dedicated ASICs like the Groq
TSP, the SambaNova SN10, the Graphcore C2, or the Google TPUv3 are
part of this cluster. In addition, also powerful inference ASICs like the
SimpleMachines Mozart, the Tenstorrent Grayskull, the Qualcomm Cloud
AI 100 Chip, or the Untether AI RunAI200 are included. As a reference, also
a consumer-class NVIDIA Geforce GTX 1660 GPU has been included in
the benchmarking. The NVIDIA Jetson AGX Orin is also part of this group
due to its high power envelope, although it is part of the embedded NVIDIA
Jetson family.

9.3.1 Reconfigurable accelerators

Field programmable gate arrays (FPGAs) are a promising alternative to
GPUs and TPUs. Due to their reconfigurable architecture, these devices
can be adapted to the specific requirements of an application, making them
promising candidates for the resource-efficient processing of machine learn-
ing algorithms. For acceleration of deep learning models on their FPGAs,
Xilinx provides a dedicated IP core, the deep-learning processor unit (DPU).
Various FPGA devices are already available in the RECS system, and new
devices like Xilinx Versal are expected to be added in the near future. For
the easy yet efficient integration of new reconfigurable accelerators into the
RECS system, an FPGA base design has been developed, supporting the
flexible communication facilities of the RECS platform.
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A key advantage of FPGAs over ASICs is their reconfigurability, enabling
highly optimized designs for specific application scenarios. However, this
reconfigurability comes at a significant overhead in terms of power and
performance. This overhead is reduced by the integration of embedded
processors and fixed-function units (like DSP blocks and embedded mem-
ories) in modern FPGAs. An additional method to increase the resource
efficiency of reconfigurable architectures is partial dynamic reconfiguration,
enabling, e.g., to switch between different accelerators at runtime. Dynamic
reconfiguration can be used to enable the system to automatically adapt to
changing environmental conditions, like weather changes, when running a
neural network on camera data. In general, accelerators with different power,
performance, and accuracy footprints can be selected at runtime.

Figure 9.6 provides an overview of the architecture and supported inter-
faces of the base design for the u.RECS. For heterogeneous systems, the PCIe
interface connects the reconfigurable accelerator to other compute modules
and accelerators on the u.RECS. The base design was created with the
Xilinx Vitis Core Development Kit (2021.2) in the Vivado block design
environment. When targeting different FPGAs or FPGA platforms, the base
design needs to be adapted, e.g., because of changed internal or external
interfaces. Additionally, other pre- or post-processing steps may be required,
as well as a change of the complete application runtime. Hence, a wide variety
of different FPGA implementations can be expected, which are difficult to
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manage by hand. Therefore, we have set up a scripting environment that
automates the configuration and build process. All necessary calls to the Vitis
build system are automated, enabling an easy transition to new platforms.
The entire hardware platform as well as the software infrastructure are
built automatically, including the configuration of the processing system and
the Linux environment. Changes to the FPGA base design, like additional
interfaces, located in the FPGA fabric, can be done directly in the script.
This is especially important for easy migration between the different FPGAs
supported by the RECS platform.

For the evaluation of performance and energy efficiency, various com-
binations of Xilinx FPGAs and DPU configurations have been generated
with the scripting approach described above. UltraScale+ FPGAs have been
used, ranging from small (ZU3EG) to large (ZU15EG) devices. The DPUs
can be parameterized to match the application requirements, e.g., by varying
the inherent parallelism in terms of the peak number of operations per clock
cycle. In the next section, FPGA implementations are named by the device
and the integrated DPU variant. To give an example, ZU15 2xB4096 refers
to a ZU15EG device that integrates the base architecture together with two
B4096 DPUs, each capable of processing 4096 INT8 operations per clock
cycle. The DPUs are running at a reduced clock frequency of 200 MHz,
limited by power constraints of the used boards.

In addition to Xilinx UltraScale+ FPGAs, we have also evaluated the
energy efficiency of the new Xilinx Versal architecture, utilizing a VC1902
on the VCK190 evaluation system. The reconfigurable SoCs combine an
ARM processing system with a programmable logic fabric and a variety of
I/O interfaces. In addition to the classical FPGA-based SoCs, the VC1902
integrates new DSP engines, AI engines, and a network-on-chip infrastruc-
ture for communication between the heterogeneous computing resources.
For deep learning applications, especially the 400 AI engines are of high
interest, promising a significant increase in performance and energy effi-
ciency compared to DPU implementations on the reconfigurable fabric. For
the development, Xilinx Vitis AI version 2.5 has been used together with
Xilinx Vitis 2022.1. A wide range of configurations can also be selected
for the Versal DPU. In our implementation, C32B6 refers to an architecture
with six batch handlers, utilizing 32 AI engine cores per batch handler,
for a total of 192 AI engines. The implementation runs at a clock fre-
quency of 333 MHz for the programmable logic and 1.25 GHz for the AI
engines.
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9.4 Benchmarking and Evaluation

9.4.1 Methodology

The evaluation of different accelerators and their corresponding hardware
manufacturer’s optimization toolchains was conducted using a standard set
of convolution neural network (CNN) models. The evaluation utilized three
state-of-the-art CNNs − ResNet50 [4], MobileNetV3 [5], and YoloV4 [6] −
all of which are from the domains of image recognition and classification. The
models were represented using the open neural network exchange (ONNX)
[7], which is an open standard for ML algorithms.

For evaluation purposes, two widely used benchmarking datasets were
employed: common objects in context (COCO) [8], a comprehensive
database for object detection, segmentation, and captioning, and ImageNet
[9], the most frequently used dataset for image classification in the large-
scale visual recognition challenge (ILSVRC). ImageNet contains 1000 object
categories and has 1,281,167 training images, 50,000 validation images, and
100,000 test images. Three versions of each model (ResNet50, MobileNetV3,
and YoloV4), each with a different precision, were evaluated. The first version
was the original trained model with 32-bit floating-point precision (FP32),
followed by two quantized versions of the original model: 16-bit floating-
point precision (FP16) and 8-bit integer precision (INT8). The toolchains
used for evaluation are summarized in Table 9.1.

In order to evaluate the merit of the hardware platforms for various
deployment scenarios with different goals and constraints, we used the
following metrics divided into four categories:

• System metrics: peak performance in giga-operations per second
(GOPS) and idle power1 in Watts (W).

1 The idle power is measured as to determine a more accurate power consumption for the
execution.

Table 9.1 Toolchains used for evaluation.
Hardware Toolchain Version
NVIDIA GPUs TensorRT SDK 7.1.3 and 8.0.1 [10]
Intel CPUs, Myriad OpenVINO 2021.4.1 [11]
Xilinx FPGAs Vitis AIVitis 1.3 and 2.5 (Versal)2021.2 and

2022.1 (Versal)
Google Coral TPU TensorFlow

[12]TensorFlow Lite
2.4 and 2.52.4 and 2.5

Hailo-8 Hailo Software Suite 4.8.1
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• Performance metrics: inference time in seconds (s), achieved perfor-
mance in GOPS, and power consumption in Watt (W).

• Quality metrics: accuracy in percentage (%) and mean average preci-
sion (mAP or mAP@X) in percentage (%).

• Efficiency metrics: power efficiency in GOPS per Watt (GOPS/W).

In this evaluation, two quality metrics were evaluated, each suited for
the targeted CNN domain. For image classification, the most crucial quality
metric is accuracy, which represents the number of correct classifications
divided by the number of images. Accuracy was measured in two ways: top-1
that accuracy measures the frequency of the model prediction with the highest
probability matching the ground truth; and top-5 accuracy that measures if
the top 5 highest-probability predictions include the ground truth. For object
detection, the relevant quality metric is mean average precision (mAP or
mAP@X). mAP@X is the area under the precision−recall curve with an
intersection over union (IoU) threshold X. For instance, mAP(.50) means that
a positive detection must have a minimum IoU of 50%, with everything below
being marked as a false detection with a precision of 0%. Another form of
mAP is mAP@X:Y, calculated as the average AP over a range of minimum
IoUs. We reported the mAP@X:Y from X = 0.5 to Y = 0.95, with a step size
of 0.05.

To determine the power consumption, we utilized tools provided by the
hardware vendors, and when these were not available, we used laboratory
instruments. For the NVIDIA accelerators, we employed the utilities Tegras-
tats and nvidia-smi. The NVIDIA Jetson-Nano was an exception, where,
due to the absence of integrated tools, we used an external power meter.
The Intel Myriad and its host module were measured using a Tektronix
MDO4054B oscilloscope. The Google Coral TPU and its host module were
also measured with the same oscilloscope. The power consumption of Hailo-8
was measured inside an NVIDIA Xavier NX evaluation system by plugging
it into the M.2 PCIe port and excluding the power consumed by the CPU
module. For FPGA-based systems, the complete system power, including
external memory and I/O interfaces, was measured. Notice that the power
consumption values are also necessary to determine the efficiency metric
(typically measured in GOPS/W).

It is important to mention that, due to the limited space, only the evalua-
tion results for the YoloV4 model are presented in this chapter. However, the
conclusions in this chapter are still relevant to the results of all other tested
models.
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9.4.2 Evaluation results

As mentioned before, the optimization toolchains for the evaluated accel-
erators are vendor-specific and vary between architectures. Despite using
the same source for the DL models, we needed to ensure that all devices
were performing the same computations and produce comparable results. To
validate this, we measured the mAP(.50) and mAP(.50:.95) for each device.
Our findings show that the mAP is significantly influenced by the software
toolchain used to compile and quantize the models. Therefore, the mAP was
grouped into categories based on vendor and quantization (FP32, INT8), as
depicted in Figure 9.7.

The NVIDIA FP32 category encompasses all results obtained from
NVIDIA devices that used 32-bit floating point (FP32) quantization. The
OpenVINO FP32 category combines the results from x86-based processors
and the Myriad DL accelerator that employed FP32 quantization.

Furthermore, tests were also conducted using FP16 quantization, but
since they only show minor deviations from FP32 (<0.1%), only FP32 and
INT8 results are presented here. For the NVIDIA INT8 category, which
encompasses all NVIDIA devices using 8-bit integer quantization, the quan-
tization was done using training data from the COCO dataset with the
toolchain. The Xilinx INT8 and Hailo-8 INT8 categories were based on pre-
quantized models from each vendor’s model zoo. Our attempts to quantize
the YoloV4 model for these categories resulted in poor precision outcomes.
This highlights the significant impact that specific toolchains and hardware
expertise can have on quantization and precision.

Figure 9.7 compares the mAP of all tested architectures with the YoloV4
model. Most of the architectures show slight deviations of less than 5%, with
the exception of the Xilinx INT8 result, which is nearly 8% lower. Further
analysis was conducted by examining the recall−precision gradients for each
of the 80 classes the YoloV4 model is trained on. Figure 9.8 presents an
example of this analysis, showing the mAP(.50) recall−precision gradients,
where objects with an IoU larger than 50% are considered positive detections
and are displayed with their corresponding precision. Objects with an IoU
less than 50% are considered negative detections and are set to a precision
of 0%, which is why the orange and yellow precisions are not present in the
figure. Class I (toothbrush) showed the highest deviation for INT8 quanti-
zation among the tested devices, with the NVIDIA and Xilinx accelerators
performing relatively poorly compared to the Hailo-8 accelerator. This is
by far the class with the highest deviation, unlike class II (vase), where all
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accelerators performed similarly. A detailed analysis of the results, including
all 80 COCO classes for each accelerator with floating point and integer
quantization, showed that most classes behave like class II. This provides
confidence that the accelerators in the evaluation are performing the same
tasks and that the results are comparable.

The evaluation in Figure 9.9 shows the achieved performance in GOPS
and the power consumption in Watt (W) for the execution of YoloV4 on the
different hardware systems. Similar results are obtained for both ResNet50
and MobileNetV3. The notations next to the accelerators (B1, B4, and B8)
indicate batch sizes of 1, 4, and 8. For those cases, the metrics are for
the complete execution of the batch. It is important to note that the power
consumption of all PCIe-based accelerators (Myriad, GTX1660, V100, and
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A100) has been measured without the host system. For Hailo-8, both cases
(with and without the host system) are considered.

Figure 9.9 serves as a reference for making hardware choices based on
performance and power requirements. The results can be applied to a variety
of use cases by taking into consideration the power domains depicted in
Figure 9.5.

Two x86 systems (D1577 and Epyc3451) are provided as a reference to
demonstrate the superiority of DL accelerators over traditional processing
systems. In terms of energy efficiency, noteworthy platforms include Hailo-
8, Xavier NX, Xavier AGX, VC1902, Orin AGX, and A100, catering to
different domains, as shown in Figure 9.5.

In this evaluation, three reconfigurable devices (ZU3, ZU15, and
VC1902) have also been studied. On the one hand, the Xilinx Zynq devices
(ZU3 and ZU15) exhibit relatively low performance compared to the spe-
cialized accelerators, as they are basic FPGAs that utilize the Xilinx DPU
accelerator. On the other hand, the Xilinx Versal (VC1902) boasts signif-
icantly higher performance and energy efficiency due to its built-in DL
accelerators. Among all reconfigurable devices, the VC1902 shows the best
energy efficiency with INT8 quantization.

The energy efficiency comparison in Figure 9.10 reveals a clear gap
between classical processing systems (D1577 and Epyc3541) and DL accel-
erators. Even older DL accelerators (TX2, Nano, and Myriad) offer better
efficiency. Newer GPU-based accelerators (Xavier NX, Xavier AGX, and
Orin AGX) provide good efficiency but are obviously surpassed by dedicated
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ASIC-based accelerators (Hailo-8 and VC1902). It is important to note that
the power measurement of all PCIe-based accelerators was reported without
the power for the host system. The Hailo-8 presents a significant lead when
compared to Xavier NX and VC1902.

Overall, this evaluation shows that, when considering the different points
in the compute continuum, as presented in Figure 9.9, the Hailo-8 and Xavier
NX are well-suited for far-edge computing platforms, while Xavier AGX,
VC1902, and Orin AGX fit into near-edge computing platforms, and the
A100 can be deployed in cloud computing platforms.

9.5 Conclusion

The main topic of this chapter is the evaluation of heterogeneous AIoT
hardware, in particular, accelerators, for deep learning applications. In addi-
tion, the RECS hardware platforms are introduced, supporting the complete
continuum of heterogeneous cloud, edge, and IoT applications. Especially
for scenarios with low power budgets, energy efficiency is crucial, which is
only achieved by using specialized hardware accelerators. A set of relevant
accelerators was presented and classified into three different performance
groups according to their processing capabilities. Besides ASIC- and GPU-
based accelerators, emphasis has been put on reconfigurable architectures,
presenting a DPU-based FPGA architecture for easy integration of dedicated
DL algorithms.

The evaluation methodology was described in detail, discussing the used
DL models, corresponding datasets, and used specific toolchains. The perfor-
mance and efficiency metrics GOPS and GOPS/W were introduced and the
quality metrics mAP(0.50) and mAP(0.50:0.95) were used for YoloV4. The
power measurement used for this evaluation was described.



References 195

Since toolchains are vendor-specific, an evaluation of the accuracy, of
the model running on different architectures, was performed. An in-depth
analysis of recall−precision gradients per class shows that the results of
different architectures using different toolchains are still comparable. The
YoloV4 evaluation shows an extensive overview of modern DL accelerators
and their performance as well as their energy efficiency. The outcome of
this chapter provides a guideline for hardware selection in the area of DL
accelerator, ranging from far-edge computing up to cloud computing.

Acknowledgements

This publication incorporates results from the VEDLIoT project, which
received funding from the European Union’s Horizon 2020 research and
innovation program under Grant Agreement No. 957197.

References

[1] Martin Kaiser, Rene Griessl, Nils Kucza, et al. VEDLIoT: Very Efficient
Deep Learning in IoT. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 963-968, 2022.

[2] Rene Griessl, Karol Gugala, Elaheh Malekzadeh, et al. D 3.1 – Eval-
uation of existing architectures and compilers for DL, October 2021.
VEDLIoT project deliverable.

[3] Rene Griessl, Marco Tassemeier, Pedro Trancoso, Karol Gugala, et al. D
3.3 – Evaluation of the DL accelerator designs, October 2022. VEDLIoT
project deliverable.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778,
2016.

[5] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo
Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay
Vasudevan, et al. Searching for MobileNetV3. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 1314-
1324, 2019.

[6] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
YoloV4: Optimal speed and accuracy of object detection. arXiv preprint
arXiv:2004.10934, 2020.



196 A Scalable, Heterogeneous Hardware Platform for Accelerated AIoT

[7] Junjie Bai, Fang Lu, Ke Zhang, et al. ONNX: Open Neural Network
Exchange. https://github.com/onnx/onnx,2019.

[8] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev,
Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr
Doll’a r, and C. Lawrence Zitnick. Microsoft COCO: Common Objects
in Context. CoRR, abs/1405.0312, 2014.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. ImageNet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248-255.
Ieee, 2009.

[10] Huang Rao, Chen et al. TensorRT. https://github.com/NVIDIA/Tensor
RT,2013.

[11] Paramuzov Lavrenov, Churaev et al. OpenVINO. https://github.com/o
penvinotoolkit/openvino,2013.

[12] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. TensorFlow: A System for Large-Scale Machine
Learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265-283, 2016.

https://github.com/onnx/onnx, 2019.
https://github.com/NVIDIA/TensorRT, 2013.
https://github.com/NVIDIA/TensorRT, 2013.
https://github.com/ openvinotoolkit/openvino, 2013.
https://github.com/ openvinotoolkit/openvino, 2013.


10
Methods for Requirements Engineering,

Verification, Security, Safety, and
Robustness in AIoT Systems

Marcelo Pasin1, Jämes Ménétrey1, Pascal Felber1, Valerio Schiavoni1,
Hans-Martin Heyn2, Eric Knauss2, Anum Khurshid3, and Shahid Raza3

1University of Neuchâtel, Switzerland
2Gothenburg University, Sweden
3Research Institutes of Sweden AB, Sweden
E-mail: marcelo.pasin@unine.ch; james.menetrey@unine.ch;
pascal.felber@unine.ch; valerio.schiavoni@unine.ch;
hans-martin.heyn@gu.se; eric.knauss@cse.gu.se; anum.khurshid@ri.se;
shahid.raza@ri.se

Abstract

This chapter presents methods for requirements engineering, verification,
security, safety, and robustness with a special focus on AIoT systems. It
covers an architectural framework dealing with requirements engineering
aspects of distributed AIoT systems, covering several clusters of concern
dealing with the context description of the system, learning environment of
the deep-learning components, communication concerns, and a set of quality
concerns, such as ethical aspects, safety, power, security, and privacy aspects.
Each cluster contains a set of architectural views sorted into different levels
of abstraction. In addition, it introduces WebAssembly as an interoperable
environment that would run seamlessly across hardware devices and software
stacks while achieving good performance and a high level of security as a
critical requirement when processing data off-premises. To address security
aspects in AIoT systems, remote attestation and certification mechanisms are

197



198 Methods for Requirements Engineering, Verification, Security, Safety

introduced to provide a TOCTOU (time-of-check to time-of-use) secure way
of ensuring the system’s integrity.

Keywords: IoT, machine learning, AIoT, requirements engineering, TOC-
TOU, WebAssembly, verification, security, safety, robustness.

10.1 Introduction

More and more traditional algorithms are replaced by models based on deep
learning. Deep learning has proven to be successful in solving problems of
large complexity, such as natural language processing or facial recognition
tasks. In addition, systems tend to be broken down into different compo-
nents, to be placed where they are most needed and can be most efficient.
By establishing high-bandwidth connections between all kinds of different
devices and allowing many different system configurations, the components
of the distributed system become part of what is known as the Internet of
Things (IoT). When combining deep learning with the properties of IoT, new
concerns might arise that are not yet foreseen by standards and literature. The
new concerns include aspects such as data quality, heuristic deep-learning
modeling, learning of the models, or even new ethical considerations.

Applying disruptive systems and methods in real-world applications
relies on advances in development methodology. New methods for effectively
describing requirements for AI-based algorithms that are distributed over IoT
devices from edge to the cloud and how they relate to end-user concerns and
needs are a crucial part of the solution. These methods build the foundation
for specifying components of such systems in a way that enables to reason
about robustness and safety as well as to enable security, privacy, and trust by
design. AIoT systems contain both traditional software and hardware compo-
nents and AI components running on specialized AI acceleration hardware.
The challenge is not only to specify and design the AI components but also
to integrate them together with the traditional components into an overall
AI-enabled system.

10.2 Architecture Framework for AIoT Systems

Architecture frameworks (AF) provide a reusable knowledge structure for
designing an AIoT system. An AF organizes architectural descriptions into
different architectural views [6]. Different architectural views allow for
decomposing the design task into smaller and specialized subtasks, each task
specifically suitable to serve a certain design aspect of the system.
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10.2.1 State-of-the-art for AI systems architecture

In a research agenda for engineering AI systems, the authors provide a list of
challenges when developing architectures for systems with AI components
[7]: Providing the right (quality of) data used for training, establishing the
right learning infrastructure, building a sufficient storage and computing
infrastructure and creating a suitable deployment infrastructure. The latter
includes monitoring the behavior of the AI systems under operation because
it might only be possible to detect and correct flaws in an AI system after
deployment. Furthermore, AI systems do not only consist of AI components
but also rely also on conventional software and hardware components. The
development of AI components and traditional system components must
therefore be aligned to avoid unwanted technical debt [11]. However, as
Woods emphasizes, traditional architecture frameworks, such as the 4+1
architectural view model by Kruchten [9], do not account for data and
algorithm concerns connected to AI component development [10]. Generally,
new stakeholders (e.g., data engineers, or governmental agencies overseeing
the use of AI in society), and new concerns connected to AI like data
quality aspects, ethical considerations such as fairness or explainability, and
eventually many more, need to be represented through new architectural
viewpoints. An example of such an additional viewpoint is a learning view-
point governing the view on the machine learning flow [12]. Developing AI
components is a hierarchical, yet also iterative task: Prepare training data and
environment, create a suitable model, train and evaluate the model, tune, and
repeat training, and eventually deploy and monitor the runtime behavior of
the trained model [7, 13]. To fulfill a stakeholder’s goal with a system, its
design needs to be decomposed into different levels of system design, and
consistency needs to be ensured to satisfy high-level requirements [14]. In
addition, the system design must also allow for middle-out development,
where existing components need to be integrated into the overall system
design (e.g., transfer-learning from existing AI models or integration of off-
the-shelf components). Murugesan et al. propose a hierarchical reference
model which supports the appropriate decomposition of requirements to the
composition of the system’s components [15]. In their model, they define how
components can be decomposed into subcomponents. To ensure consistency
between the system architecture and the requirements, they define the terms
consistency, satisfaction, and acceptability. One major advantage of their
model is that, if the decomposition of system components is done correctly,
these components can be independently specified and developed.
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In summary, a major challenge in AI system design is the lack of design
patterns, standards, and reference architectures that support the co-design of
traditional software components and AI components [16]. When designing
a system, a range of quality aspects, such as safety, security, and privacy
needs to be considered. For AI systems, ethical aspects such as explainability
of decisions, fairness, and participation play an important role during the
system design process. Therefore, the architectural framework for AIoT shall
not only support the seamless design and integration of traditional software
components and AI components but also allow for all necessary quality
concerns to be considered as early as possible in the design process.

10.2.2 A compositional architecture framework for AIoT

The main goal is to introduce an architecture framework based on compo-
sitional thinking suitable for developing distributed AI-based systems. The
idea of an architectural framework is to provide a knowledge structure that
allows the division of an architectural description into different architectural
views [6]. An architectural view expresses “the architecture of a system
from the perspective of specific system concern” [17]. The conventions of
how an architectural view is constructed and interpreted are given through a
corresponding architectural viewpoint. Several views on the architecture of
the system-of-interest allow for factoring the design task into smaller and
specialized tasks.

For a given concern, there exist several views at different levels of
abstraction. A hierarchical design process allows for the co-evolution of
requirements and architecture, known as the “twin peaks of requirements
and architecture” [19, 20]. Based on ideas from compositional thinking, an
evolution of system architectures seems possible by establishing suitable
descriptions of the abstraction levels for the architectural views, their classifi-
cation into clusters of concern, and the relation between the views. We call the
framework “compositional” because it is built up from different “modules,”
called clusters of concern, at different levels of abstraction [18].

10.2.3 Clusters of concern

Clusters of concerns are determined through the identified use cases based on
the operational context and high-level goals for the desired AI system. For
example, privacy might not be of concern for an AI-based diagnostic system
detecting faults of a welding robot, but safety could be of paramount concern.
Four major groups of concerns emerged for the architecture framework:
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Behavior and context contains aspects that concern the static and
dynamic behavior of the system, as well as the context and constraints for the
desired behavior. To describe an architecture reflecting the desired behavior
of the system, two clusters of concern are introduced: Logical Behavior
covers views that are concerned with the static behavior of the system, and
Process Behavior covers views concerned with the dynamic behavior of the
system. The Context and Constraints cluster of concern covers views on the
system that define the context and limits the design domain for AI systems.
For AI systems, it is beneficial, sometimes even required, to explicitly state
the desired context and to define views on the constraints and the design
domain of the system. An example is the Operational Design Domain of
automated vehicles.

Means and resources contains aspects of the system that enable the
desired behavior. The concerns in this group include views that allow to the
description of the resources and means available for the system to execute the
desired behavior in a given context.

Typical views include the hardware architecture and component design of
the system under the cluster of concerned hardware. Additionally, three AI-
related clusters of concern have been identified that are fundamental “means
to execute a desired behavior.”

First, the concerned AI models contain views that describe the setup and
configuration of the required AI model, including the choice of the right
deep-learning model. For example, the classification of objects in an optical
video stream requires a different deep neural network configuration and then
recognizing commands in a voice recording or predicting trajectories of other
vehicles in the vicinity. Choosing the right AI model setup is a system design
decision which requires suitable views on the AI model in relation to the
overall system.

Furthermore, the learning strategy of the AI model has a paramount
impact on the final behavior of the AI system. The learning cluster of concern
covers views on the system that allows for defining and setting up the learning
environment of the AI model. This can include the definition of training
objectives and views that outline the chosen optimizer for training. Planning
and preparing the learning of the AI model therefore becomes a “mean to
execute a desired behavior” within an AI system. Learning can be conducted
through preparing training datasets, or, in the case of reinforcement learning,
could be done in a simulated environment.
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Data strategy contains views that support collection and selection for
training, validation, and runtime data of the AI model. Views can describe
methods for data creation, data selection, data preparations, and runtime
monitors of data used by the AI. Trained with the flawed datasets (e.g.,
bias present in the data), the behavior of the AI system will exhibit the
flaws learned during the learning process (e.g., it will show a bias in the
decisions). The concerns of an AI model, Learning, and Data Strategy
have many dependencies on each other, which will be expressed through
correspondence.

Communication deals with aspects of data, connectivity, and commu-
nication between nodes or components of the desired system, which is one
major concern when developing distributed systems, such as automotive
systems, or systems in the IoT. Communication is what drives the IoT. Two
clusters of concerns have been identified: First, Information accumulates
views on the system that model the information and data exchanged in and
through the system-of-interest. Second, the cluster of concern Connectivity
contains views on the means of communication available to the system and
its resources.

Quality concerns basically encompasses all quality aspects described
through quality attributes, which can affect the architecture of the system.
Examples are safety, security, privacy, robustness, and ethical concerns. The
latter can include aspects such as fairness and explainability. Recent legisla-
tion shows that ethical aspects become a central concern when developing
AI systems [21]. This group contains concerns that influence the desired
quality of the system. The cluster of concern safety provides an example here:
Assume one is to follow the workflow of ISO 26262 [21]. The starting point
to designing a safe system is to identify safety goals that the architecture, as
part of the functionality-providing item, needs to fulfill. This is often done
through a Hazard Identification and Risk Assessment (HARA), which pro-
vides abstract information applicable to the entire system. On the next lower
level of abstraction, the functional safety concept provides a view of a more
detailed system architecture that introduces functional safety requirements
and redundancies (through safety decomposition in hardware and software
components) with the aim to assure the fulfillment of the earlier specified
safety goals. On the next more detailed level, the technical safety concept
provides information on the technical realization of the functional safety
concept. In addition, and not explicitly mentioned in ISO 26262, we propose
that the runtime behavior and monitoring is part of the system design process.
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For safety concerns, this could mean the introduction of safety degradation
concepts and safety monitoring. Further identified relevant clusters of con-
cerns for quality aspects of an AI system in the IoT are Security, Privacy, and
ethical aspects such as Fairness and Transparency. For embedded systems,
Energy Efficiency can be taken up as an explicit quality aspect covered by
a separate cluster of concerns. Unlike previous architectural frameworks for
the IoT, the compositional thinking in the architectural framework allows for
co-designing the system to fulfill the explicitly identified quality concerns.
It means that already early in the system development, correspondences
between the views regarding the quality concerns and other views in the
architecture description are established. The final system can then be said
to be “Safe by design,” “Secure by design,” “Efficient by design,” or “Fair by
design.”

Table 10.1 provides a list of viewpoints, which govern architectural views
in the architecture framework, that we assume to be novel and relevant
specifically toward the AI components of the system.

10.2.4 Levels of abstraction

The architectural views are not only sorted by clusters of concerns as dis-
cussed previously but also by their represented level of abstraction. We found
it most beneficial to follow four levels of abstraction, specifically knowledge
and analytical level, conceptual level, design level, and runtime level:

Knowledge and analytical level: The first level of abstraction includes
architectural views that provide an abstract and high-level view of the system-
of-interest. On that level, all views provide a way to describe the system
and context on a knowledge level, which provides information for further,
more concrete system development. For example, the high-level AI model
view could elaborate on which functions should be fulfilled through an
AI.

Conceptual level: On the next level of abstraction, the views provide a
more concrete description of the overall system-of-interest. Components are
not detailed yet, but the overall system composition becomes clear and the
context of operation is clearly defined. For example, the AI model could
be concretely shaped as a deep-learning network with a required amount
of layers. All views on this level combined provide a system specification
that sets the system-of-interest in context and elaborates on how the desired
functionality is fulfilled.
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Table 10.1 Description of clusters of concern in the framework.
Concern Description
Behavior and Context Aspects that concern the static and dynamic

behavior of the system, as well as the context and con-
straints for the desired behavior.

Logical Behavior Views that are concerned with the static behavior of the
system.

Process Behavior Views concerned with the dynamic behavior of the system.
Context and Constraints Contains views on the system that define the context and

limit the design domain.
Means and Resource Contains views on aspects of the system that enable the

desired behavior.
Hardware Includes views on the hardware architecture and component

design of the system.
AI models Contains views that describe the setup and configuration of

the required AI model. Views can include model design,
for example, neural network setup or views detailing the
configuration of the AI model.

Data strategy Views that support collection and selection for training, vali-
dation, and runtime data of the AI model. Views can describe
methods for data creation, data selection, data preparations,
and runtime monitors of data used by the AI.

Learning Covers views on the system that allows for defining and
setting up the learning environment of the AI model. This
can include the definition of training objectives and views
that outline the chosen optimizer for training.

Communication Contains views of data, connectivity, and communication
between nodes or components of the desired system.

Information Accumulates views on the system that model the information
and data exchanged in and through the system-of-interest.

Connectivity Contains views on the means of communication available to
the system and its resources.

Quality Concerns Encompass quality aspects which can be described through
non-functional requirements which affect the architecture
of the system.

Ethics Views that regulate ethical aspects, such as fairness or
transparency of the system.

Security Views that ensure the security aspects of the system.
Safety Contains views governing the safety aspects of the system.

The views can stem from standards such as ISO 26262.
Energy Efficiency This cluster of concerns contains views ensuring energy

efficiency, especially for mobile devices.
Privacy Here, views can be contained that ensure privacy require-

ments, such as for example requested by regulatory authori-
ties.
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Design level: The most concrete level at the design time of the system
is the design level, which includes views that concretely shape the final
system-of-interest. Resources are allocated to components, the AI model is
configured to work most efficiently in the given environment, and the con-
crete component hardware architecture is defined. The solution specification
describes the final embodiment of the system-of-interest.

Runtime level: Complex systems, both AI-driven and conventional, often
require forms of monitoring and operations control. The purpose of runtime
monitoring can be manifold: On one hand, monitoring a deployed system at
a run time provides valuable feedback about its performance and reliability
to developers and product owners. DevOps is an essential component of an
agile development framework, and early detection of issues in a deployed
system allows for a swift response from the developers. Furthermore, some
requirements of the system might not be exhaustively testable before the
deployment of the final system. This is especially the case for AI systems
because we have to anticipate undesired behaviors of deployed AI algo-
rithms. By constantly monitoring the decisions of the AI algorithm, such
deviations from the intended behavior can be detected and mitigated, for
example, through retraining or by “pulling the plug.” Most AI systems are
not “adaptive.” They are trained and tested with a dataset representing the
desired context in which the AI system is intended to operate in under the
assumption of stationarity in the probability distribution of the data. In reality,
the assumption of stationarity of the probability distributions does not hold
in most cases, for example when the context, in which the AI operates, can
change over time. Concepts like continual learning allow the AI to handle
drifts in data distributions. However, continual learning requires runtime
monitoring concepts to detect deviations from the currently learned context,
and automatic data collection (and labeling) for autonomous retraining of
the AI model. These aspects of changes in runtime behavior are described
on the runtime level of abstraction in the compositional architectural
framework.

The final conceptual model of a compositional architecture framework
based on the stated propositions is illustrated in Figure 10.1.

10.2.5 Compositional architecture framework

Figure 10.2 presents a compositional architectural framework that includes
all earlier identified concerns for distributed AI systems and all levels of
abstractions for AIoT systems [18].
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10.2.6 Applying a compositional architecture framework in
practice

Based on the experience of applying a compositional architectural frame-
work, the following guideline can be provided:

Step 1: Identify clusters of concern. Clusters of concerns are identified.
Initially, larger groups of concerns (such as functionality, hardware, com-
munication, and quality) can be defined, which are then refined into atomic
clusters of concerns.

Step 2: Identify levels of abstraction. Levels of abstractions are iden-
tified. The number of required levels depends on the size and complexity of
system-of-interest and the development settings of the company. Three to four
different levels of abstraction seem a good default.

Step 3: Add existing architectural decisions. Known architectural deci-
sions are entered into the matrix. Most development projects do not start from
scratch but instead must reuse or integrate into existing architectures. Prior
knowledge, such as an existing component architecture, can be entered into
the appropriate clusters of concerns and level of abstraction in the architecture
matrix.

Step 4: Add missing architectural views. Architectural views are added.
Relations (morphisms) are created between the architectural views at each
level of abstraction such that no inconsistencies occur when looking at the
system-of-interest from different architectural views.

Step 5: Add missing relations. All relations between architectural
views must be mapped onto corresponding views of the next lower level of
abstraction. If a relation between two architectural views on a higher level
of abstraction does not have a correspondence on the next lower level of
abstraction, the relation might be unnecessary and can be removed, or a
corresponding relation needs to be created.

Step 6: Iterate if needed. During the system development, additional
clusters of concern might be discovered that iteratively are added.

Steps 1–5 are illustrated in Figure 10.3. At each step, implied require-
ments on aspects related to the corresponding architecture view are identified
and derived.
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Figure 10.3 Steps taken for defining a compositional architectural.

10.3 WebAssembly as a Common Layer for the
Cloud-edge Continuum

The cloud is an immense ecosystem of countless providers offering dif-
ferent virtualized services to supply an enormous demand for computer
applications. Some of these applications ended up in the cloud to be more
convenient or cheaper to maintain, others were initially built for the cloud
for scalability and availability while relying on its naturally distributed and
replicated nature. Clouds can also offer lower latency, more resiliency, or
regulatory compliance. Regardless of the reason, cloud computing has prob-
ably become the most prominent infrastructure supporting applications today.
With a growing number of multi-cloud software, dealing with heterogeneous
cloud providers and technologies has become a common issue.

Telecommunication companies began deploying their own distributed
infrastructure, installing small, cloud-like clusters closer to consumers of
their services to improve performance, latency, or reliability. Local gov-
ernments and other infrastructure providers such as energy and transporta-
tion followed suit, deploying their own small clusters of fairly powerful
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computing devices close to the human activities they support. The use of
these highly distributed devices is collectively known as edge computing.

Today’s scenario is completed by billions of sensing and actuating devices
deployed around the globe, referred to as the Internet of Things or IoT.
Such devices often have limited processing capabilities and perform simple
tasks like measuring a temperature or turning a lightbulb on and off. They are
connected to the Internet, more than often coordinating their function through
edge devices, and connecting users through cloud services.

The combined existing infrastructure of IoT, edge, and cloud form an
abstraction that is currently being called the cloud-edge-IoT continuum, or
simply the cloud-edge continuum. This collective infrastructure is anything
but continuous, as each part exists in a separate silo, built of proprietary
solutions, as shown in Figure 10.4. Developers of applications spanning over
the continuum must implement specific solutions for each silo, often built
with incompatible software components. The lack of a seamless environment
makes it much more difficult to profit from the collective advantages of the
continuum.

Finally, applications shared by multiple users always counted on some
sort of security, usually dealing with encryption, authentication, and access
control, and there are many established tools. With the advent of the cloud,
which is accessed over the Internet, security has become a fundamental part
of all applications. Edge-cloud continuum application vendors, developers,
and users need to rely on the entire continuum – cloud, edge, and IoT – to
ensure their data is secure and their calculations are accurate.

An ideal seamless cloud-edge continuum should provide a lightweight
execution environment with a similar (or even identical) software and hard-
ware interface that allows unmodified code to run on any machine in the

Figure 10.4 Independent cloud, edge, and IoT silos.
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system. A typical cloud-only environment is already fairly complex, com-
posed of several different hardware components, leveraged using extensive
software components, managed by large engineering teams, and shared
among many tenants. Adding edge and IoT to the picture shifts scale and
heterogeneity to another dimension.

In this chapter, we propose using WebAssembly as the core component of
a seamless environment spanning over the entire continuum. We advocate that
the technology provided by WebAssembly is suitable for the implementation
of applications on most hardware devices and software environments of
the cloud-edge continuum, with the appropriate level of security. Modern
hardware can execute WebAssembly with near-native code performance.
Combined with special hardware features that guarantee the confidential-
ity and integrity of applications, WebAssembly abstracts the complexity of
software development while providing a trusted environment. Naturally, as
with any nascent technology, many parts needed to implement a seamless
continuum are still missing.

In the sections that follow, we debate the drawbacks of existing software
architectures in more detail. We then present WebAssembly and its bene-
fits for implementing the continuum, in particular when supporting AIoT
applications. We conclude with a few ideas for future work on the topic.

10.3.1 Building blocks of a seamless continuum for AIoT

There are already some initiatives for a common environment for cloud, edge,
and IoT silos. In this section, we present a few popular ones and compare
them to a solution using WebAssembly as proposed.

The java virtual machine (JVM) is one of the first practical implemen-
tations of common environments that address the problem of applications
running on heterogeneous underlying systems. By and large, the JVM is
one of the most comprehensive choices today, with implementations rang-
ing from commodity servers to embedded devices. Still, the JVM supports
very few programming languages and adds significant performance penalties
compared to running C programs natively. Java programs depend on large
numbers of class libraries, which imposes a large memory footprint for the
execution of even the simplest programs.

Containers have recently emerged as an alternative to running applica-
tions in heterogeneous environments. They are, however, defined for specific
architectures and a specific operating system interface, and recompilation
is necessary to get containers that can run, for example, on Intel and Arm



10.3 WebAssembly as a Common Layer for the Cloud-edge Continuum 211

devices (popular as cloud and edge devices, respectively). WebAssembly has
the generality of JVM and the ease of use of containers, making it possible
to build cross-platform software that runs with negligible performance losses
and a small memory footprint.

Deploying applications automatically in a distributed system involves
addressing aspects such as access control and resource management, as
well as monitoring and optimizing computing and communication. We are
not aware of any practical, specific tool that covers the entire cloud-edge
continuum. We do not deal with this problem here, but we suspect it would be
possible to adapt many of the existing tools designed for the cloud, assuming
the underlying systems become more homogeneous. Also, some authors have
already started working on models for integrating cloud and edge devices into
one seamless deployment system [23, 24].

Security has already proven essential in standard cloud systems, where
application users must have guarantees that the confidentiality and integrity
of their data will be respected. These guarantees are difficult to provide in a
multi-tenant system, where co-tenants can abuse the system’s vulnerabilities
to discover (or infer) someone else’s application data. Also, one common
deterrent for cloud adoption is the provider’s curiosity, because they have
all the administrative power needed to inspect all content across all physical
machines. From an opposite point of view, providers want to be protected
from malicious tenants who may want to exploit infrastructure vulnerabilities
for their own benefit.

Compared to the cloud, edge infrastructure is much more distributed.
Edge devices are installed in end-user buildings and other shared infras-
tructures, even in public spaces, making it impossible to maintain physical
control over all the resources. Same as with the cloud, edge administrators
have physical access and control of the edge devices they manage. But
contrary to the cloud, edge users are close to the devices and can even abuse
them physically. We believe that edge infrastructures offer far fewer security
guarantees than the cloud.

Most current popular computer architectures include some form of trusted
execution environments (TEEs). They allow code execution in an isolated part
of the CPU, where access by other software is architecturally impossible. A
TEE can run a program and protect its data so that a machine administrator
cannot access it. Current implementations usually have an additional execu-
tion mode in the processor and may even offer memory encryption for TEE
data. The currently most popular implementation of TEE is Intel’s Secure
Guard Extensions (Intel SGX), for which commercial cloud services such as
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Azure Confidential Computing already exist. For edge and IoT deployments,
the most popular architecture (Arm) offers TrustZone as a TEE. Again,
proprietary and incompatible solutions in the underlying hardware make it
difficult to reuse trusted software components from cloud to edge and vice
versa.

Confidential containers could be a viable alternative for deploying appli-
cations on the continuum, as suggested by Scontain [25]. They are similar
to traditional containers, except they run entirely in a trusted environment.
However, like other containers, they are platform dependent. They are also
expensive in terms of the resources required in many cases since they
can contain significant amounts of operating system functions. Microsoft’s
Azure Sphere follows the same idea, offering a unified programming model
and support for trusted execution technologies. But it only supports a few
programming languages and relies heavily on other Microsoft services.

By proposing WebAssembly as an execution model combined with
trusted execution environments, we can provide a seamless portability base
for running trusted applications. The same base can be used to deploy
applications on edge or cloud devices, with similar security guarantees. Also,
previous work [26] has shown that a double-sided sandbox enabled by a
WebAssembly TEE provides better security for the provider and for the
tenants. In the context of AIoT, securing proprietary machine learning models
is of utmost importance. Leveraging TEEs as a security mechanism to offload
inference removes the burden of having pervasive communication to the
cloud and lowers the number of end-user information to transfer offshore.
As a result, AIoT systems are more autonomous, while better preserving the
owners’ privacy, which is an essential concern in the years to come.

Many different IoT infrastructures have been deployed and are already
continuously generating data that feed cloud applications worldwide. Com-
ponents in the application chains (IoT to edge to cloud) can be updated
independently to add new functionalities and eliminate vulnerabilities. There
is increasing usage of federated machine learning, where edge devices work
together to build a model without revealing all the details of each user’s
data, helping to protect privacy. Remote software attestation [27], which
is usually paired with TEEs, also plays a fundamental role in such a dynamic,
distributed scenario. It makes it possible to build trust in certain software
components and to check their authenticity and integrity. It also allows ensur-
ing that one is remotely communicating with a specific, verified program.
We believe that attestation plays an essential role in building a fully trusted
environment for running cloud-edge continuum applications. Hence, cloud
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applications can infer security guarantees from AIoT software using attesta-
tion, despite being in untrusted physical environments, and can delegate part
of computations.

10.3.2 WebAssembly as a unifying solution

WebAssembly is a rather new and universal virtual instruction set archi-
tecture. Unlike previous cross-platform efforts such as Oracle’s Java and
Microsoft .NET, WebAssembly is being developed from the ground up by
a consortium of open technology companies, including Microsoft, Google,
and Mozilla. While originally designed to increase performance for active
web pages, WebAssembly does not depend on web-related functionality and
is increasingly used to build standalone applications. WebAssembly has many
advantages to being used as a unified execution unit for the cloud-edge
continuum. First, WebAssembly can be generated by compiling a variety
of programming languages. Second, unlike Java and .NET, WebAssembly is
lightweight, has minimal dependencies, and offers additional security benefits
like sandboxing.

WebAssembly interacts with the operating system thanks to the
WebAssembly System Interface (WASI), a standardized specification of a
POSIX-like interface. It is designed with conciseness and portability in mind,
allowing platforms to easily implement it, being ideal for constrained envi-
ronments such as IoT and Edge devices and TEEs. Common compilers for
languages like C and Rust seamlessly translate POSIX calls into WASI calls.
In addition, WASI follows the concept of capability-based security, where
access to each system resource must be granted by the runtime, such as file
system or socket interactions, materializing a strong boundary between the
applications and the operating system.

There are currently a few execution models for WebAssembly code: inter-
pretation, just-in-time (JIT), and ahead-of-time (AOT) compilation. Runtimes
like WAMR [28] can be adapted to offer one or more execution models, with
different memory footprints (209 KiB for AOT, 230 KiB for interpretation,
and 41 MiB for JIT). A growing list of toolchains (LLVM, Emscripten)
already supports WebAssembly as a compile target for various source lan-
guages, including C, C++, and Rust, with other languages such as C#, Go,
Kotlin, and Swift being under active development. For all these reasons, we
believe WebAssembly is an attractive practical binary architecture choice to
be used in the entire continuum.
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10.3.3 The case for a TEE-backed WebAssembly continuum

Trusted execution environments aim to provide safe and trustworthy code
execution on (remote) untrusted hardware. Hardware manufacturers have
provided TEE implementations more than a decade ago, each one of them
offering different features and security guarantees. The most influential TEEs
that are currently marketed are Intel SGX [29], Arm TrustZone [30], and
AMD Secure Encrypted Virtualization (AMD SEV) [31]. These technologies
enable processing data in isolated memory areas that can neither be accessed
nor tampered with by more privileged software, such as the operating system
or the hypervisor. Hence, cloud providers and edge device owners with
management rights or even physical control cannot access the data and
computation of a tenant, protecting the confidentiality and integrity of their
applications.

Cloud providers, such as Microsoft Azure and Google Cloud, already
market confidential computing, and we expect widespread adoption of these
services due to the demand driven by the cloud-edge continuum. We observe
that the rich ecosystem of trusted environments largely varies in terms of
security, threat models, and implementation. However, defining a common
basis for trusted execution and making it widely available in both cloud and
edge environments is essential for the continuum and the industry in general.
For that reason, Arm, Intel, Microsoft, and others created the confidential
computing consortium (CCC), supporting open-source projects for trusted
execution technology under the umbrella of the Linux Foundation. A unified
abstraction for TEEs in the cloud-edge continuum must take support and
shape from such ongoing efforts. For that reason, the CCC is involved in
many projects, such as Enarx [32] and Veracruz [33], which aim to provide
WebAssembly support in TEEs independently from hardware.

In our previous work, we proposed a few solutions to execute general-
purpose WebAssembly applications within TEEs. We developed Twine [34]
to bring a WebAssembly runtime into Intel SGX enclaves, leveraging WASI
to interact with the TEE facilities and the untrusted operating system. More
recently, we proposed WaTZ [35], a trusted runtime for Arm TrustZone with
added remote attestation. The latter, an essential feature for providing trust
for remote applications, is surprisingly missing in Arm’s architecture. We
believe that industrial versions of our prototypes will help pave the way to
build distributed applications on the cloud-edge continuum that providers,
developers, and users can safely trust.
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10.3.4 WebAssembly performance

We refer to our previous work for many experiments regarding WebAssembly
performance. We first proposed a solution to run general-purpose WebAssem-
bly applications inside Intel SGX TEEs, leveraging WASI to interact with the
untrusted OS, while shielding the file system primitives to prevent eavesdrop-
ping. Later, we proposed a trusted runtime environment for Arm TrustZone
with remote attestation of WebAssembly code. A more recent publication
contains an extended version of this chapter, with some detailed performance
figures [36]. We refer the reader to these publications for the full detail of our
measurements.

In the performance measurements we made, we used WebAssembly
inside TEEs to implement many frequent tasks done by useful programs.
To measure the low-level cost of using WebAssembly, we used Polybench/C
[37], a tool that implements several sorts of different programming language
constructs frequently used, allowing us to compare the quality of different
compilers. We observed similar performance losses when using WebAssem-
bly on x86 and Arm architectures, with the execution time being increased by
30% on average.

To produce a comparison using more resources such as memory and disk,
we compared the execution performance of SQLite, a widespread and embed-
dable database management system, as most real-world applications generate,
store, and retrieve information to operate. As such, we used the built-in
benchmarks of SQLite named Speedtest1 [38]. Each Speedtest1 experiment
targets a single aspect of a database, such as selection using joins or the update
of indexed records. In our evaluation, WebAssembly was almost three times
slower than native code on an Intel x86 processor, and roughly two times
slower in an Arm processor. Interestingly, since we made these performance
comparisons at different moments in time, we could observe clear progress in
the environment. WebAssembly was four times slower in the experiments we
did two years earlier, using the same hardware and software, but with newer
versions of the compiler and the runtime environment. These enhancements
over the years strengthen the perspective of using WebAssembly as a uni-
versal, lightweight, yet versatile bytecode to enable platform independence
across the continuum.

10.3.5 WebAssembly limitations

Although current compilers such as LLVM are mature enough to generate
proper WebAssembly bytecode, the system call support currently offered by
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WASI is rather limited. Extending WASI to be more POSIX-compliant would
probably reduce the ability to use it in several, more protected, environments,
such as web browsers. A different alternative is proposed by Emscripten,
which directly translates the source code into POSIX functions and system
calls. This helps to run older WebAssembly programs on POSIX systems
with only a few modifications, but it reduces the portability. We note that
the WebAssembly subgroup that focuses on standardizing WASI thoughtfully
extends the specifications to be features-complete.

Running WebAssembly code incurs a performance overhead. Some pro-
grams can run up to three times slower than their native version, depending
on the type of workload. This can be explained by many factors, such as
increased register pressure, additional branch instructions, increased code
size, stack overflow checks, and indirect call checks. While some of these
issues can be compensated for by having compilers spend more time gener-
ating better code, other factors are a consequence of WebAssembly’s design
limitations, which would require changes in its specifications, at the cost of
making it more difficult to implement.

WebAssembly uses linear memory to store the heap of a running program,
with a limited number of 64KiB pages, for a total of 4GiB. While most
software will not require more than this amount of linear memory, this
may limit some server-side applications, such as training large deep-learning
models or keeping large databases in memory. Recent proposals aim to extend
this limit by increasing the number of allocable pages, raising the theoretical
memory ceiling to 16 EiB (64-bits wide).

As with any young technology, WebAssembly still needs more efficient
implementations for many useful features. Future contributors may suggest
WebAssembly and WASI extensions to relax the constraints or extend the
capabilities of the specification. For example, WASI-nn proposes adding
a WASI machine learning module to facilitate model inference. We also
anticipate that many current limitations for the cloud-edge continuum will
disappear thanks to compiler advances, specification extensions, and better
WebAssembly support for popular requirements.

10.3.6 Closing remarks concerning the common layer

It is impossible to precisely predict which will be the winning technology
used to build the cloud-edge continuum. Yet, we envision it as an interopera-
ble, scalable, and distributed system in which any piece of software can reside
on any device, regardless of the underlying platform. Such capabilities will
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change the development lifecycle of future applications, allowing developers
to focus on business value rather than spending time with the complexity
of each individual piece of infrastructure. WebAssembly is perfectly suited
to this task thanks to its abstraction of the operating system, device type,
programming language, and the additional security guarantees it can offer
with TEEs.

We briefly presented some performance results showing that WebAssem-
bly is a viable alternative to running native applications, with acceptable over-
head. We have covered many aspects of successfully adopting WebAssembly
to implement the cloud-edge continuum. Many challenges remain to be
overcome, such as improving interoperability with existing programming
languages and extending WASI to better support more complex applica-
tions. Also, much progress is still necessary for terms of middleware, which
connects the components of the continuum and simplifies the deployment
and migration of applications. Thanks to the experience we acquired with
WebAssembly and Trusted Computing ecosystems, we are confident that they
are a well-suited software development foundation for building large-scale
systems such as the cloud-edge continuum.

10.4 TOCTOU-secure Remote Attestation and Certification
for IoT

A key component in securing connected IoT systems is ensuring the integrity
of the IoT software-state and detecting any change. This is typically achieved
with remote attestation (RA), which aims at verifying the state of the soft-
ware/memory of an untrusted attester (i.e., an IoT device) by allowing a
trusted verifier to engage in a challenge-response-based exchange of proof.
RA mechanisms rely on hardware/software/hybrid Root-of-Trust. As a result
of said attestation, the attester is certified with a certain level of assurance
guaranteeing software-state integrity that impacts trust decisions within net-
worked systems. The attestation often results in software updates or issuing
certificates indicating device assurance levels. The certificates include infor-
mation like the assurance evidence, device IDs, assurance level indicating the
trustworthiness of the device, etc. This assurance certificate only guarantees
that an IoT device has a verified software stack. IoT devices also need
conventional X.509 certificates when strong authentication is required, which
is enabled by public key infrastructure (PKI). There are efforts to bring
conventional PKI to IoT [39–41], which meet IoT limitations such as resource
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constraints of the device, the dynamic operational environment, diversity in
the supply chain, etc.

It is important that we do not define yet another certification infrastructure
for assurance certification, and integrate assurance certificates with existing
state-of-the-art PKI. This chapter addresses both of these problems: (i) pro-
viding digital certification for device assurance (ii) as well as integrating
the new assurance certificates into the existing PKI certification, without
compromising the standard compliance and without security properties.

More specifically, in this chapter, we introduce and detail AutoCert
(Automated digital Certification) to provide TOCTOU security by combin-
ing Remote Attestation results about assurance of device health with standard
public key infrastructure (PKI) authentication processes.

In the context of RA and certificates that reflect the attested state of
the device, the time-of-check to time-of-use (TOCTOU) race condition may
take effect. The time-of-check to time-of-use invalidity is a highly contextual
problem, existing in remote attestation, operating systems, certifications, etc.,
and remains possible in this case as well. Due to the dynamic nature of
IoT systems, the software state of the device may have changed in the delta
time between the RA and the certificate issuance due to a software update,
vulnerability exploitation, or software version update. Although potential
solutions exist to prevent and resist TOCTOU attacks in trusted platform
module (TPM)-based remote attestation, a solution that provides a mech-
anism to validate the current software-state against the attested state and
use an assurance certificate without invoking RA again, is missing, and is
critical in the IoT domain. However, a solution that provides a mechanism
to validate the current software-state against the attested state in certificates
without invoking RA again is also critical in the IoT domain.

10.4.1 AutoCert – proposed mechanism

The AutoCert mechanism is an automated procedure comprising interactions
among an IoT owner, IoT devices as a part of a networked system, a trusted
third-party responsible for attesting the device’s software-state, for example, a
Conformity Assessment Body (CAB), and a standard Certification Authority
(CA) to enroll device certificates.

10.4.1.1 Pre-deployment
The manufacturer commissioned the IoT device with software, plat-
form/device certificate, a dedicated TPM 2.0 chip, and a secure unique device
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identifier during device initialization. The platform certificate binds the TPM
to the IoT device. The secure unique device identifier, that is, UDevID, is a
hardcoded identity like a device URI, EUI, or DevID playing a role in IoT
device identification in local and global networks.

The TPM’s Root-of-Trust originates with a unique 2048-bit RSA key pair,
known as the endorsement key (EK). The TPM restricts the use of the EK to
a limited set of decryption operations as per the TCG rules, and it cannot be
used directly for device authentication or digital signatures. Therefore, we
generate a 2048-bit RSA key pair, the attestation key (AK), using the EK as a
seed for attestation. The attestation certificate (CertAK) corresponding to the
AK is also generated at this state by the IoT manufacturer. The IoT manufac-
turers and solution providers classify IoT devices into usage profiles based on
their deployment scenario, for example, smart home, automotive, industrial,
critical infrastructure, smart grid, etc. In AutoCert, the IoT owner assigns
a device_profile to the IoT device to enable security policies for devices
within a network. This categorization assists CAs and CABs in conducting
reasonable risk assessment and vulnerability management throughout the
device lifecycle. The IoT device is configured to boot with trusted software
that measures (i.e., calculates the hash) the next software to be run and stores
this hash in a platform configuration register using the TPM2_PCR_Extend
function. This process continues through the OS kernel code resulting in
a chain of measurement. In AutoCert, we propose configuring security-
critical software, libraries, files, and executables as a part of this chain of
measurements.

10.4.1.2 Remote attestation
AutoCert’s remote attestation is built on the challenge/response interaction
model from the RATS architecture. Before a device is attested (Figure 10.5),
the IoT owner is responsible for generating the reference values correspond-
ing to the device software/s and securely transferring them to the verifier. We
assume a confidential exchange of these values. Before the remote attestation
begins, the IoT owner sends a signed request to the CAB with the UDevID
and device_profile of the IoT device. The CAB sends a signed attestation
request containing a random nonce N and a PCRSelection is sent to the
IoT device. The TPM2_Quote function is used to generate the evidence.
The cryptographically strong random nonce N uniquely distinguishes the
evidence, determines its freshness, and prevents replay attacks. We propose
the generation of an integrity key pair, IK, by the IoT device and sending it
along with the evidence for the creation of an integrity_proof. The IK is an
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RSA key-pair, IKpriv, and IKpub generated with the TPM2_Create function
using the PCRSelection. Since any change in the security-critical software on
the device is recorded with an update to the PCR using TPM2_PCR_Extend,
the use of this PCRSelection in creating the IK ensures that this key will not
be valid if the software-state of the device changes.

A valid TPM-generated attestation key, the AK, is used to sign TPM-
generated evidence. It serves as a way for third parties to validate keys
and data generated by a specific TPM on an IoT device. On receiving the
evidence, the CAB validates the accompanying signature and compares the
evidence against reference values. Following the attestation result and using a
suitable risk assessment mechanism (not discussed in this work), the attester’s
assurance level is calculated against the device_profile. The results of attesta-
tion and the assurance level are used by the CAB to ensure the software-state
integrity

10.4.1.3 TOCTOU and integrity_proof
The integrity key pair, IK, is proposed to address the TOCTOU race con-
dition. The PCRSelection contains the measurements computed and stored
during the measured boot, representing the IoT device’s software-state.

Using these PCRs in RA and generating the IKpriv and IKpub key pair
creates a dependence of the IK on the software-state of the device. As soon
as the software-state changes due to a new vulnerability or malicious update,
the IK is invalidated.

This forms the core of AutoCert procedures and is a part of the proof of
the IoT device’s software-state integrity, as it strictly locks the IK to a valid
state of the device. We compute an integrity_proof by aggregating the value
of PCRSelection used in evidence generation, that is, PCRIntegrity and the
IKpub. The integrity_proof , assurance level, and UDevID are then shared
with a trusted CA. The CA now possesses records of attested IoT devices
against their UDevID and assurance attributes. These attributes are integrated
with the IoT profile of the standard X.509 certificate using custom extensions.
This certificate CertAC reflects a CA-verified device identity (authentication)
as well as the CAB-attested software-state of the IoT device (assurance).

10.4.1.4 Verification for TOCTOU security
The verification of this integrity_proof for TOCTOU security applies to
all IoT devices using X.509 certificates for authentication and establishing
secure DTLS communication sessions with clients.
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Figure 10.5 Remote attestation procedure.

To achieve assurance of the IoT device’s software-state, the client
performs two levels of integrity checks, as presented in Figure 10.6.

The first level of integrity check includes verifying the assurance level
stated in the CertAC . This assurance level would form the basis of network
access policies or authorization to access system resources.

However, as stated earlier, it is possible that the IoT device’s software-
state changes after the remote attestation process, or CertAC enrollment.
This can happen due to malware or vulnerabilities in existing software. This
scenario presents itself as an instance of a TOCTOU attack, and checking the
assurance level is insufficient in security-critical cases.
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To eliminate this TOCTOU condition, AutoCert facilitates another level
of integrity verification. To perform this Level2 integrity check, AutoCert
introduces a lightweight service to ensure that the integrity_proof is valid.
The verification process includes sending a random challenge by the client
to the IoT device after signing it using the IKpub from integrity_proof in the
CertAC . Since the integrity_proof is locked to the state of the IoT device
attested by CAB, it can only be decrypted by the IoT device if it possesses
IKpriv, hence guaranteeing proof of possession. The IoT device decrypts
the challenge, includes the current value of the PCRIntegrity, and signs it.
The challenge ensures the freshness of this message exchange. The current
value of the PCR concatenated with the challenge is received by the client,
which verifies it against the PCR values from the integrity_proof, that is,
the PCRIntegrity confirming that no changes have occurred concerning the
software-state since attestation.

10.4.2 Implementation and experimental evaluation

As a proof-of-concept (PoC), we implemented the AutoCert setup with an
attestation service on the IoT device, which is invoked when it receives
an attest request. We also implemented an integrity verification service
corresponding to the two levels of integrity checks. The experiments are
performed using the OPTIGA TPM Evaluation Kit. The evaluation hardware
is comprised of a Quad Core 1.2GHz, 64-bit Raspberry Pi 3 with 1 GB
RAM and an Iridium board with OPTIGA SLM 9670 TPM 2.0. We choose
TPM SLM 9670 for this evaluation since it is specially designed for use in
automotive/industrial applications. The following set of experiments aims to
measure the system-wide execution time of the proposed mechanism during
different phases. We measured the round trip time (RTT) as the time elapsed
from the start of each AutoCert phase until the completion of the phase. We
measured the phases using a system clock in nanoseconds and iterated the
experiments five to ten times to ensure statistical accuracy.

Phase 1 of AutoCert begins with a request to the CAB to initiate AutoCert
remote attestation with the IoT device. The RTT of this phase is 28,800 ms.
This phase is expected to execute during device assembly after the unique
device keys are integrated into the hardware, and device software is installed.
This does not interrupt runtime services like mutual authentication, where
excessive delays disrupt services, timeout, or cancellation of operations.

Phase 2 of AutoCert is the certificate enrollment. On receiving a certifi-
cate enrollment request from the IoT device, the CA checks for assurance
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Figure 10.6 Verification procedure.

attributes received from the CAB, associated with the UDevID of the IoT
device, and enrolls the certificate, including the assurance attributes. The
enrollment of CertAC with assurance attributes takes 7104 ms. This measure-
ment merely gives an estimate of the generation of a certificate with additional
extensions. In actual events, certificate issuance and enrollment time also vary
depending on the computational capabilities of the CA and network capacity.

Phase 3 of AutoCert provides 2 levels of assurance to the communicat-
ing devices. The proposed level 1 integrity check attains a basic level of
assurance. This begins by verifying the signature and the assurance level
from the CertAC . An extended TOCTOU security of assurance is provided
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in level 2. The level 1 verification steps are executed in 0.7 ms, and the
RTT for level 2 verification, including minor network delays between the
two involved entities, is 4746 ms. The majority of the execution time during
level 2 verification can be traced to the creation and loading of the encryption
key. As these operations depend on the implementation of TPM specifications
and adjacent function libraries, it is reasonable to state here that the RTT for
level 2 verification is justified considering the hardware security guarantees
provided by the TPM.

10.4.3 AutoCert – conclusion

This chapter presented AutoCert, addressing TOCTOU security in integrity
certificates corresponding to software-state assurance in IoT devices and
providing a standardized mechanism to distribute integrity certificates. Auto-
Cert’s remote attestation is based on IETF RATS relying on TPM2.0 for
evidence generation. We have proposed the integration of the AutoCert
mechanisms into existing standards to facilitate its adoption in the emerging
PKI for IoT.

10.5 Conclusion

In this chapter, a compositional architectural framework was derived during
focus groups within the project consortium. Compositional thinking allows
for an effective co-design of all relevant concerns of the system-of-interest.
Especially for AI components, the architectural framework allows for effec-
tive data selection, AI model development, and hardware design. Qualitative
aspects, such as safety, security, and privacy, but also ethical aspects are
explicitly considered throughout the design process. Furthermore, to ensure
functionality and quality aspects of the system, the architectural framework
considers monitoring concepts for runtime operations of the system.

In addition, a common layer for the cloud-edge continuum based on
the WebAssembly virtual instruction set architecture is introduced. We dis-
cussed the historical context and the shortcomings of existing software
development environments and shed light on what improvements can be
implemented to arrive at seamless, secure applications across the contin-
uum. We then presented WebAssembly’s advantages for such applications,
along with its preliminary performance comparison for executing benchmark
payloads, thus supporting the concept’s viability for building the unified
technology.
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Furthermore, we presented the time-of-check to time-of-use challenges
that remote attestation and certification face in the context of AIoT systems.
An overview of the seriousness and specificity of TOCTOU problems for
IoT devices, resulting from resource constraints of such devices, was given,
describing their operational environment, supply chain, vulnerability man-
agement, and others. Then, we highlighted the importance of developing
a solution capable of software validation appropriate for IoT devices and
described AutoCert as a proposed mechanism.
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Abstract

Decentralization of the IoT ecosystems poses several challenges whenever AI
is applied in a shared fashion. Diverse locations, alongside privacy concerns,
require the use of holistic strategies, where various environments effectively
collaborate while avoiding data disclosure. In this context, this chapter pro-
poses a use case to demonstrate the appropriateness of the solution brought
by the ASSIST-IoT project. Specifically, multiple geographic and computing
locations, which are close to the automotive surface defects detection scan-
ners, work together to improve AI outcomes, scaling those to a large fleet of
vehicles.

Keywords: Federated learning, Internet of Things, decentralization, edge-
cloud continuum, surface defects detection.
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11.1 Introduction

The current transition from cloud-like centralized datacenters to more decen-
tralized systems, where geographically dispersed edge devices live, fosters
an unprecedented paradigm shift with disruptive effects in the convergence
between the physical and digital world. Here, orchestrating intelligence
(AI) promises to be a key driver for enabling low-latency applications
with high reliability in multitude of use cases (e.g., automotive, industrial
automation, personalized health, etc.). In addition, moving intelligence closer
to the edge, relaxing the dependence from a central location could con-
tribute to bandwidth savings, and energy-efficiency and help to preserve data
security/privacy [14].

The previous is aligned with reference to European entities in the field.
First, the European Strategy for Data includes at its heart the need for
decentralization to ensure flexibility and agility in matching demand/supply,
and responsiveness while reducing resource consumption through flexible
federation and a “fair business offer” [3]. Besides, according to the Alliance
for the Internet of Things Innovation (AIOTI) roadmap [7], the next release
(v6) of its high-level architecture will focus on artificial intelligence and
machine learning (AI) for the next-generation IoT systems (NG-IoT). The
success of using AI/ML to solve NG-IoT problems will highly depend on the
quality and quantity of available training data. However, while traditional ML
approaches typically rely on the central management of training data, such an
approach does not seem to be feasible or practical in the next era of IoT. The
reasons for this are, on the one hand, data privacy and regulatory compliance
and, on the other hand, technical burdens associated with the growing amount
of data to be collected and transferred to “a central location.” In this context,
decentralized AI solutions are needed.

11.1.1 Decentralized AI

The term distributed intelligence has at least two meanings: (a) collective
intelligence and (b) decentralized AI.

The main mechanisms of the collective intelligence are: (a) cognition
in terms of sensing, (b) cooperation as multiple (semi-) autonomous enti-
ties exchanging data to jointly establish what needs to be done, and (c)
coordination, conceptualized as a mechanism crucial for the realization of
workflows, where specific actions depend on the results of other actions. If
those mechanisms are understood in the most convenient way, it is not very
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difficult to envision scenarios, in which collective intelligence can be claimed
to materialize within NG-IoT ecosystems.

On the other hand, decentralized AI (sometimes also called distributed
AI) is a subfield of AI research, dedicated to the development of distributed
solutions for problems. It is often seen as a predecessor to the research
devoted to software agents and (multi-)agent systems. Still, within the scope
of this book, we referred this action to distributed problem solving. The main
idea is that, for example, completing the training of neural networks with
(very) large datasets would require on a single node a substantial amount
of time (hours, days, or even weeks) and resources, whereas if multiple
computing nodes are tightly coupled, the “training work” can be divided
among them, leading to more efficient use of resources in lower operational
time. In this way, distributed AI is somehow related to parallel computing.
Here, it is important to realize that the most common parallel computing
methods and approaches have been designed for a single stakeholder (i.e.,
a single user, or a company), being the sole owner of all of the data used for
model training. However, it has to be realized that, for the past few years,
the situation has been rapidly evolving. Among others, the following trends
brought about the changes:

• Proliferation of powerful handheld devices with multiple sensors, which
generate streams of data that users may want to control.

• Fast drop of price and size of sensors (and actuators), which can be
placed “everywhere” and can belong to “anybody.”

• Availability of small and inexpensive processors designed for machine
learning (e.g., NVIDIA Jetson Nano series devices), which can be placed
in almost any location within the IoT ecosystem.

• Increase in the number of wireless networks with high bandwidth and
range, which are used to establish communication channels between
sensors, actuators, edge devices, computing nodes, gateways, cloud(s),
etc.

• Progress in research, development, and deployment of the IoT ecosys-
tems, in almost all areas of day-to-day activities.

• Advances in methods, and their implementations, that can be used in
various ML scenarios.

As a result, the vision of a single owner of data, which is stored in a
centralized location and used to train model(s) to realize its own (individual)
goals, starts to be supplanted by approaches that can facilitate coopetition.
Here, coopetition is understood as a scenario where multiple entities (e.g.,
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data owners) compete in one context (e.g., as producers of medicines) and
cooperate in another, e.g., as providers of knowledge for the development of
shared machine learning models. Notably, this implies certain orchestration
and harmonization workload that must be performed among topologically–
and likely geographically– disperse devices, therefore becoming larger than
single-node parallelization.

11.1.2 Federated learning

Federated learning (FL) [10], [12] is one of the most recent developments
in the area of decentralized AI. FL is an approach to train AI/ML models
involving multiple datasets stored in “local nodes.” In other words, in FL, a
shared (global) model is trained collaboratively by multiple parties, which
protect their (private) training datasets. After each “round” of local training,
the model parameters are “combined into the central model.” After the update
is completed, the updated central model is redistributed and used either in
the training or in the inference processes. Typically, the updated version of
the global model is sent back to the nodes that participated in the training.
However, there exist FL scenarios, in which “new nodes” participate in each
training round (see, for instance, [11]). The training process is completed,
when the common model meets specific stopping criteria. Here, it should
be noted that while the typical training of a neural network is reported, FL
is model-independent; i.e., any model that can be trained on local data and
updated centrally can be used.

It should be noticed that the notion of parties participating in FL training
might refer to a wide spectrum of possibilities; starting from small edge
devices, cameras, or mobile phones, up to enterprise-scale data centers
located in different countries or even different companies and organizations.
With that scope in mind, ASSIST-IoT project [1] moves forward in this
decentralized AI direction, by providing an FL infrastructure to be used to
instantiate FL in future NG-IoT systems. This infrastructure is under con-
struction and is being deployed in a real-life industrial scenario. This chapter
presents the ASSIST-IoT FL system in detail, in the context of a specific use
case of the project focused on automotive sector. Here, the deployment will
realize an FL-based surface defect detection, applied without compromising
the data privacy of a large fleet of vehicles that pass through the scanners in
their individual locations.

The remainder of the chapter is organized as follows. Section 11.2 intro-
duces the different concepts of federated learning, while section 11.3 presents
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the adopted ASSIST-IoT FL architecture, detailing the different enablers
designed and implemented within the scope of the project. Next, Section 11.4
presents the specific case study and the current deployment situation. Finally,
conclusions are drawn in Section 11.5.

11.2 Federated Learning Principles

In order to successfully design the appropriate ASSIST-IoT FL system, the
project has followed the FL taxonomy identified in [9] that relies on five main
aspects:

• Communication architecture: While in a centralized design the param-
eter updates on the global model are always done in a central manager,
also called aggregator or collector, in a decentralized design, there is
not a single point of truth (there is no manager element). The most
commonly known example of a centralized FL architecture is the Google
Keyboard - Gboard for mobile keyboard predictions [8].

• Scale of federation: The FL systems can be categorized into two typical
types by the scale of federation: cross-silo and cross-device. The differ-
ences between them lie in the number of parties and the amount of data
stored in each party. In cross-silo, the parties can be either independent
organizations or independent data centers of a single organization. In
cross-device, on the contrary, the number of parties is relatively large and
each party has a relatively small amount of data as well as computational
power, the parties usually being IoT devices.

• Data partitioning: FL systems are also categorized in horizontal or
vertical data partitioning based on how data are distributed over the
sample and feature spaces. In horizontal data partitioning, the datasets
of different parties have the same feature space but little intersection on
the sample space, so that the parties can train the local models using their
local data with the same model architecture. In vertical FL, the datasets
of different parties have the same sample space but differ in the feature
space.

• ML model: Since FL is used to solve ML problems, the parties usually
want to train state-of-the-art ML models. The most popular ML models
are neural networks (NN), which achieve state-of-the-art results in many
AI tasks, like image classification and word prediction; decision trees,
which are highly efficient to train and easy to interpret compared with
NNs; and linear models (e.g., linear regression, logistic regression, and
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Figure 11.1 ASSIST-IoT FL system formed by four enablers.

support vector machines), which are well-known and easy-to-use ML
models.

• Privacy mechanism: Although, ideally, local data is not expected to be
exposed in FL, the exchanged model parameters may still leak sensitive
information about the data. The most well-known privacy mechanisms
include cryptographic methods or differential privacy.

11.3 Federated Learning System of ASSIST-IoT Project

According to the previously described categorization, and feature implemen-
tation options, the proposed ASSIST-IoT FL system for the automotive pilot
uses the following configuration:

• Communication architecture: Centralized
• Scale of federation: Cross-device
• Data partitioning: Horizontal
• ML model: Neural Network
• Privacy mechanism: Differential privacy

The proposed ASSIST-IoT FL system block diagram and flow chart are
shown in Figure 11.1. As it can be seen, four main functional blocks can
be distinguished. These functional blocks are named enablers and are used
as an abstraction term in the project acting as the cornerstone elements
of the ASSIST-IoT architecture. In essence, an enabler is a collection of
software components – running on nodes – that work together to deliver a
specific functionality of a system, that is, ASSIST-IoT enablers are not atomic
but presented as a set of interconnected components. It should be noticed
that multiple enablers may be used in a system to deliver a more complex
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service, leveraging features of the involved enablers. Additionally, one of the
most important design principles that distinguish components from enablers
is that the components from different enablers cannot directly communi-
cate unless a RESTful API endpoint has been explicitly developed for that
purpose.

Regarding the regular call flow in this particular deployment, it starts with
the model training. To do so, a proper training job configuration is submitted
to FL orchestrator that propagates it to FL training collector and candidate FL
local operations to execute the job. Then, FL training collector collaborates
with FL local operations to finally obtain new global model aggregated from
successive local updates. To support the process, FL repository is used to
store all required intermediate and final information and metadata. After
successfully finalizing the training job, the new global model can be used
for local inference by FL local operations.

The following sections describe the four ASSIST-IoT FL enablers in
detail [13].

11.3.1 FL enablers

11.3.1.1 FL Orchestrator
FL orchestrator is the enabler responsible for specifying and managing FL
workflow(s)/pipeline(s), including:

• FL job scheduling;
• Management of the FL lifecycle;
• Selection and delivery of initial version(s) of the shared model;
• Delivery of the version(s) of models used in various stages of the

process, such as training stopping criteria;
• Handling the different “error conditions” that may occur during the FL

process.

It is formed by two components:

• FLS API server: Offers a REST API to allow for the communication
and interaction with the other enablers of the FL system. Although
the communication of model updates and configuration between the
FL training collector is carried out via gRPC, all traffic between the
FL orchestrator or the FL repository and the rest of the enablers is
exchanged using a RESTful API. Hence, it allows to retrieve information
or perform FL management actions, to FL local operations, FL training
collector, and FL repository.
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• FLS workflow manager: This component is in charge of defining the
workflow for a specific instance of the FL lifecycle. Workflow descrip-
tion specifies, among others, the source of initial configuration (e.g.,
minimum number of FL local operations needed for federated training,
number of training rounds for carrying out the federated learning pro-
cess, the initial shared ML model to be used, evaluation criteria method
and required accuracy value, method used for parameter aggregation,
and required encryption mechanisms), and lifecycle management (e.g.,
evaluating the number of FL local operations connected, or the number
of training rounds finished provided by the FL training collector).

11.3.1.2 FL Repository
The FL repository is used to store all information necessary to conduct
the FL process (configuration, models, algorithms, etc.). It consists of two
components, one holding the FastAPI, server which is in constant contact
with the second component that encapsulates the MongoDB database.

This database is used to store initial ML models, already trained ML
parameters suitable for specific datasets and formats, multiple averaging
approaches, as well as additional functionalities that may later be needed,
including data transformations and IP addresses of potential client instances
present in the FL system of ASSIST-IoT. ML model weights are kept in the
form of GridFS chunks in order to allow them to exceed the size of 16 MB
(which they sometimes do).

The FastAPI server serves just as a gatekeeper to the MongoDB instance,
allowing for the easy performance of specific queries (and only performing
those queries).

11.3.1.3 FL Training Collector
The FL training process involves several independent parties that commonly
collaborate in order to provide an enhanced ML model. In this process, the
different local update suggestions shall be aggregated accordingly. This duty
within ASSIST-IoT is tackled by the FL training collector, which resides in
a centralized location and is also in charge of delivering back the updated
model. Therefore, its functionalities are:

• Aggregation of local updates of the ML model prepared by independent
parties as a part of a model enhancement process by means of the
specialized FL averaging mechanisms and FL training collector I/O
components.
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• Supplying specific FL local operations with any additional configuration
they might need by communicating via gRPC.

• Configuration of the employment of privacy mechanisms on edge (in
the case of differential privacy) or just aggregating the weights in a
manner compliant with those mechanisms (in the case of homomorphic
encryption).

• Delivering back to the parties the updated model using the established
gRPC connection, synchronizing the training, and later obtaining the
results of local training.

• In some cases, the FL training collector may also conduct performance
evaluation on the global model throughout training. For this purpose,
it will also use the data transformation module (in order to pre-process
the test data before the evaluation). More information about the data
transformation module will be presented in a later section.

11.3.1.4 FL Local Operations
The FL local operations is the enabler embedded in each involved party
performing local training. Its components and their respective functionalities
are:

• Data transformer is used for the verification of local data format
compatibility with the data formats required by the models being trained,
as well as for application of the required data transformations using
predefined transformers if needed. For more details about the data
transformation module, please refer to the next section.

• Local model trainer is in charge of getting the local results that are later
on passed to the FL training collector to carry out the proper aggregation
method over the common shared model.

• Local model inferencer, as its name suggests, carries out the inference
process of the final shared ML model over new incoming data.

• Privacy. There are two privacy mechanisms available out of the box
provided by ASSIST-IoT enablers: differential privacy with adaptive
clipping and homomorphic encryption. The differential privacy mech-
anism was based on [5] and [6]. Here, the influence of the model update
supplied by a given client is not clipped according to a fixed clipping
threshold but adaptively modified throughout training. Although the
Gaussian noise and clipping is applied on the side of FL local operations,
FL training collector is responsible for most of the metric computation
needed to adjust the clipping. Homomorphic encryption, on the other
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hand, requires a significant additional computation on the side of FL
local operations, with only small adjustments needed on the side of the
FL training collector. Therefore, the computational and communications
overhead introduced by the homomorphic encryption currently prohibits
its use beyond the training of very simple models using a specially
adapted version of the federated averaging strategy.

• Local communication is the RESTful API that acts as the entrance and
exit gate of the FL local operations with the rest of the enablers of the FL
system. The FL local operations can also additionally establish a gRPC
connection with the FL training collector.

11.3.2 Secure reputation mechanism for the FL system via
blockchain and distributed ledger

In addition to the baseline FL features, an external distributed ledger enabler
will be included in the next iteration of the pilot. It would provide a secure
reputation mechanism for all the local operators. The reputation mechanism
therefore will constitute a safe guard mechanism that prevents free-riders
from freely accessing the global model without contributing to it and also
malicious adversaries from poisoning the global model [17]. To do so,
blockchain technology has been proposed. This technology allows the secure
maintenance of a distributed ledger among several parties without the need of
a trusted centralized authority using a consensus algorithm. Blockchain tech-
nologies depending on whether we refer to permissionless or permissioned
blockchain networks can ensure different security aspects. For permission-
less blockchain networks, transparency, decentralization, immutability, and
traceability of shared data can be ensured, while permissioned networks can
ensure private transactions by granting access to the data of the distributed
ledger only to authorized users who have the right permissions [2], [15], [16].

The integration of the DLT enabler with the FL baseline system is
illustrated in Figure 11.2. The DLT enabler will calculate reputation scores
for each FL local operator instance, which will be stored on a permissioned
blockchain network that allows only authorized users to have access to the
scores and also to participate in the consensus algorithm that updates them.
This consequently will increase the privacy of the reputation score data. Next,
FL training collector will send the weights from the FL local operations and
the weights from the global model to the distributed ledger (DLT).

The final reputation score for each FL local operations will be calculated
using the cosine similarity between the weights of FL local operations and
the aggregated weight [17]. The final reputation score for each local operator
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Figure 11.2 ASSIST-IoT FL-DLT enabler.

will be stored in the DLT along with the reputation set that contains the FL
local operations who would be considered reputable in this round (if their
calculated score is not below a given threshold). The FL training collector
will query on an on–off strategy to the reputation scores and reputation set, so
that further decisions on the penalties or incentives for the FL local operations
may be taken.

In detail, the FL-DLT enabler depicted in Figure 11.2 is composed of
three components:

• Distributed ledger (DLT) communicator: This component is a REST-
ful API that receives weights from the training collector, and it also
fetches from the DLT storage and sends back to the training collector
the reputation scores and reputation set.

• Reputation score calculator: This component applies the reputation
mechanism and calculates the scores for each local operator in each
training round. It also maintains a reputation set containing all the
reputable local operators.

• Distributed ledger (DLT) storage: This component stores the reputa-
tion scores and the reputation set to the distributed ledger.

11.4 ASSIST-IoT FL Application in an Automotive Defect
Detection Use Case

11.4.1 Business overview and context of the scenario

During the last years, the digitalization pressure and optimization needs
are deeply studied in the automotive field. AI-based surface inspection of
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the vehicle exterior is seen as a well-promised common case of the previ-
ous one, where precisely FL can hold a primary role. For instance, in the
proposed validation scenario, where images are taken by cameras in arch
scanners that are installed in various locations and potentially in garages
owned by different entities. First, it relaxes the need of sharing data (pri-
vacy and aversion concerns). Second, it reduces the dependency on network
connection vís-a-vis a centralized, cloud approach of data gathering and AI
application. Third, it moves the focus to the work close to the action (where
scanners are), in terms of end-user interaction. This is relevant as this inter-
action actually inserts labeled training and validation data; thus, efficiency is
improved.

In the proposed case, the goal is for a FL-powered deep learning system to
relax the bandwidth usage and the overall network dependency and to provide
faster and more accurate detection of defects (currently up to 15 minutes). The
FL solution will need to deal with cameras that capture data and metadata of
50–300 colored, high-resolution images per vehicle analyzed (Figure 11.3).
Then the system mounted forward data via fiber optics, 4G, and 5G to a
cloud location. Edge locations (where scanners reside) are equipped with
an intelligent storage system with local buffering (but have limited storage
capacity) and provide a direct connection to end users that annotate human-
visualized defects. There, the associated front-end software must handle a
hundred thousand images, offering advanced, application-centered visualiza-
tion, and display with an optional focus on existing damages and AI proposal.
It must be considered that the data can be very heterogeneous due to different
models, locations, scanner owner, and indoor/outdoor position, among others.
Therefore, the AI-based inspection can strongly support both manual users
reviewing or automated inspection and evaluation procedures to monitor and
determine the vehicle’s exterior conditions. Due to the nature of the task, the
consideration of the images of many scanners for the AI-model training has
large impact on the overall quality of the global AI models in the current
cloud approach

From the federated learning point of view, the task setup may look as
follows (Figure 11.3). Either scanners or individual cameras can operate
as federated clients, performing both model training and inference tasks,
with the central server being responsible for coordinating the processes, like
training, testing, aggregating, and distributing the latest version of the global
model.
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(a) Scanner gate (b) Scanner structure

Figure 9.3: Car damage recognition – scanner gate

central server being responsible for coordinating the processes, like training,
testing, aggregating, and distributing the latest version of the global model.

9.4.2 Proposed solution and benefits of decentralized learning strategy

The application of AI and specifically FL to the automotive use case enables
to optimize the process of damage recognition with respect to current situa-
tion. Firstly, application of AI and inference close to the sources of the data
will enable faster processing of the data and recognition of situations that
need special handling. Secondly, the benefits coming with using FL-based
approach can be identified compared to the centralized approach. The cen-
tralized approach is an alternative in which all data collected on local devices
(e.g. scanner cameras) is sent to the server (cloud) and processed there to train
the model or inference on the using the trained model. Therefore, FL allows
the described use case to benefit from:

• Significantly reduced or practically non-existing necessity to transfer
privacy-sensitive data. As a result, the whole dataset is never stored in a
centralized manner, but local datasets are available on client nodes and
used there to train the local versions of the model. This increases overall
data privacy which is important when considering multi-stakeholder en-
vironment with coopetition. This is relevant for the selected application
case due to the aforementioned aversion and privacy concern existing
while scanners are owned by multiple entites (and even in single scenar-
ios). Cameras are subject to confidentiality rules, as they may contain

Figure 11.3 Car damage recognition - scanner gate.

11.4.2 Proposed solution and benefits of decentralized learning
strategy

The application of AI and specifically FL to the automotive use case enables
to optimize the process of damage recognition with respect to current situa-
tion. First, application of AI and inference close to the sources of the data will
enable faster processing of the data and recognition of situations that need
special handling. Second, the benefits coming with using FL-based approach
can be identified compared to the centralized approach. The centralized
approach is an alternative in which all data collected on local devices (e.g.,
scanner cameras) is sent to the server (cloud) and processed there to train
the model or inference on using the trained model. Therefore, FL allows the
described use case to benefit from the following:

• Significantly reduced or practically non-existing necessity to transfer
privacy-sensitive data. As a result, the whole dataset is never stored in a
centralized manner, but local datasets are available on client nodes and
used there to train the local versions of the model. This increases overall
data privacy which is important when considering multi-stakeholder
environment with coopetition. This is relevant for the selected appli-
cation case due to the aforementioned aversion and privacy concern
existing while scanners are owned by multiple entities (and even in
single scenarios). Cameras are subject to confidentiality rules, as they
may contain private information of both the vehicle owner and the
company that performs the damage inspection.

• Decreased need for data storage capacities on the server side and
reduced data transfer between local devices and server (cloud). This is
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specifically important in big data environments. This would help entities
using the scanner-based installation to be more efficient and accurate on
their predictions, as the need of communication toward cloud would be
relaxed and the annotation by company stuff would leverage (limited)
edge storage capacities instead of submitting upwards.

• Improved inference speed, as the location of the global model on the
local nodes implies that no communication between the source of the
data and the server (cloud) for generating predictions is intended and
all the inference happens close to the device that generated the data.
As indicated in the business case description, this is the main goal of
the application of FL system, aiming to reduce the (up to) 15 minutes
current timeframe for predictions.

• Personalization availability. Due to the previously described reasons
for local data heterogeneity, federated clients may require additional
uptraining on their local data for better model performance, and FL
provides an easy way to produce a more personalized tool for vehicle
damage detection that takes into consideration features of the local
dataset, while still benefiting from the generalized knowledge from the
multiple entities that participated in the joint training.

• Global model aggregation techniques can be used to mitigate the effect
of the heterogeneity of damage and vehicle types present on the client
nodes. Here, allowing local training of models, which can grasp more
nuances related to usual vehicles in a specific location (e.g., vans), would
enhance the depth of knowledge that can be applied to other sites with
less volume of such. Therefore, FL system is capable of adapting to
task-specific challenges and site-specific data.

Figure 11.4 shows how enablers proposed in the ASSIST-IoT FL architec-
ture can be combined in the system deployed for automotive defect detection
use case. Here, the FL local operations run on clients (cameras), whereas
FL orchestrator, FL training collector, and FL repository are located in the
cloud. The main goal is to distribute the processing, instead of sending all the
images to the cloud and processing it centrally. Here, although the centralized
topology seems to be a good choice for initial implementation, it can be
foreseen that a more complex topology (e.g., hierarchical) may be ultimately
needed [4]. One of the reasons is that in an extended deployment, groups of
scanners may belong to different stakeholders that all want to benefit from
the good detection model but without disclosing their data.



11.4 ASSIST-IoT FL Application in an Automotive Defect Detection Use Case 245

Figure 11.4 FL architecture for the automotive defect detection use case.

Note that, on the diagram, besides aforementioned FL enablers, additional
enablers designed and implemented within ASSIST-IoT are included address-
ing: cybersecurity (specifically authentication and authorization), long-term
storage (the long-term storage enabler can provide local storage of images
for FL clients), and tactile dashboard (for visualizations needed in the sys-
tem). Upon reflection, it is easy to see that these elements can provide all
additional functions needed in the considered ecosystem.

11.4.3 Proposed validation

Federated learning experiments for the car damage detection use case were
performed based on the mask-RCNN model for object detection and seg-
mentation. During the federated training, separate cameras were treated as
federated clients. Initial experiments were performed with a total of eight
cameras, although in the future scenarios, more populated experiments are
expected.

The evaluation of the FL model is based on the holdout evaluation dataset,
which consists of images, representing a comprehensive set of possible infer-
ence scenarios. This dataset also includes images with no detected damages
at all, in order to properly test the model’s capability to accurately detect both
damages and their absence. An example of the damage detected by the model
is shown in Figure 11.5.
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Figure 11.5 Rim damage detection example (target – left; result – right).

The metrics taken into account are appropriate for the task of object
detection and segmentation. The main performance indicators, therefore, are
precision, recall, and the resulting F1 score per damage category with the IoU
(intersection over union) threshold set at a reasonable value. For the deployed
model, the appropriate IoU is expected to be around 0.5.

Apart from the calculated performance indicator, an expert-based evalua-
tion is also implied. As the system is expected to assist human professionals
during their damage evaluation activities, their feedback will provide the
necessary information for further model improvements.

Finally, for the evaluation of the use case, the following KPIs have been
identified and will be controlled and verified: (i) increase of detected defects
on the car exterior, (ii) faster vehicle inspection compared to the current
process (planned at least 30% increase), and (iii) minimization of data transfer
(planned at least 50% increase).

11.5 Conclusions

Decentralized AI promises to be a relevant innovation to be incorporated
to Next-Generation IoT deployments. From the viewpoint of decentralized
intelligence, ASSIST-IoT has focused on Federated Learning. This technique
relies on training machine learning models in coopetition manner –a joint
cooperation and competition approach– over heterogeneous nodes located
at different locations and with different computing capabilities. For doing
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so, strategies to locally train the models, centrally orchestrate the averaged
updates, and a way to bring back the trained model for either further training
or infererence to those edge devices is needed. Rooting on relevant references
and based on the novel architecture provided by the project, an FL system has
been designed and it is being developed.

One of the many applications that such a system could have is material-
ized in a real-life use case brought by ASSIST-IoT, consisting of leveraging
edge computing in various locations to train ML algorithms that detect
defects on vehicles’ surfaces. The usage of ASSIST-IoT’s FL system allows
to improve inference speed as well as reduce the network bandwidth needs to
the cloud, while keeping the data in the local environments, thus increasing
security and privacy. The use case is currently being trialed and some early
evaluation activities are providing optimistic outlooks. Final results of the
experiment will be presented in future works.
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Abstract

The centralization of data is a current practice in information systems that do
not fit into the novel next-generation computing concept. Such a paradigm
aims to support the distribution of information, processing, and computing
power. Blockchain is a technology supporting the recording of informa-
tion for distributed and decentralized, peer-to-peer applications, which has
emerged in the last decade, with the initial focus being on the finance sector.
A highly valuable feature of blockchain is its capability of enhancing the
security of data due to the immutability of the information stored on the
ledger. In this chapter, the definition, details, applications, and benefits of
this technology will be explored. In addition, the ways in which blockchain
increases security and privacy will be described. Finally, the pairing of
blockchain with other next-generation, cutting-edge technologies will be
investigated.

Keywords: Blockchain, security, privacy, peer-to-peer.
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12.1 Introduction – What Is Blockchain?

Technology has become an aspect of daily life for most of the world’s
population. Intelligent devices able to capture, gather, process, and distribute
information have become a necessity for an ever-increasing number of
domains, ranging from the simplistic use of smart home gadgets to the highly
critical medical sector. Intelligent devices have become such an integral part
of contemporary society, which each human is estimated to own 9.3 devices,
by the year of 2025 [1]. Such a massive number of data-driven devices is
expected to significantly increase the volume of data to be processed and
stored. After all, Internet of Things (IoT) contributed to the creation of the
concept of Big Data, which is defined as highly variable data, produced at
high velocity, and is arriving in big volumes. Next-generation IoT (NG-IoT)
is a novel concept in computing, aiming to extend IoT in a human-centric,
distributed manner. As such, objects, services, and technologies offered to
the end-users are combined to achieve optimal end-user satisfaction, while
the processing of data occurs in the edge, closer to the user, yielding faster
response times.

Contemporary information systems mostly focus on processing and stor-
ing data in a central manner. This means that data travels from each data
source to a central entity for further management. However, this task is
becoming increasingly difficult due to the high volume and variety of the
produced information; as such, the effective storage and rapid analysis of data
becomes the main concern. In addition, centralization is often associated with
security and privacy issues, due to data traveling through unsecure channels to
the central entity, or due to the single-point-of-failure problem, which dictates
that the entire process will fail, if the central entity’s operation is disrupted.

The issues described in the paragraphs above have contributed to a current
effort to shift from the use of the concept of centralization in IoT to the
concept of decentralization. Consequently, information, processing, and other
aspects are distributed across devices, recanting the single-point-of-failure
problem. The significance of the shift toward decentralization has become
prominent due to the rise of the NG-IoT concept in computing, where instead
of relying on cloud solutions for data processing, all management occurs in
various distributed edge nodes, closer to the end-user.

Blockchain is the technology mostly associated with decentralization
and thus plays a key role in the NG-IoT concept. Although this technology
became well-known through the launch of the first digital cryptocurrency,
Bitcoin, in 2009, the idea was initially described by a person under the
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Figure 12.1 Centralized systems (left) and decentralized systems (right).

pseudonym “Satoshi Nakamoto” in 2008 [12], [13]. The concept behind
blockchain states that it serves as a system to record information, in an
immutable manner. This information is duplicated, and every participant
in the blockchain network owns a copy of it. In particular, a blockchain
is a digital ledger of transactions cryptographically signed and grouped
into blocks. Each new block is cryptographically linked to the previous
one, while it undergoes validation through a consensus decision by the
network’s members, in order to be added to the blockchain [2]. Due to
blockchain’s function of distributing copies of the data on the chain across
the network, conflicts regarding data differences due to malicious actions are
easily resolved, while its cryptographic nature boosts security [11]. Since
blockchains follow an append-only policy and every member owns a copy,
it is impossible for old blocks to be deleted or modified, making data on the
chain tamper-resistant [14].

In order to cryptographically sign and link blocks to each other, hash func-
tions are used by blockchain technology. Hashing refers to the application of
a function to an input of any kind, leading to an output, or digest, of a specific
size. Well-known hash functions include secure hash algorithm 256 (SHA-
256), which produces an output of 256 bits, message-digest 5 (MD-5), which
digests the input into 128 bits, and SHA-1, which produces a 160-bit output.
Hash functions are one-way, meaning that they cannot be reversed, while the
slightest change to the input will lead to a digest vastly different [15]. This
makes hash functions optimal for verifying the veracity of data stored in the
blocks. In addition, it is impossible to find inputs that lead to the same digest.
As such, the utilization of hashing is able to highly elevate the security in
blockchain technology.
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Figure 12.2 Hash function operation.

Figure 12.3 depicts a basic diagram of a blockchain network. As dis-
cussed, each block contains transactions, the calculated hash of its header,
and the hash of the previous, or parent block. In blockchains, the first block
created is called the genesis block and it is the only one that does not contain
the hash of the previous block [3]. The header hash is generated by taking as
an input information such as the timestamp, the block’s data, and the parent
block’s hash. Hashing allows traceability of potentially malicious changes,
contributing to blockchain’s secure nature.
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Figure 12.3 Blockchain architecture.

Blockchain is a versatile, easily integrable technology promising to ele-
vate the security levels of the respective application areas. The versatility of
this technology comes from the fact that it can be used in varying ways – from
verifying transactions to securely storing any kind of data. Thus, blockchain
has become an integral part of NG-IoT, as it can be effectively combined
with other NG-IoT technologies and concepts such as artificial intelligence
(AI), federated learning, cybersecurity, and edge and cloud computing [22].
Blockchain can support secure sharing of model updates in a centralized
federated learning setting, as the model updates can be wrapped as trans-
actions and stored in the blocks; thus, their integrity can be ensured by the
federated clients [23]. In addition, blockchain can support a fully peer-to-peer
AI training systems, where model updates are stored directly on the chain by
the participants in the peer-to-peer network [24]. Finally, blockchains can
be used for logging of actions, authentication, and authorization in a critical
NG-IoT setting, as a cybersecurity solution [25], [26].

12.2 Permission-less and Permissioned Blockchain

Blockchains are categorized based on who can publish new blocks. If there
is no restriction on who can append new blocks on the chain, then the
blockchain is considered to be permission-less. On the other hand, if only
certain entities are allowed to publish new blocks on the chain, then the
blockchain is considered to be permissioned.

Permission-less or public blockchains allow anyone with access to the
network to read and publish new blocks and make transactions [16]. Usually,
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such blockchain networks are used primarily in the finance sector and, more
specifically, in cryptocurrencies. As such, blockchains that are categorized as
permission-less are open-source and free for anyone to download them and
take participation in the network. However, such blockchains face probable
security threats as entities can have free access to the network and thus some
may try to maliciously publish blocks. Consensus mechanisms, explained in
Section 12.3, aim to resolve such issues.

In contrast with permission-less blockchains, permissioned blockchain
networks rely on a central or decentralized entity to allow access to the
chain. In case a centralized entity is responsible for granting access, then
this entity should be trustworthy. Private and consortium blockchains are
both permissioned, with the former being administered by a single entity,
while the latter is being administered by a group of organizations. If users
are not registered by the entity to the network, then they are not able to
publish new blocks, while they may not be able to read blocks, as reading
can be restricted by the entity of authority. In case users have permission
to join the network, they should prove through methods such as certificates
that they are allowed to access to blockchain. Such blockchain networks are
predominantly utilized by organizations that prefer to keep their transactions
and data private and more secure. Organizations may employ permissioned
blockchain to manage inventory and their supply chain, amongst other
options. Permissioned blockchains may be especially useful in NG-IoT use
cases where sensitive data is stored on the ledger, such as hospitals and smart
grids; thus, authentication should be required to obtain the stored information.

Finally, hybrid blockchains combine the characteristics of both a permis-
sioned and a permission-less blockchain network. Specifically, the members
of the network are able to regulate and allow the accessibility of the network
to other users, while the hybrid blockchain users decide whether transactions
are made public [4]. This makes hybrid blockchains a customizable approach
to blockchain networks.

12.3 Consensus Mechanisms

As blockchain networks are composed of distributed and trustless systems,
a mechanism to allow all the nodes to reach an agreement on the validity of
the blocks to be published and the status of the ledger is required. This issue
is especially highlighted due to the lack of a trustworthy central authority
able to regulate and manage all actions in the network. In addition, malicious
actions may be an issue for permission-less ledgers, due to the unregulated
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Figure 12.4 Permissioned and permission-less blockchains.

nature of such blockchains, and thus actors may attempt to alter the state of
the blockchain. To address this concern, consensus mechanisms are used by
the blockchain to allow the nodes to achieve trust and security between them
and reach an agreement regarding the state of the decentralized ledger.

Proof of work (PoW), otherwise known as mining, is a procedure in
which the participants of the mining process are required to calculate the
hash value of the header of the block to be appended to the ledger [17].
Specifically, the hash value should remain below a given target value. To
achieve this, miners have to find a nonce number, which is able to yield a
lower or equal hash value, when added to the block’s header. When a miner
is able to solve the puzzle and find a nonce that yields a lower hash value,
they send the block with the nonce found to the rest of the network for
verification. The rest of the nodes hash the block header with the nonce, verify
the work conducted by the miner, and proceed by appending the new block
to their copy of the blockchain [5]. PoW consensus model was first seen in
Bitcoin. As the calculation of the nonce is quite a challenging task with high
computational difficulty, the miner able to find the nonce is usually rewarded.
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For the Bitcoin blockchain, the publishing miner receives cryptocurrency as
a reward mechanism.

Figure 12.5 PoW consensus model.

Proof of stake (PoS) is another technique for achieving agreement in a
trustless environment. The concept of PoS is based on the fact that the node
with more stake in the blockchain is less likely to attack the system [18].
In essence, in a cryptocurrency setting, nodes can stake or lock coins in the
system. A validating node is chosen in a semi-random manner, as the decision
is also based on how many coins the node has staked for the procedure. Once
the block is validated and published in the blockchain, the validator receives
a reward in the blockchain’s cryptocurrency. Such a consensus model does
not require the computational and processing effort the PoW model requires
and is not as energy-demanding as the latter [19].

12.4 Smart Contracts

Smart contracts, initially introduced in 1994 by a computer scientist and cryp-
tographer named Nick Szabo, aim at the utilization of blockchain technology
for automating the execution of a contract [20]. Specifically, smart contracts
are computer programs that are able to self-execute when the conditions

Figure 12.6 PoS consensus model.
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described in the terms are fulfilled, similarly to regular contracts. Those terms
are enclosed in the smart contract’s code, and if an event described in the
terms occurs, the smart contract is triggered and executed.

Since smart contracts leverage blockchain technology, they benefit from
blockchain’s secure, immutable, and tamper-resistant nature. Reliability is
also ensured as all activities are trackable and verifiable through the dis-
tributed ledger. To define a smart contract, the participating parties agree
on its conditions, which are then translated into code following “if/then”
statements, to describe the possible scenarios [21]. Next, the smart contract
is stored in the blockchain network, as displayed in Figure 12.7. This means
that all participants in the network have a replica of the contract. In case a
condition that is included into the description of the contract is met, then the
transaction described gets executed.

Although smart contracts have a wide area of possible applications, as
they are applicable to the legal industry, real estate, healthcare, insurance,
and logistics, they are most predominantly seen in the finance sector. Specif-
ically, smart contracts can contribute to adding transparency in financial
transactions. A simple example would be the purchase of goods by a buyer;
if money is deposited, then the order is confirmed by the seller.

A relatively new type of smart contracts is the Ricardian Smart Contract.
In contrast with regular smart contracts, the Ricardian contracts are legally

Figure 12.7 Smart contracts.
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binding between the participating entities. Similar to smart contracts, they
use blockchain to function and they are also verified by the blockchain
network. The emerging concept of NG-IoT heavily supports the transition to a
ubiquitous computing era, through human-centric advancements. Therefore,
Ricardian Smart Contracts contribute to NG-IoT’s aim as a human-centric
blockchain application, as such contracts are presented both in a human-
readable format, as well as a computer-readable format. Such a shift from
static agreements to dynamic, legally binding computer code facilitates
the transition to a pervasive computing era through NG-IoT, where agree-
ments become automatically enforced, transparent, and verifiable through a
peer-to-peer manner. Overall, smart contracts are a secure and reliable way to
facilitate and automate the agreement procedures between the participating
entities.

12.5 Blockchain Applications for Security and Privacy

Blockchain technology is considered to be the foundation of cryptocurren-
cies, as the concept of it was initially introduced in a cryptocurrency context
[27]. Although blockchain was first designed for such applications, its utility
has since been expanded and blockchain technology has become applicable in
a wide area of industries [11]. This occurs not only due to blockchain’s secure
nature but also due to its distributed, peer-to-peer aspect. Contemporary
businesses are striving to disengage from traditional centralized solutions and
are currently leaning toward the utilization of decentralized systems.

Decentralization allows industries to eliminate the necessity of trusting
a single central entity. This is why blockchain technology is an attractive
solution for multiple areas where the establishment of trust in an untrust-
worthy environment is needed. Blockchain especially benefits modern supply
chain systems. Supply chains are defined as the activities that contribute to the
journey of materials from the initial suppliers to the final customers [6]. Some
supply chain activities are product development, production, and logistics. In
such a context, blockchains can be used for locating the origins of a product,
providing open access to supply chain data and automating the process of
transactions through the utilization of smart contracts.

Another application of blockchain would be the very timely concept of
smart property. Smart property is a combination of NG-IoT and blockchain,
which provides and controls ownership of a smart object through the
blockchain infrastructure through the utilization of smart contracts. This
is especially useful due to the emergence of smart objects and their vast
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integration in contemporary lifestyle. As such, the distributed objects in
a human-centric NG-IoT ecosystem are assigned to an appropriate owner
through smart contracts. Nick Szabo explains the concept of smart property
through an example where in case a person misses a payment for a car
loan, then a smart contract would revoke the digital keys to operate the
car [7].

Blockchain’s reliability and immutability has made this technology an
asset of high value to critical industries as well. Such application areas require
data to remain unaltered and require tamper-proof history of transactions.
This is the reason why blockchains are especially useful in the healthcare
industry. Due to their decentralized nature, blockchains are excellent for
storing and managing access to electronic medical records (EMRs), which
is an electronic representation of a patient’s health-related data [28], [30]. As
such, EMRs can be presented to the participants of the network in a uniform
format, achieving interoperability between different institutions, which is one
of the main goals of NG-IoT. This is especially useful in case a patient
needs to receive treatment in a foreign country; their records can be made
immediately accessible to the medical personnel in the distributed NG-IoT
ecosystem, taking appropriate actions. Furthermore, in accordance with the
General Data Protection Regulation (GDPR) introduced in the European
Union, patients can have control over their data, choosing to make their EMRs
available to the respective data consumer [8], [29]. Finally, blockchains can
be utilized for the challenging task of remote patient monitoring through
smart contracts, where patient sensor data is checked by a smart contract
and if an emergency occurs, the authorized medical personnel gets timely
notified [9].

Finally, this peer-to-peer technology shows great potential for integration
in the cybersecurity industry, due to the multitude of benefits it offers. Specif-
ically, another important application of the blockchain technology would be
the attestation of devices and services. In an NG-IoT network that consists of
multiple heterogeneous intelligent objects where security is highly critical, it
is of essence to verify the integrity of the software running on the devices.
Blockchain can be used to establish trust through distributed attestation in
an unreliable IoT and NG-IoT ecosystem [10]. Due to the immutability that
characterizes blockchain, data regarding the identification of devices in the
network can be stored in the ledger; this way, unregistered devices with pos-
sibly malicious code will not be able to impact the critical network. Finally,
blockchains may be utilized for logging events in a critical infrastructure.
As such, the output of systems responsible for security, such as intrusion
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Figure 12.8 Examples of blockchain application.

detection systems (IDS), can be registered in the chain providing traceability
and transparency of events.

12.6 Conclusion

The rise of the utilization of heterogeneous intelligent devices in an NG-IoT
ecosystem has led to the necessity for decentralization of tasks and processes.
Furthermore, the novel concept of NG-IoT calls for the interplay of emerging
technologies through a human-centric, decentralized manner. In addition,
a growing number of industries and businesses are striving to disengage
from centralized solutions for the management of processes, data storage,
and securing their systems. This way, the single-point-of-failure issue that
centralized solutions may encounter is eliminated. Blockchain technology
allows the secure decentralization of those processes. Due to its cryptographic
nature, blockchain is immutable, transparent, and is able to establish trust in
an unreliable environment. As described in this chapter, blockchain is the key
component for multiple industries, including the financial industry, supply
chains, healthcare, and cybersecurity. To this end, this trustworthy peer-to-
peer technology promises to transform and secure the respective application
areas, through its highly valuable benefits.
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Abstract

This chapter explores the potential of the Internet of Things (IoT), a network
capable of delivering real-time control, touch, and sensing/actuation informa-
tion, to reshape industrial communication and transform operations in various
industries. It covers the technological trends, from legacy industrial networks
to emerging industrial wireless networks. It also examines the 5G networks’
role in the key Tactile Internet applications developed for the iNGENIOUS
project.

Keywords: Internet of Things (IoT), Tactile Internet, Industry 4.0, 5G.

13.1 Introduction

In the early days of mobile wireless communications, such as the sec-
ond generation (2G) of mobile communications, and the first releases of
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WI-FI, they were mainly employed for message exchange and data collection
applications. More recently, it became an emerging technology in industrial
applications and an indispensable component in today’s life. It has not only
connected a very large number of the world’s population to the Internet,
but also, in the last few years, provided connectivity between intelligent
devices and machines creating the Internet of Things (IoT). IoT has gained
a lot of interest and it has been introduced in different sectors including
health, entertainment, and, in particular, in the industrial environment, where
it determines the conditions for factories to evolve to the era of the fourth
industrial revolution.

IoT applied in the industrial sector can be described as a network of
sensors, machines, and monitoring devices connected to the internet and
connected to each other. These different components collect data, analyze it,
and interact together to continuously carry industrial processes and maintain
a constant and efficient workflow. In the case of deviation, the IoT system
issues an alert.

As wireless communication continues to be developed, unprecedented
applications could be realized. Recently, the network became capable of
communicating in real-time haptic information, e.g., touch, motion, and
vibration, besides control and actuation commands in addition to the con-
ventional audio−visual data traffic. This communication is ensured through
highly reliable internet connectivity. Thus, the concept of the Tactile Internet
appeared [1].

Tactile Internet is defined as a reliable network that allows real-time
remote access, data exchange, and control of objects (real and virtual objects).
It added an extra dimension to wireless communication by allowing real-time
machine-to-machine and human-to-machine interactive systems while being
highly available, reliable, and secure. In particular, Tactile Internet provides
a promising opportunity to reshape industrial wireless communication and
transform the operation of many existing industrial systems. It is also a
promising technology to realize new use cases (UCs) such as in healthcare
and industrial transportation.

Moreover, as 5G technology advances, it opens up new opportunities for
smart manufacturing applications. One potential area of implementation is
in UCs where wired solutions are impractical, such as mobile robots or auto-
mated guided vehicles (AGVs), which require high-performance and scalable
wireless technology. Additionally, 5G can be used to improve flexibility and
eliminate wear and tear on cables in situations where additional sensors are
added to machinery.
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This chapter explores the capabilities of IoT in the context of Industry
4.0 characterized by the integration of advanced technologies to improve
efficiency and productivity. The iNGENIOUS project, a European Union-
funded research project, serves as a prime example of how IoT can be utilized
in such an industry. The Factory UC of the iNGENIOUS project specifically
focuses on the implementation and demonstration of IoT in a real-world
industrial setting. This chapter studies Tactile IoT in industrial environments.
It focuses on the role of 5G wireless networks, which have the potential
to revolutionize the way Tactile IoT is used in factories and warehouses. It
explores how 5G networks can improve the speed, reliability, and scalability
of Tactile IoT applications, enabling new and innovative use cases. This part
focuses also on one of the key areas where IoT is being applied in the Factory
UC of the iNGENIOUS project, which is in the use of automated guided
vehicles (AGVs), within a warehouse or factory.

To conclude, this chapter delves into the capabilities of IoT in smart
factories and warehouses, with a specific focus on the iNGENIOUS project’s
Factory UC. The utilization of AGVs and Tactile Internet in the Factory UC
serves as an example of how IoT is capable of improving efficiency and
productivity in industrial environments.

13.2 IoT Application for Supply chain

Supply chains are one of the most complex parts of business operations since
they require synchronization and collaboration between different business
segments and actors. In this context, IoT and data analytics applications
can play a key role, since they are able to contribute to the optimization of
operations, resolve issues, and identify potential bottlenecks across different
segments like factories, warehouses, transportation, logistics, or maritime
ports. The following presents several examples of IoT applications in supply
chains.

13.2.1 IoT applications in smart factories and warehouses

Nowadays, many companies in the industrial manufacturing sector are carry-
ing out smart factory initiatives where systems and devices are expected to
become fully interconnected, and where the data among devices can provide
valuable insights for improving production efficiency. In this context, next-
generation IoT (NG-IoT) technologies will not only enable optimization of
the industrial operations but also will affect product, development, storage,
and delivery processes, thanks to the efficient use of the data.
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The use of NG-IoT applications to connect sensors and establish
machine-to-machine (M2M) communication protocols will help factories and
warehouses to get real-time data at every stage of the supply chain with
communication services offering high levels of reliability and availability
(up to 99.999% for control and up to 99.9% for sensing), low latencies
(below 10ms), and accurate positioning (≤0.5 m) [2]. Additionally, the
combination of IoT applications with cloud-based management systems and
artificial intelligence modules can improve machinery operation and asset
management procedures [3], thus allowing companies to know the loca-
tion and status of machinery and goods while predicting risky events like
machinery failures or low-stock events.

Other innovations like automated guided vehicles (AGVs) will be able
to calculate the shortest route for product delivery, reducing the amount of
time needed to complete the operation together with fuel costs. At the same
time, by connecting IoT platforms and enabling the exchange of data between
supply chain players through distributed ledger technology (DLT) solutions,
factories and warehouses will be able to track the different events that take
place when products are manufactured and when orders are delivered out of
the facilities.

Some examples of IoT applications in smart factory and warehouse
scenarios are:

• MindSphere industrial IoT solution [4] developed by Siemens is an
industrial IoT as a service solution that uses advanced analytics and AI to
power IoT solutions from the edge to the cloud. Thanks to MindSphere,
factories and warehouses can ingest and visualize immediate real-time
data and analytic results in one centralized location with no development
required. For that purpose, it includes different components such as an
asset manager, fleet manager, usage transparency, or operator cockpit.

• Amazon Web IoT services for industrial [5] developed by Amazon is an
industrial IoT solution that combines machines, cloud computing, and
analytics to improve industrial processes’ performance and productivity.
Thanks to this AWS module, factories and warehouses can cover differ-
ent use cases such as predictive quality and predictive maintenance or
asset condition monitoring. A detailed set of the different components
together with their role within the AWS industrial IoT (IIoT) architecture
is shown in Figure 13.1.
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Figure 13.1 AWS IoT architecture. Figure adapted from AWS website: https://aws.amazon
.com/de/iot/solutions/industrial-iot/

13.3 Tactile IoT Applications

Tactile Internet is an evolution of IoT characterized by extremely low latency
in combination with high availability, reliability, and security. Tactile IoT
applications are designed to perform certain tasks by monitoring input data
and altering output data accordingly.

These applications involve remote interactions between objects, such
as humans, physical machines, or virtual ones, while preserving similar
perceptions as when the objects are directly connected. These interactions
include remote accessing, perceiving, manipulating, or controlling real or
virtual objects or processes and are distinguished by the requirements of ultra-
reliable and low-latency communication (URLLC) within 5G networks to
achieve perceived real-time response.

The main task is realized by means of one or more processes that define
the relations between a set of inputs and a set of outputs. The outputs of some
processes might be used as input to others. An exemplary procedure could
be: if a bell rings, check the identity of the person and open the door if the
person is found in a whitelist. In this case, the input data is the bell signal, and
the process is to check the identity of the person, which can be accomplished
by sending a command to a camera to take a picture. This leads to a second

https://aws.amazon.com/de/iot/solutions/industrial-iot/
https://aws.amazon.com/de/iot/solutions/industrial-iot/
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procedure where the input is now the image, the process is face detection, and
the action is to open the door or decline entry.

IoT is commonly associated with the massive deployment of light devices
such as sensors and switches with relaxed timing requirements. Tactile
internet IoT includes a wide range of applications that are technically
distinguished by stringent end-to-end latency requirements.

13.3.1 Tactile Internet applications encountered in supply chain
stages

IoT has the potential to revolutionize the way supply chains operate. There
are a variety of IoT applications that are currently available for use in supply
chain management such as real-time response, predictive maintenance, and
smart inventory management. The integration of IoT technology into supply
chain operations can bring significant cost savings, improved delivery times,
and early identification of issues.

The exact definition of real-time response depends on the application.
Accordingly, two main scenarios are encountered:

• Human-in-loop: Here, humans should be able to remotely interact with
real or virtual objects and perceive different auditory, visual, and haptic
feedback with the same experience when directly dealing with the phys-
ical objects. This requires a hyperspectral imaging (HSI) device such
as haptic gloves, virtual reality (VR) headset, to translate the human
actions to machine-type commands, and the machine feedback to human
perceived signals. This category of applications is specifically driven by
the challenges of remotely conveying the sensing of haptic touch and
kinesthetic muscular movement for humans, in addition to the timing
requirements of closed-loop control systems.

• Machine-in-loop: This corresponds to the connection of machines, such
as sensors, actuators, robots, and control processes to a computer-based
simulation model. In this case, the different interactions should lead to
a realistic environment and performance as when the different identities
are directly or closely connected.

Tactile applications have practical use in supply chain operations. For
example, teleoperation and automation can improve working conditions
and increase productivity in logistics. In addition, it enables autonomous
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applications, e.g., in transportation and warehouse management. These appli-
cations are outlined in more detail below.

13.3.1.1 Teleoperation
This application allows a human user to operate a device or machine located
in a remote area. Teleoperation enables performing a task in hazardous
or inaccessible environments to ensure workers’ safety, and it can also be
employed to provide comfortable working conditions. Additionally, it allows
one operator to control multiple objects (e.g., one driver for more than one
AGV). In contrast to conventional remote control, the tactile version of it,
depicted in Figure 13.2, offers a realistic experience as the user feels like they
are operating a physical device. It is important to note that the application
involves one or more robots and one acts as the master and the rest as slaves.
The master robot is responsible for receiving commands from the operator
and relaying them to the slave robots. A key aspect of this architecture is that
not all robots need to be connected to the central server executing the orders,
reducing the load in the network, especially if they connect to the master
using any type of connectivity for short distances, such as device-to-device
(D2D) communications. However, one bottleneck of this architecture is that
all communication goes through the master robot, and if it fails, the whole
system has problems. For that, the master operator and the slave teleoperator
device exchange haptic signals, such as forces, position, velocity, vibration,
and torques, in addition to video and audio signals by means of an HSI. The
HSI encodes the human actions to commands understood by the teleoperator
and translates the feedback from the teleoperator to signals perceived by the
human.

Figure 13.2 Tactile remote operation.
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13.3.1.2 Autonomous driving
Mobility is essential for supply chains both for transporting goods and for
handling raw materials and products in production lines. Autonomous driving
enables smarter, more ecological, and safer movement of people and goods.
Self-driving requires processing multiple types of information such as optical
images, radar, etc., generated by sensors installed as part of the surrounding
infrastructure or on vehicles. The sensed data are conveyed to a controller,
which needs to compute and forward driving commands such as steering,
braking, and acceleration within a latency constraint. Autonomous driving
may also involve platooning, where it is required to control the speed of a
line of vehicles traveling in the same direction.

As an example, AGVs are an attractive option for efficient material trans-
portation within factory plants and warehouses. However, current technology
hinders flexibility, as sensor and command data processing are carried out at
the device, rather than a central command unit. To solve this issue, a com-
mon application programming interface (API) that allows communication
among AGVs, controlling units, and sensors appears as an attractive way to
implement such technology.

13.3.1.3 Industrial automation
Industrial closed-control loop has URLLC requirements similar to those of
tactile internet. Thus, the first application is to replace the wired industrial
network with a wireless one, as illustrated in Figure 13.3, which leads to
greater flexibility and reduced cost of installation and maintenance, especially
for connecting moving devices. This flexibility has inspired new industrial
applications that connect people, objects, and systems. The conventional
human−machine interface (HMI), which typically consists of a display, input
terminal, and software for gathering data and altering control parameters, can
be replaced by alternative augmented reality (AR) or virtual reality (VR)

Figure 13.3 From fixed conventional automation to flexible tactile automation.
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interfaces. Mobile platforms such as AGVs and mobile robots can be pro-
grammed to perform various scenario-dependent tasks instead of fixed robot
arms dedicated to certain tasks. This allows more efficient use of resources
and forms the core of next-generation industrial applications.

13.4 Industrial and Tactile Application Programming
Interface (API)

In the context of the emerging Industry 4.0 framework [6], the next-
generation factories are expected to be efficient, flexible, dynamic,
self-organized, and able to produce customized products rather than a mas-
sive number of products as in conventional factories. This requires flexible
deployment and reconfiguration of production tools, in addition to a dynamic
network to fulfill different requirements for connecting people and physical
and virtual machines in real and virtual environments. Accordingly, the
factory infrastructure, which includes different types of sensors, actuators,
processing units, and network resources, will be considered as a ubiquitous
computing platform that is ready to execute customized end-user applica-
tions. These applications are composed of multiple tactile and non-tactile
processes. The tactile processes comprise available tactile applications as
discussed in Section 13.3, such as remote operations, autonomous driving,
and automation. The other processes involve non-time critical missions such
as data collection for monitoring, surveillance, predictive maintenance, and
reporting. Aligned with the concept of tactile internet, which focuses on
providing a seamless experience when interacting with remote objects as
dealing with a direct object, the tactile applications will provide similarity in
programming remote distributed terminals as they are on a single computer
(see Figure 13.4).

• The processing and storage capabilities act like multi-core processors
and memories, which are used in the execution of specific tasks.

• The I/O domain consists of devices, which can be simple inputs (sen-
sors), outputs (actuators), or a stand-alone device with local inputs and
outputs, such as tactile HSI.

• The network provides the connection bus system to interconnect the I/O
with the processors and memories.

• The network management and orchestration play the role of operating
system and expose different APIs that abstract the hardware and provide
the programming tools that are used by software developers like system
calls as they program a single device, such as a smartphone.
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Figure 13.4 Network computer architecture.

• The end-user application runs on top of the network operating system.

As in any computer architecture, a compiler is required to translate the
programming code to the hardware language and to ensure at least that some
constraints are respected at the compile time. In the network scenario, the
compiler is responsible for provisioning the required network and processing
resources to fulfill different process requirements in terms of latency, reli-
ability, and data rate, and to consider dynamic conditions such as mobility
and changing environment. In addition, run-time error handling should be
thoroughly considered to avoid any malfunctioning of the operating system.
For instance, to check if a device is already in use by other applications, the
communications key performance indicators (KPIs) are fulfilled, and proper
release of unused resources is.

Connecting wireless terminals for computer systems is already imple-
mented in everyday life, such as monitors, keyboards, mice, headsets,
cameras, and remote controls. However, when considering stringent timing
requirements in terms of latency and synchronization between many devices,
existing operating systems and connectivity approaches are not sufficient.

5G wireless communication infrastructure is a key enabler for future
industrial ecosystems and has become widely available in industrial sites. The
sensors and actuators within factory plants can be regarded as available man-
ufacturing resources that can be programmed to produce specific products
according to particular specifications. After the production of a determined
number of pieces or after the identification of possible product improvements,
the resources should be easily rearranged to continue the production with the
new specific requirements. In contrast, the current production lines are built
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to perform repetitive tasks without flexibility. For realizing such a flexible
production technique, a software abstraction from the actual physical devices
has to be designed. This conceptual abstraction is defined as an industrial and
tactile application programming interface (API). In short words, the industrial
and tactile API consists of a set of functions that enable the application
developer to get data in and out of the system in a unified framework. Within
this context, first, a set of common functionalities have been identified as an
essential part of the API that enables user-defined applications to exchange
data easily and securely.

The industrial and tactile API has to provide different levels of abstraction
to effectively serve its purpose. Specifically, three levels can be identified:

1. End-user application development API: This level is crucial as it pro-
vides the end user with a simple and easily comprehensible graphical
interface for instantiating new applications and presents data in a format
that is understandable by the end user.

2. Mid-level function library: This level is important as it contains func-
tions that do not need to be directly used by the end user, such as an
object detection algorithm.

3. Low-level API: This level is crucial as it contains functions for data
packet formatting and specification of parameters for the physical com-
munication link based on the requirements given by the end user. These
functions are fundamental in ensuring proper communication and data
transfer between the devices.

For instance, AGVs are attractive options for automated material trans-
portation within factories, as they can improve efficiency and reduce down-
time. However, current technology limits the flexibility and dynamic control
of multiple AGVs from a central command unit. To solve this, a common
data exchange structure via an API is necessary, allowing AGVs, control-
ling units, and sensors to communicate and perform tasks. A smart IoT
API also facilitates the recognition and initial configuration of devices for
communication.

13.4.1 Proof-of-concept within the iNGENIOUS project

To demonstrate this concept within iNGENIOUS [7], the integration between
a non-3GPP compliant radio access technology, and a management and
orchestration (MANO) entity is carried out using JavaScript object notation
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(JSON) format, which consists of an open standard file format for data
exchange. A JSON file stores various data types in key-value pairs in a
human-readable format, with the keys serving as names and the values
containing the related data. An example is illustrated in Figure 13.5. It is com-
monly used for APIs because of its lightweight to exchange information due
to its small file size and it is easy to read/write compared to other data formats,
as it is written in an organized and clean way.

In our case, the MANO sends a JSON file containing the resource
allocation for each application, and the radio controller unit extracts this
information and distributes the resources accordingly.

In AGVs UC for the iNGENIOUS project, an end-to-end (E2E) platform
is developed for remotely controlling AGVs in the port area. The primary
motivation for enabling remote operation is to improve the driver’s safety by
avoiding possible hazardous situations related to operating in industrial areas.
This is achieved by designing a complete IoT system that enables the vehicle

Figure 13.5 Example of a JSON file containing information about an AGV device: this
information is shared with the IoT application developer.
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operator to have continuous situational awareness of the vehicle status and
surrounding environment and enables real-time communication of necessary
control signals to operate the AGV safely.

In the following, an exemplary set of functionalities is described for an
industrial application of AGVs. Within the Factory UC, factory inspection is
defined as an application where an AGV travels along a predefined track with
a camera and sensors integrated. The video and environmental information
collected by the AGV are sent to a remote user that monitors the factory site.
The quality of the video can be specified at the beginning of the application
by the user. The graphical user interface of such an application is illustrated in
Figure 13.6. This example will be illustrated within the iNGENIOUS Factory
UC.

Figure 13.6 Exemplary end-user UI of factory inspection application.
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The identified functionalities that have to be available from the industrial
and tactile API are:

• Start, stop, and adjust the AGV’s speed.
• Transfer the measurements from the AGV to the end user.
• Capture the current image frame and store it in the user’s database.
• Transfer AGV’s position to the end user.
• Translation of MANO resource allocation to PHY parameters.

The identified connection types of the devices are:

• AGV: UDP frames.
• Camera: UDP frames.

13.5 Conclusion

This chapter explores the potential of Tactile Internet in industrial communi-
cation, which aims to provide wireless real-time control and manipulation. It
examines the role of Tactile Internet in current industrial systems, evaluating
its potential in legacy, emerging, and future industrial networks, in particular
within the iNGENIOUS project.

Within iNGENIOUS, it was shown that the operation of the Tactile
Internet requires defining interfaces for communication between devices and
access to the network. Therefore, the network techniques should be flexible
to provide a similar experience for the application developer as programming
on a computer by abstracting the hardware and network functionalities.

Moreover, this chapter suggests that the Tactile Internet, through high-
performance wireless connectivity, would enable the transition toward wire-
less for industrial control, simplifying the design of legacy systems and
enabling remote operation in various industries. It also notes that the
emerging 5G wireless communication network is likely to be the winning
technology for the Tactile Internet.
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Abstract

This chapter elaborates on the usage of mixed reality equipment (Microsoft
HoloLens 2) and software (enablers based on the ASSIST-IoT project) for
improving the safety and health of blue-collar workers at a construction site.
Building upon a proven methodology and architecture, the chapter summa-
rizes the introduction of network technologies and techniques as well as
other mechanisms (such as ultra-wideband communication) that allow Tactile
Internet principles to be realized in the proposed scenario.

The user interface of the mixed reality device and an engagement study
are described, along with future validation and demonstration activities
assessing the appropriateness of the proposed system, both at the laboratory
and a construction site located in Poland.

Keywords: Mixed reality, Internet of Things, Tactile Internet, edge–cloud
continuum, construction safety, ultra-wideband, semantic integration.
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14.1 Introduction

In the year 2020, a record number of fatal accidents at work accompanying
construction activities was reported [6]. According to the EUROSTAT, the
majority of these activities took place at construction sites, making it one of
the most dangerous work environments. Unpredictable weather conditions,
changing environment, demanding work activities, as well as increasing
involvement of subcontractors observed recently in the construction sector
are undoubtedly the factors influencing workers’ safety. These factors are
particularly hard to manage in a traditional–collective way, on an occasional
basis. The emergence of Tactile Internet technologies makes it possible to
create better support systems for the management of occupational risks,
particularly in workplaces where environmental conditions are subject to
dynamic changes that can have serious consequences for human health and
life [24].

The deployment of Tactile Internet technologies for occupational safety
and health (OSH) management significantly contributes to a paradigm shift
from traditional methods of carrying out collective risk assessment for spe-
cific groups of workers to assessment methods, which allow to determine the
level of risk individually for each worker. Moreover, the existing periodical
risk assessment approaches can be replaced by continuous monitoring of haz-
ards in the working environment in real time [23]. Finally, the introduction of
properly adjusted prevention measures has become possible, thanks to early
warning OSH systems based on immersive and Tactile Internet technologies.

Immersive technologies, such as mixed reality (MR), allow their users
to efficiently interpret physical and digital information while understanding
their spatial relations. MR keeps the end-users engaged in an environment
enriched with related digital content without disconnecting and isolating them
from their surroundings. At the same time, MR offers a unique opportunity
to enhance safety communication in construction as it enables a human-
centric approach through better interaction of the end-users with the IoT
environment [13].

Head mounted devices (HMDs) and particularly the recent development
of lightweight, commercially available Microsoft HoloLens 2 bring three-
dimensional (3D) models out of the screen and provide users with the
ability to engage and interact with data and media more intuitively while
experiencing and understanding designs and structures [22]. HoloLens 2 is
a powerful HMD that can substitute a computer, a screen, and a keyboard
while boasting more processing power than an average laptop and can be used
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anytime, anywhere. In various setups, it demonstrated its ability to protect its
end-users from external factors that may impact their health and safety [19].
MR has the capacity to bring 3D data to life by putting information in front
of users’ eyes without changing or adjusting the data format. This way,
project management and delivery methods become more efficient, less costly,
and less time-consuming, and the communication and collaboration among
parties are also improved [2].

In the face of networking needs, there are challenges in transmitting real-
time information from edge devices to MR devices [14]. In terms of Tactile
Internet, which is the main pillar in the development of the proposed archi-
tecture, a set of tools are used to reduce the latency, guaranteeing extremely
low round-trip delays with excellent availability, reliability, and security for
human–machine and interaction-centric real-time applications. Those tools
are mainly deployed in the data management layer, which manages all oper-
ations associated with data collecting, delivery, and processing to perform
essential data-related services.

The stringent requirements of Tactile Internet systems drive the need for
deploying the services in a distributed manner, and on the edge (as close to the
data and the user as possible). The complexity of hand-crafting and managing
such deployments quickly becomes overwhelming, and thus dedicated tools
for service management and orchestration are needed [7], [8].

The multi-modal information about the construction site must be col-
lected from a variety of sensors in real time. One key challenge here is
personnel and asset tracking inside and outside buildings. To this end, ultra-
wideband (UWB) tags and anchors can be used to provide live location
data, with low power consumption. The collected highly heterogeneous data
must be integrated by the IoT system. This problem of data integration has
long been recognized as a key challenge in implementing IoT platforms [9].
The different parts of a system can be maintained by different, independent
stakeholders, which rules out an “authoritative” approach to integration – in
which a single, central body decides upon all schemas and protocols. Thus,
solutions are needed to manage the inherently decentralized landscape of data
formats and schemas.

Therefore, the aim of this chapter is the introduction of network tech-
nologies and techniques as well as other mechanisms (such as semantic
data integration, ultra-wideband communication) that allow Tactile Internet
principles to be realized in the construction environment, following the
objectives:
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• using mixed reality equipment and edge-based software for improving
the health and safety of workers;

• employing state-of-the-art network technologies at a construction site
based on Tactile Internet needs;

• solving the data integration problem with modern approaches to stream-
ing semantic annotation and translation;

• tracking workers and assets in real-time using ultra-wideband commu-
nication;

• deploying the solution in an edge-cloud context with the use of the
ASSIST-IoT reference architecture.

14.2 Solution Architecture

To address the challenges outlined above, a solution was devised, based on
the ASSIST-IoT reference architecture for next-generation IoT. Figure 14.1
presents the overall solution architecture. ASSIST-IoT deployments consist
of encapsulated enablers (sets of microservices, jointly providing functional-
ities to the system) and other custom components. The enablers and custom
components are deployed in a virtualized (Kubernetes) environment [7] and
orchestrated via a novel MANO-based custom software delivered by the
project [8].

The proposed system aims to provide the OSH manager with digital tools
that facilitate performing inspections and alert the manager of unusual or
dangerous situations. Through the MR enabler (using a head mounted device
– HMD), the OSH inspector obtains contextual visual data about activities
that occur at their location or dangerous events from the construction area.
The MR enabler is integrated with the Tactile Dashboard, the Semantic
Repository, the Long Term Storage, and the Edge Data Broker enablers.

The Tactile Dashboard enabler displays data in real time using user-
friendly and interactive visuals, providing the capability to configure the MR
enabler in each scenario. The Semantic Repository serves as a nexus for
data models used on the construction site. This includes storing 3D and BIM
models of the site. The function of the Long Term Storage enabler (LTSE) is
to provide safe and robust storage for other enablers and store important data
such as workers’ medical and training records. Lastly, the Edge Data Broker
provides a common point for IoT devices and services to broadcast their data
in a streaming manner. The integration between the MR enabler and the Edge
Data Broker enables other components to easily transfer messages to the MR
enabler by publishing data to a particular topic to which the MR is subscribed.
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Figure 14.1 Overall architecture of the solution.

The MR enabler depends heavily on the Edge Data Broker to gather essential
data for its operation.

The “central” component responsible for processing most of the logic is
the workplace safety controller. It aggregates incoming streams of data and
performs live operations on them. For example, it is tasked with detecting
UV over-exposure of workers. To determine the total exposure of a worker,
the information about the worker’s location must be aggregated with live
weather data and the BIM model of the construction site to determine the
amount of shade in a given area. When the workplace safety controller detects
abnormally high UV exposure, it emits a notification to the MR enabler so as
to inform the OSH manager of the situation. Geofencing boundaries and other
types of safety hazards are monitored in a similar manner as well.

The proposed solution faces a number of architectural challenges. The
most significant are: the Tactile Internet aspect (low-latency interfaces with
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immediate feedback); data integration (integrating heterogenous data sources
and services); and, finally, the mixed reality interface. These three key aspects
are discussed in detail in the following subsections.

14.2.1 Tactile internet aspect

Tactile Internet (TI) is one of the latest advent technologies that play a major
role in next-generation IoT (NG-IoT) environments. An NG-IoT deployment
is characterized by including all traditional IoT capabilities (devices discov-
ery, data connection, visualization of monitored information, etc.) besides
adding new traits such as 5G, AI-based functions, edge/fog computing, and
software-defined networking/network function virtualization (among other
technologies), considering Tactile Internet as one of the key objectives.
All of the previous can be achieved only by modular architectures that
use reliable, fast underlying networks to support very low latencies. An
application is considered to be tactile when it allows a seamless sensation
of touch (resolution of 1000 Hz). In general terms, according to European
Commission-promoted initiatives, it is crucial to include TI’s strict limitations
in the architectural decisions of any forthcoming IoT/distributed systems
reference architectures [5].

Formally, according to the International Telecommunication Union Stan-
dardization Sector (ITU-T), Tactile Internet is defined as extremely low
latency, in combination with high availability, reliability, and security. In
practical terms, it means enabling haptic human–machine interaction, open-
ing up the establishment of use cases like heavy machinery handling, remote
surgery, or, as in this case, ultra-real-time awareness of construction workers’
status. The authors of this work consider, drawing from the experience gained
in the ASSIST-IoT project, that TI must be understood as a system that (i)
successfully carries haptic data (in this work, from sensors, BIM models, and
MR glasses) by (ii) relying on communication (leveraging, among others,
UWB) meeting the requirements of (a) low latency, (b) high reliability, and
(c) high data throughput.

In this regard, for what concerns the proposed deployment, communi-
cation latency poses a critical obstacle. This is a usual barrier whenever
adopting IoT systems in many applications [26], [27]. High latency can even
make the technology entirely unfeasible for a given application. In the past
decade, a variety of communication protocols and standards were established
and implemented by the community to tackle this issue. These protocols
emphasize the need for giving special attention to the quality of service (QoS)
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and quality of experience (QoE) for various applications [17]. In order to
ensure low latency (that will facilitate designing Tactile Internet scenarios),
it is realized to place computation closer to the user (where tactile data is
generated). In technical topological terms, this means shifting the processing
workload to the edge of the network.

Several architectures and works [16] have proposed to follow a primary–
secondary approach relying on edge computing. This is achieved via reducing
connectivity to a few links and by setting up a primary gateway node (at
the edge) to connect secondary devices to the network. Using this archi-
tecture (inspired by IEEE 1918.1), information is encoded, optimizing data
transmission, and the security and privacy are clearly enhanced.

To support such needs as well as to comply with the latter requirement
exposed above, the Edge Data Broker enabler (EDBE) was developed, whose
filtering and ruling capabilities reduce the number of transmitted messages,
while the quality of service (QoS) is adapted based on the use case require-
ments. These scriptable capabilities allow data to be routed and processed
in real time, with the specific pipelines being triggered by predetermined
criteria. Their seamless integration allows for edge-based filtering and decen-
tralized data-consuming strategies, which cuts network traffic and latency
dramatically, fulfilling the requirements of Tactile Internet. Following those
design principles, human–machine collaboration is enabled in applications
such as Construction 4.0 [20], Industry 4.0, virtual reality, and augmented
reality [15].

Several enablers and components in the proposed deployment connect
to EDBE via the MQTT protocol. For the needs of semantic integration
(described in detail in the following subsection), the Semantic Annotation
and Semantic Translation enablers communicate in a streaming manner. Here,
EDBE ensures that the data is routed locally to the nearest available con-
sumer, minimizing latencies. To address the needs of processing geospatial
data, the Location Tracking enabler produces streams of location data from
each tracked asset. The Location Processing enabler is then able to run
complex geospatial queries on the gathered data. Finally, the workplace safety
controller component aggregates streaming MQTT data from various sources
and emits the necessary notifications and alerts.

An experimental feature, currently being investigated in the hopes of
further lowering the latencies, is the novel Jelly RDF streaming protocol [27].
It is meant to provide high-performance, low-latency streaming of semantic
data between the semantic enablers and the workplace safety controller.
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14.2.2 Data integration

The challenge of integrating data from heterogenous sources is well-
addressed by ASSIST-IoT enablers in the data management plane: the
Semantic Annotation enabler, Semantic Translation enabler, and the Semantic
Repository enabler. This technological stack provides a robust set of tools
for addressing data integration using ontologies and Semantic Web tech-
nologies [1]. Here, the Semantic Annotation enabler annotates non-semantic
streaming data using RML mappings [4], giving it explicit meaning. The
Semantic Translation enabler in turn translates the semantic data to allow
the consumers to understand the meaning of data represented using differ-
ent ontologies [10]. The semantic translation and annotation processes are
applied to data gathered from sensors present on the construction site.

The final piece of the data integration solution is the Semantic Repository
enabler, which serves as a “nexus” for all schemas, ontologies, and other data
models used in the deployment. The repository offers robust versioning and
metadata support, allowing all other components to stay synchronized with
each other, with regard to the used data models. In this use case, the repository
stores (among others) ontologies used by the workplace safety controller,
RML configuration files for semantic annotation, alignment definitions for
semantic translation, the BIM model of the constructed building, and the 3D
models of the building displayed to the users.

14.2.3 Mixed reality interface

The MR enabler is a standalone native application that is deployed on a
head mounted device (Microsoft HoloLens 2) to monitor the worksite and
notify the OSH manager about incidents or undesirable behavior. It visualizes
information from the BIM model, including construction components and
dangerous zones. The MR enabler collects, curates, and then displays the
required information related to the construction site and the workers.

Upon establishing a connection to the Edge Data Broker, the MR enabler
starts receiving data to visualize. The data, from long-term storage or real-
time data streams, is requested according to its relevance to the user at a
specific time and location. When displaying the data and other content, the
authorization and access rights of the end-user are taken into account. More
specifically:

• Blue-collar worker’s ID, medical and training data, are retrieved from
the Long Term Storage enabler for the OSH manager to verify their
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compliance with the expiration dates. Alerts and notifications from
localization services ensure that construction workers move around areas
that are safe and where they are authorized and trained.

• Manipulation of the BIM models, where the OSH manager can manip-
ulate the BIM models to be informed about dangerous zones and
evacuations routes.

• Environmental conditions such as ambient temperature and UV radia-
tion are also reaching the MR enabler through the EDBE to ensure that
workers function at suitable conditions.

Many functionalities of the MR enabler ensure that the required infor-
mation is collected, such as location and proximity data, exceeding of the
physiological parameters thresholds, weather conditions, personal identifica-
tion information, training and medical records, building information, alerts,
and notifications. At the same time, the MR enabler supports activities that
improve the overall health and safety management. More specifically, we
have the following:

Connection to the EDBE to consume data. In the case of the MR enabler,
it connects wirelessly to an edge gateway device, where the Edge Data
Broker is deployed and subscribes to multiple topics in order to be able
to consume/produce data that other enablers produce and consume.

Importing of the BIM models through the Semantic Repository. The BIM
visualization functionality relies on the loading of the BIM model from
Semantic Repository in a way that can be visualized through the MR

Figure 14.2 In this figure, real-time data is visualized to the MR device, which are produced
by a worker’s wristband.2



294 A Practical Deployment of Tactile IoT: 3D Models and Mixed Reality

Figure 14.3 The BIM model visualized through the MR glasses upon conversion to the
required format through the laboratory facilities.

device. The dangerous zones are included in the model, as presented in
Figure 14.3 and updated by the construction site’s owner.

Manipulation of BIM. The MR enabler is designed in a way that allows the
user to manipulate the 3D model rendered in order to provide a better
understanding of the information linked to it, while the manipulation
handles are presented in Figure 14.4.

Generation of reports. Using the reporting feature, as it is presented in Fig-
ure 14.5, the OSH manager can report unusual or dangerous situations,
while the reports are transmitted to the LTSE.

Displaying alerts and notifications. This activity includes the alerts and
notifications that the inspector receives in case of a dangerous event
within the construction site via the MR device.

Figure 14.4 The model has handles at the model’s corners that enable the user to scale the
model. The handles in the center of the BIM edges enable the user to rotate the model in each
direction. The user may then move the 3D model freely inside their range.
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Figure 14.5 The reporting function is visualized, where the OSH inspector can produce a
human-centric report when they identify misalignments during the inspection procedure.

Figure 14.6 The user interface of the various alerts coming from other systems (such as
weather station, fatigue monitoring, and location management system about danger zones
unauthorized access) is presented.

14.3 Evaluation

To ensure that the developed MR application is user friendly, the visuals and
user interface (UI) elements were designed after UI/UX research [12]. As a
result, a custom UI was built focusing on an immersive, usable, and familiar
user interface environment with a low cognitive load process to improve user
engagement and avoid common usability errors. At the same time, the user
path was defined upon interviews with construction stakeholders to analyze
their needs and the goals of this application. This allowed to define the trail
from the very first contact of the health and safety manager with the MR
application to their final action. Along with information gathering, prototypes
were built to determine the capabilities and complexities of a successful



296 A Practical Deployment of Tactile IoT: 3D Models and Mixed Reality

enabler. Both qualitative and quantitative research were performed to gain
insights and other analytics that favor the UX design.

Considering the human-centric approach adopted in ASSIST-IoT, the
designed mixed reality interface will be also subjected to the evaluation
process with end-user participation. Mlekus et al. [21] proved that user expe-
rience characteristics significantly affect technology acceptance. Low user
acceptance means less frequent use, lower job satisfaction, and performance
losses [3], [18], [29]. In order to determine the level of acceptance of MR
technology, Rasimah et al. [25] used the metrics of personal innovativeness,
perceived enjoyment, perceived ease of use, perceived usefulness, and inten-
tion to use. According to their findings, perceived usefulness was the most
important factor determining further intention to use MR technology. There-
fore, the feedback coming from end-users, being a result of the evaluation
process, is recognized to be crucial for the successful deployment of Tactile
IoT.

The questionnaire-based methodology for evaluating whether the MR
technology can enhance safety-related communication on construction sites
was also adopted by Dai et al. [2]. The authors demonstrated a great degree
of willingness to adopt MR technology for enhancing safety on construction
sites. Advantages of MR over currently used communication methods such
as phone calls, walking to people to talk, and video conferencing were
highlighted. In particular, instant access to information, context-based per-
ception, and visual interaction were indicated as factors highly contributing to
effective communication at the construction site. According to Dai et al. [2],
communication with the use of HoloLens was reported as more accurate
and efficient than with the use of traditional methods. However, still some
issues have been identified as responders indicated, e.g., that it was hard
to wear HoloLens and walk at the same time or that the field of view was
limited.

Using the technology acceptance model (TAM) and its variations for
MR technology evaluation is a known and appreciated method based on
collection of responses to questionnaires [11], [28]. However, in the literature
also some limitations of this method are indicated, which are particularly
related to subjective means of evaluation, including interpersonal influence.
Therefore, evaluation methodology assumed both laboratory and field trials
including subjective and objective assessment of user experience and technol-
ogy acceptance. In terms of objective assessment, special focus will be paid
to the analysis of the influence of provided MR interfaces on psychophys-
ical load with the use of biofeedback methods. Conclusions from both the
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subjective and objective assessment will be a basis for further MR interface
improvement.

14.4 Conclusions and Future Work

The proposed approach for ensuring the health and safety of construction
workers presents a significant paradigm shift in how this problem is addressed
in practice. In modern, demanding, and dynamic work environments, it is no
longer sufficient to perform periodical risk assessment studies – instead, the
safety of the site must be monitored in real time. This would be unattainable
without the use of novel technologies, such as the Tactile Internet, mixed
reality, and semantic data integration; all combined in a next-generation
IoT environment. The proposed solution architecture exemplifies how these
abstract approaches can be put to work in a specific use case, using the
ASSIST-IoT reference architecture. Moreover, the preliminary evaluation
methodology of the solution is presented. In the future, a detailed evaluation
of the system will be performed, in the demanding environment of an active
construction site.
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Abstract

In the last few years, the use of automated guided vehicles (AGVs) and
autonomous mobile robots (AMRs) has experienced a sustainable increase
in different verticals such as factories and logistics. However, they still have
some technical limitations that hamper their autonomous operation in unpre-
dictable or dynamic environments, requiring them to be supervised and/or
controlled by human operators. In such situations, current tele-operated
driving (ToD) systems lack the required stimulation and spatial perception
to precisely manipulate the AGVs/AMRs, besides suffering from real-time
challenges that limit the accuracy of movement. This chapter describes a
proposal to solve these problems, by combining low-latency 5G-IoT networks
and immersive cockpits equipped with haptic and mixed-reality devices.
It also explains how such devices provide intuitive feedback for ToD and
facilitate context-aware decision-making. The results are validated in the
context of two innovative demonstrations deployed in the environment of a
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seaport, where ToD of multiple AGVs/AMRs is supported by a 5G mm Wave
network infrastructure.

Keywords: 5G, IoT, haptics, metaverse, mixed-reality, robotics.

15.1 Introduction

Automated robots, which can be mobile (i.e., autonomous mobile robot −
AMR) or guided (i.e., automated guided vehicle − AGV), are becoming
increasingly sophisticated machines capable of navigating without human
input, thanks to the multiple sensors attached (e.g., LiDAR/RADAR, cam-
eras, IMUs, ultrasounds, etc.). The data gathered by the different sensors
is processed by powerful AI-assisted tools to detect people, obstacles, and
patterns, and even to perform the robot’s simultaneous location and mapping
(SLAM). In a collaborative industrial environment with multiple robots work-
ing at the time, next-generation IoT networks will make possible not only the
real-time communication among the robots and other assets to optimize the
collaborative task but also the offloading of the complex AI algorithms to the
edge/cloud computing infrastructure in order to mitigate the cost of hardware
and allow the robot to complete more complex missions.

Self-driving vehicles have been proposed for plenty of applications in
the literature, the majority of them motivated by security or economic rea-
sons. For instance, AGVs/AMRs can be very useful in scenarios where the
physical presence of human beings can pose a risk to their safety, such
as fires, toxic gas leaks, chemical or nuclear contamination, manipulation
of explosives, logistics, etc. Similarly, they are key for the inspection of
critical infrastructures such as factories, power stations, refineries, railways,
ports, etc., especially in remote locations or in the case of extensive infras-
tructures where inspection by a local operator would be very expensive or
inefficient [1].

Nevertheless, when deploying the mentioned use cases to a real scenario,
occasional failures occur, especially if the inputs are contradictory or unseen
for the AI modules. In the unpredictable real world, there is a myriad of
situations that expert human operators are more capable of solving than
state-of-the-art robotics. Some identified situations where human’s pattern
recognition and judgment still outperform machines are [2]: (i) low visibility
due to extraordinary weather or light conditions; (ii) confusing or malfunc-
tioning traffic signals; (iii) unclear or handwritten text indications; and (iv)
sensors providing conflicting data.
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To overcome such issues, the use of tele-operated driving (ToD) systems
as a safety backup is the best option, especially in critical tasks and tasks
that involve transporting or manipulating dangerous cargo. The idea is that
the AGV/AMR asks a remote operator to take control of the robot when it
cannot handle the situation [3], delivering to him all the necessary sensor
data (e.g., video stream, detected obstacles, telemetry information, etc.). In
that regard, we consider the state-of-the-art solutions to provide insufficient
time responsiveness and stimulus to perform ToD precisely and intuitively in
any environment.

For a correct implementation of ToD, we identify that an appropriate IoT
communication infrastructure along with dedicated protocols and an intuitive
cockpit setup is needed. From the communication perspective, 5G seems to
be the best candidate to satisfy the QoE requirements (e.g., strict throughput,
latency, and loss rate), although they depend on multiple factors such as the
level of control of the vehicle. From the application perspective, we propose
to integrate the cockpit with a combination of head mounted displays (HMDs)
and haptic devices to engage the user in multisensory and realistic 3D envi-
ronments that facilitate the ToD. We think that such combination will be the
standard for any kind of remote control in the next decade, transforming the
ways humans interact over long distances and revolutionizing verticals such
as healthcare, education, entertainment, and industry.

The rest of the chapter is structured as follows. Section 15.2 details the
challenges of the state-of-the-art ToD systems, especially regarding real-
time working. Section 15.3 proposes a generic architecture and components
to overcome these challenges, identifying haptic communications, mixed
reality, and 5G as the main enablers for ToD. Section 15.4 describes the
implementation of the architecture and components into a proof of concept
deployed in the environment of a seaport, including a KPI collection to study
the viability of the use case. Finally, the chapter’s conclusions and next steps
are included in Section 15.5.

15.2 Tele-operated Driving challenges

15.2.1 Real-time issues

All the use cases described above intend to control the vehicle in real time,
which is with an imperceptible latency for the user. This means that the
system will only be felt as intuitive and natural if the end-to-end (E2E)
latency of the system is below a certain threshold, the so-called human factor.
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However, the studies found on the literature do not provide firm conclusions
about the value of such threshold, with results that range from 10 to 400 ms.
For example, the 5G Automotive Association (5GAA) defines a maximum
admissible latency from 400 ms when the robot is only supervised to 120
ms when the operator fully controls the vehicle [4]. Moreover, the human
reaction time depends on factors such as the age and qualification of the
subject, the expectancy to the event, or the participating senses [5].

Regarding ToD specifically, the human factor for both sight and touch
is also dependent on the characteristics of the application (e.g., velocity of
the robot, size of the scenario, and other moving objects). In fact, some
studies identify that the strictest human factors come from the combination of
visual and tactile feedback controlling an immersive, highly dynamic visual
scene, when an E2E latency of few milliseconds is needed in both senses for
unnoticeable delay [6].

Unfortunately, such extremely low values cannot be satisfied with current
technology, considering that sensors and actuators are usually the bottleneck
of the application-level delay. For example, if the maximum E2E latency for
a certain ToD application is 200 ms and the immanent latency of a modern
operating robot is (in the best case) around 180 ms, only 20 ms are left for
visual feedback, application processing, and network-level latencies. For a
typically lower human factor for sight, this threshold is impossible to reach,
although some studies propose to anticipate the user’s intention via complex
AI/ML algorithms [7]. On the other hand, the human factor for touch (i.e.,
around 10−50 ms) may be easier to satisfy, given that haptic actuators are
quicker than mechanical ones, as is the case of Meta’s haptic glove prototype,
which was able to achieve haptic feedback delays of just 20 ms [8]. For that
reason, we envision that by applying haptic feedback to ToD, the user can be
warned about a certain danger faster than only using visual feedback.

Hence, the reduction of network-level latencies for ToD will not make
the difference by itself but can contribute to enable some specific use cases.
Under specific configurations, 5G networks target latencies down to 1 ms,
which is a reduction between 30 and 50 ms compared with current networks.
Nevertheless, the main challenge is not to achieve ultra-low latencies but
to achieve them while maintaining high reliability and throughput. Even
with dedicated networks and proper dimensioning, such combination requires
combining two 3GPP families: (i) enhanced mobile broadband (eMBB) and
(ii) ultra-reliable low-latency communications (URLLC), which entails chal-
lenging tradeoffs. On the one hand, increasing the reliability requires more
resources for signaling, re-transmission, redundancy, and parity, resulting in
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an increase of the latency. On the other hand, low latency modes are only
valid in a multi-user network for a fraction of the load in the system, and at
the expenses of higher latencies for the rest of the users.

15.2.2 Immersive devices

The scope of ToD is closely linked to racing simulation games. Those games
are intended to emulate the behavior of real-world cars, making the user feel
to be physically in the vehicle through the use of racing cockpits equipped
with haptic-feedback steering wheel, gearbox, and pedals. Nevertheless, the
visual feedback is usually provided by one or several 2D screens, which do
not provide a sufficiently immersive experience.

Although many consumer-grade VR HMDs are available in the market
today (e.g., HTC Vive, Meta Quest, Sony Playstation VR, and Valve Index),
their lack of quality content has made them commercially unsuccessful, dis-
couraging developers to create more VR content for their games. Moreover,
sophisticated peripherals capable of immersing the user into the in-game
action, such as pass-through mixed reality (MR) HMDs (e.g., Varjo XR3,
Meta Quest Pro, etc.), haptic vests (e.g., bHaptics TactSuite, OWO, etc.), or
force-feedback haptic gloves (e.g., HaptX DK2, SenseGlove Nova, etc.), are
at the moment industrial-grade devices due to their expensive prices.

We consider it a matter of time that the technology evolves enough
to make immersive devices commercially attractive, allowing people to get
immersed into artificial scenarios and witness new ways of interacting with
tools and machines. Indeed, immersive devices have the potential for pro-
viding complex user interfaces and extended spatial perception that boosts
human problem-solving and manipulative skills [9].

15.3 Immersive Cockpit Architecture and Components

15.3.1 Overall architecture

As the core part of any ToD scenario, the use of the immersive cockpit
influences the design of the whole architecture and the rest of the actors
involved, including network, AGVs/AMRs, or UEs. In the end, data flows
are the essence of IoT; so the whole architecture must be oriented to exploit
this data.

In order to supervise and/or control the AGVs/AMRs in industrial
environments, where every task is critical, accuracy is the main require-
ment. Hence, it is critical to communicate the immersive cockpit and
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the AGVs/AMRs with low latency, while maintaining high reliability and
throughput. Using Wi-Fi, LTE, or other IoT networks different from 5G might
lead to in undesired accidents costing money and even potential injuries
to people. 5G is the only network capable of offering advanced slicing or
QoS-prioritization schemes.

The architecture we propose can be appreciated in Figure 15.1. It has
three key parts [10]: (i) 5G mmWave antenna compliant with 3GPP Rel-15
(eMBB); (ii) indoor cockpit composed of MR HMD, haptic gloves, steering
wheel, and pedals, connected to an MEC via fixed fiber and/or 5G hotspot;
and (iii) AGV/AMR equipped with 360ž cameras, proximity sensors, and a
5G modem. Its flexible and versatile design allows for several AGVs/AMRs
with different traffic priorities to be working simultaneously in the
area.

There are four different data flows from or to the immersive cockpit.
In the uplink, one unique flow is used to transmit driving commands to
the AGV/AMR, either using the haptic gloves or the steering wheel. In the
downlink, the ACK message to these commands contains the telemetry data,
used to monitor the status of the robot. The E2E latency for the haptic data
flow is expected to be between 20 and 30 ms. On the other hand, the video
streaming is received in a different downlink data flow, which provides a
360ž first-person view of the area (displayed in VR or MR) with an expected
latency of 100 ms. Finally, a security signal that contains the information
about the LiDAR and depth cameras is used to create haptic feedback that
warns about the obstacles and other events on the automated route.

Figure 15.1 Data flows in the proposed architecture of the immersive cockpit [11].
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15.3.2 Components

15.3.2.1 Head mounted displays
HMDs are devices that allow users to experience VR or MR. HMDs typically
consist of a headset that includes a display and lenses, as well as sensors and
other hardware for tracking the user’s movements and providing a realistic
experience. MR-backed tele-operation permits the 3D visualization of the
scenario while displaying useful data acquired from the ambient using the
robot’s sensors, enriching the information for the drivers. This allows users
to interact with virtual objects as if they were real, making the experience
more engaging and realistic. One of the key advantages of MR headsets
is their ability to track the user’s movements in the real world, allowing
to move around freely and interact with virtual objects in a natural way.
In contrast, VR headsets often require users to stay in a fixed position,
limiting their ability to interact with the virtual world. Additionally, the pass-
through cameras of MR headsets can provide a more comfortable and natural
experience for users, preventing motion sickness and other discomforts that
can be caused by fully immersive VR experiences.

Hence, the immersive cockpit has been tested with two different HMDs
(one MR and other VR). The first one is the Varjo XR-3, a high-end
MR device with advanced features (e.g., hand tracking, eye tracking, and
autonomous SLAM) and a top resolution of 70 pixels per degree. It also
includes pass-through cameras and LiDAR sensors to enable the overlaying
of virtual objects on the real world, perceived as photorealistic by the user.
The second device tested is the famous Meta Quest 2, a pure VR device with
lower resolution and simpler features but capable of working standalone (i.e.,
via Wi-Fi and not tethered to a PC). However, it was found out that the wired
mode provides better latency and performance.

15.3.2.2 Haptic gloves
People trust on digital technologies to interact over long distances when
they cannot be physically present in a certain place, either due to agenda
overlaps or mobility restrictions. However, current approaches are limited
to the communication of sight and hearing, which, although are becoming
increasingly capable of simulating physical presence thanks to the devel-
opment of metaverse technologies such as mixed reality and holograms,
lack the ability to simulate physical interaction as touch does. In fact, it
has been demonstrated that haptic interaction improves human performance
over any kind of task [12], showing that the sense of touch is crucial for
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perceiving the environment. It seems logical to try to replicate these benefits
in human−machine interaction, by implementing haptic communication into
ToD. Haptic feedback can be used not only for ToD when the robot reaches
its functional limits [13] but also for receiving information about the robot’s
state in the supervision mode [14].

Haptic communications are still an unexplored technology, meaning that
the development of haptic applications, protocols, devices, and actuators is
very poor. The few commercially available haptic devices are quite expensive
and limited, which impedes the growth of the industry and the unlocking
of the potential of haptic communications. In fact, the haptic glove used in
our proof of concept is a prototype that only provides vibrotactile feedback,
created by NeuroDigital Technologies.

The Sensorial XR haptic gloves feature 10 haptic actuators with LRA
technology, one at each fingertip and five near the palm. Each LRA has 1024
vibration intensities with an amplitude up to 1.8 G and a resonant frequency
of 205 Hz, ensuring a high level of realism and immersion. The gloves also
have a low latency of under 30 ms, ensuring a seamless and responsive
user experience [11]. In addition to the haptic actuators, the gloves also
feature seven nine-axis IMUs working at 200 Hz. The IMUs allow for motion
capture, enabling the gloves to track and replicate a user’s hand movements in
the MR environment. This is executed by the capture of abduction, adduction,
and rotation degrees of freedom, providing a more detailed and accurate
representation of hand movements compared to flex/blending sensors [15].
Finally, the gloves have four conductive fabric zones located in the thumb,
middle, index, and palm. These allow for gesture capture, enabling the gloves
to recognize and respond to specific hand gestures made by the user. A picture
of the different sensors and actuators of the gloves can be seen in Figure 15.2.

The Sensorial XR haptic gloves can be used with either a wired or wire-
less connection to the supporting PC. The wired connection offers negligible
latency and a sample rate of over 200 Hz, ensuring a high level of responsive-
ness and accuracy. The wireless connection uses Bluetooth 5.0 and has an
added latency of 7.5 ms, with a lower sample rate of 120 Hz. The gloves
come with a dedicated API programmed in C# language, which enables
communication with the Unity3D application that defines their behavior after
an event. The application can simulate complex sensations such as inter-finger
collisions, surfaces rugosity, or customized vibrations, providing a rich and
immersive VR experience. Figure 15.3 shows an example of how the haptic
sensations can be applied to ToD, creating haptic feedback to warn about the
obstacle closeness.
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Figure 15.2 Sensors and actuators of Sensorial XR [16].

Figure 15.3 Haptic feedback intensity as a response to the obstacle closeness [16].

15.3.2.3 Wheels and pedals
The Logitech G29 is a high-performance racing wheel, pedals, and gearbox
designed for use with gaming consoles and computers. The wheel features a
durable, high-quality construction with a leather-wrapped steering wheel and
stainless steel paddle shifters. The pedals are made of metal and feature a
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non-slip surface, while the gearbox offers six-speed manual shifting with a
clutch pedal.

One of the standout features of the Logitech G29 is its force feedback
system, which provides realistic and immersive racing experiences. Indeed,
it has a dual-motor design, providing separate feedback for the wheel and
pedals. The wheel also has a number of customizable buttons and dials,
allowing users to customize their racing experience.

15.3.2.4 5G mmWave modems
The scarcity of mmWave modems and devices in the market has made it
also challenging to implement such frequencies in our E2E solution. Only
two of these devices were available for testing and integration, one on the
AGV/AMR side and the other on the cockpit side. On the AGV/AMR side,
we used an Askey mmWave 5G modem, which was directly connected to
the AGV/AMR controller board. This modem also has a web user interface
that allows for easy configuration. On the cockpit side, we used an Asus
smartphone with mmWave capabilities, which was configured to create a
VPN with the AGV/AMR. Both of these modems are capable of operating
in the n258 5G band and provide an Ethernet link to the rest of the connected
systems.

15.4 Proof of Concept

The huge traffic volume handled yearly by the port terminals, together with
the variety of infrastructures and equipment managed by different stakehold-
ers (e.g., terminal operators, maritime agencies, or logistic suppliers), make
them one of the most complex parts of the supply chain.

We propose to digitalize and automate the port logistics by taking advan-
tage of the data richness of IoT, implementing innovative use cases such as the
“improvement of the driver’s safety with mixed-reality and haptic solutions.”
It envisions a future when AGVs/AMRs will be used as mobile cranes to
transport the ship containers around the port terminal, optimizing the loading
and unloading of assets [15]. The ToD of the AGVs/AMRs will be available
as a safety backup (i.e., for both supervision and total control), performed
from a remote indoor cockpit to avoid accidents and hazardous situations
for human operators. In an attempt to provide more intuitive and immersive
ways of operating the AGVs/AMRs, the use of 2D screens and input devices
(e.g., mice or keyboards) will be avoided. Instead, the immersive cockpit will
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be equipped by HMDs and haptic gloves, capable of providing multisensory
information of the port area.

15.4.1 End-to-end use case description

To understand the role of the immersive cockpit within the use case, it is
necessary to provide a whole picture about the scenario and actors involved.
As a proof of concept before the deployment in the port terminal, several
AGVs/AMRs are programmed to follow automated routes around a specific
area, simulating the logistics operations. Simultaneously, a remote operator
utilizes the immersive cockpit to supervise the task, with the possibility
of controlling (i.e., changing or stopping) the route at any moment. In
the extraordinary case that the robot’s autonomous mode is not available
(e.g., SLAM fail, or non-avoidable obstacle in the path), the control of the
AGV/AMR totally shifts to the cockpit for a full ToD. During this manoeuver,
the visual and haptic feedback provided by the immersive cockpits allows the
user to precisely overcome the obstacle and put the AGV/AMR back in its
route; so it can work autonomously again.

While the ToD cockpit is integrated with all the peripherals mentioned
before (i.e., steering wheel, pedals, haptic gloves, and HMD), the supervision
mode can alternatively be performed through an “on-site cockpit” composed
by the haptic gloves only (see Figure 15.4). This intends to prove the potential
of such devices as both IoT sensors and actuators, as well as to explore new
ways of controlling the AGVs/AMRs.

15.4.2 Remote cockpit

The remote cockpit implements all the described components into a unified
solution. However, although the hardware is important in order to enable the
features desired, the software is the true important part. The XR application
we implemented is an MR simulation of a car interior and exterior, as depicted
in Figure 15.5. The Unity scene was created by modifying a car model using
Blender software and then importing it into Unity. The GStreamer unity
plugin is used to receive H264 video streams from multiple cameras, which
are projected into four rectangles within the car scene. In addition, UDP
C# scripts are used to receive telemetry and security information from the
nodeJS cockpit application. This information is displayed in the car’s user
interface components and the steering wheel is also moved according to the
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movement of the physical steering wheel being used to remotely drive the
AGV/AMR. The telemetry information retrieved from the AGV/AMR every
100 ms includes longitude and latitude GPS position, RTT in milliseconds
for the UDP commands, steering angle of wheels, vehicle speed (m/s),
traffic lights status if sent, engine RPM, driving mode, battery energy, and
encountered objects if any. On the other hand, the security signal serves for
haptically warning the user about the events on the route, including the case
that autonomous mode is no longer available and ToD is required.

Haptic
gloves

Wheel +
pedals

5G mmWave Antenna

Port terminal

Remote cockpit

MEC

HMD

Haptic
gloves

On-site cockpit

0 1

2 3

4

Obstacle

AGV/AMR
5

ToD

Supervision Supervision

• Immersive
application

• KPIs
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Figure 15.4 Immersive cockpit use case scenarios: route control (supervision) demo and
ToD demo.

Figure 15.5 Remote cockpit implementation from first-person view (left) and third-person
view (right).
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Figure 15.6 On-site cockpit implementation (left) and route control schema (right).

15.4.3 On-site cockpit

This cockpit is only used for supervision and command of the AGVs/AMRs,
with the Sensorial XR haptic glove playing a pivotal role. The application is
focused on using the Sensorial XR SDK interface to handle the data received
from the haptic glove, including vibration levels, hand position and rotation,
and gesture performed. This allows the user to easily control and manage
the AGV/AMR’s actions. The gestures that can be performed include: (i)
going to a specific point in the route; (ii) stopping the movement; and (iii)
resuming the movement (see Figure 15.6). This allows the user to avoid
potential dangers for the robot, such as approaching an obstacle on the route,
by receiving haptic feedback with an intensity that depends on the proximity
of the obstacle, as depicted in Figure 15.3.

15.4.4 KPIs collection

In a first attempt to test the viability of the immersive cockpit implementation,
the following KPIs were analyzed during the proof of concept deployed in the
port:

• Round trip time (RTT)
• Video latency
• Video throughput
• E2E latency

First of all, the RTT is measured from the application layer, and, therefore,
it considers the time that it takes for a UDP control command to be sent
from the application (either from the gloves or the wheel/pedals) to an
AGV/AMR, and for the AGV/AMR to send back the telemetry information to
the application. The RTT is automatically calculated for each UDP message
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Figure 15.7 Round trip time of remote driving command in Grafana.

and stored in a Grafana database, as Figure 15.7 shows. In order to effectively
manage and store all the data, we have implemented a Grafana-based system
in the MEC. This system receives asynchronous UDP messages from the
nodeJS application on the HMD side through the use of a Telegraf plugin,
which then injects the messages into the Influx DB database for storage. It
can be appreciated that the RTT is very low, of around 7.5 ms, thanks to the
use of a 5G network.

The video latency and throughput are jointly measured via slow-motion
analysis, using the GStreamer tool to configure different video resolutions.
In this case, the communication is only downlink (i.e., from the AGV/AMR
to the cockpit), and both KPIs are measured from the cockpit perspective.
Hence, the throughput captured is 2.5 Mbps for 360 p resolution, 8 Mbps for
720 p resolution, and 16 Mbps for 1080 p resolution. The same resolutions
offer average latencies of 138.4, 156.4, and 173.6 ms, respectively; quite high
values considering that no video codec is used.

Finally, the E2E latency is measured via slow-motion analysis too. We
are aware that such method includes several biases such as the behavior of
the peripherals, the slow-motion camera or the AGV/AMR; but we chose this
method as a first approach, due to its simplicity. The E2E latency is measured
on the on-site cockpit and includes the RTT plus delays of sensors/actuators
of the cockpit and the AGV/AMR. However, we identified that the bottle-
neck may be the specific AGV/AMR being used. Hence, the data shown in
Figure 15.8 demonstrates that, on average, there is a noticeable difference
in perceived latency when an AGV/AMR is resumed on a route or sent to a
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specific point (735 ms) compared to when it is stopped (362 ms). This is due
to the fact that it takes less time to mechanically stop the wheels using the
brake than it does to start movement.

Figure 15.8 Perceived E2E gesture latency.

15.5 Conclusion

This chapter has explored the benefits of using immersive cockpits for ToD
and supervision of AGVs/AMRs in real time, identifying key enabling factors
such as haptic communication, mixed reality, and 5G. In order to demonstrate
the viability of this technology, a proof of concept was deployed in a port
environment with the goal of improving operator safety through indoor ToD.
It was found that, while the literature defines an end-to-end (E2E) latency
threshold of under 50 milliseconds for immersive ToD, this is currently not
feasible due to mechanical limitations.

The performance metrics collected during these demonstrations resulted
in average E2E gesture latencies of 362 ms for braking and 736 ms for
acceleration, despite a network RTT latency of only 7.5 ms. Regarding the
E2E video latency, the average values are between 138.4 and 173.6 ms,
depending on the resolution demanded. These despair results, with a great
gap between the E2E gesture latency and the RTT or video latencies evidence
that the robot’s mechanical actuators, are the primary bottleneck for ToD,
and therefore the E2E gesture latency can be widely reduced using more
mechanically advanced AGVs/AMRs.
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Nevertheless, it must be considered that such mechanical latency is also
present when manually driving the vehicle, not only when tele-operating it.
Hence, more relevant KPIs (such as the communication and application laten-
cies) should be prioritized when studying the real-time viability of immersive
ToD. The low RTT provided by the 5G network, together with the low E2E
video latency obtained show that the application latency is acceptable for this
use case. Moreover, rudimentary subjective tests performed on different users
that participated in the proof of concept agreed that the ToD was intuitive and
smooth, whereas the latency was almost un-noticeable. In addition, through-
put measurements showed that this ToD application has minimal bandwidth
requirements that can be easily satisfied by 5G Release 15 (eMBB) networks.

Despite these challenges, the proof of concept showed the potential of
haptic and mixed reality assisted ToD to revolutionize industries and logistics
in the coming decades. We consider this use case to be completely open
to future improvements and technological advances. Haptic communication
will continue to be explored through the creation of an immersive laboratory
at the Universitat Politècnica de València in late 2023, where QoE-based
optimizations will be conducted for various sectors including education,
industry, and logistics.
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Abstract

Manufacturing as a Service (MaaS) refers to a set of tools and processes that
can assist the shared use of networked production facilities. In the core of
this paradigm is a vision where manufacturing environments shall profit from
an online set of tools and services that can be tailored to the requirements
coming from the different manufacturers, thus reaching a higher degree of
flexibility and an increase in production efficiency.
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In the context of MaaS, the Horizon 2020 European Connected Fac-
tory Platform for Agile Manufacturing (EFPF) provides an operational
instantiation of a large-scale MaaS across Europe, integrating a diverse set of
services such as data analytics, factory connectors, and an interoperable Data
Spine to proportionate a high level of automation across different shop-floors.

This chapter explains the EFPF MaaS concept, going over its architectural
design, and giving insight into how developers and SMEs can profit from the
EFPF open-source SDK to generate new products, and how these products
can be integrated into the EFPF broad marketplace. The chapter gives insight
also to the different pilots developed in the project, explaining challenges
faced, and proposed solutions.

Keywords: MaaS, machine learning, IIoT, federated platform, SDK.

16.1 Introduction

In Europe, manufacturing is one of the key pillars of economical and societal
development. While usually perceived to be solely limited to production,
manufacturing businesses cross different areas and sectors, from agriculture,
automotive, and construction, currently directly providing support for 32
million jobs in Europe1. While it shows a tremendous growth potential,
manufacturing in Europe has seen a series of challenges, ranging from a shift
in demand from goods to services; an increasing competition of emerging
markets; lack of skills in different sectors, to comply with a technology-driven
approach to manufacturing, required to make it grow to a sustainable level.

A key aspect to allow manufacturing to grow is to provide Small and
Medium Enterprises (SMEs) with innovative tooling, to foment the devel-
opment of innovative assets and services with a short time-to-market and to
assist SMEs with broad dissemination coverage for the services developed.
This aspect can be further developed, if SMEs can cooperate with research
institutions, as this can assist in better understanding the novel directions to
take.

Manufacturing as a Service (MaaS) therefore plays a key role in the future
of manufacturing in Europe, in particular considering the development of
SMEs. While there are multiple approaches to MaaS platforms, the key
shared aspects relate with the capability to easily allow for new products to be

1https://www.iwkoeln.de/fileadmin/user_upload/Studien/IW-
Studien/PDF/Studien_Manufacturing-in-Europe.pdf
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generated and applied; to reach a high capability of customization to customer
requests; and to ensure an adequate adaptation and integration of different
tooling that can better support process and product efficiency. Backed up by
edge- and cloud-based services, MaaS is currently reaching a mature stage,
allowing for a true distributed manufacturing value-chain based on different
sets of tools.

In this context, the current trends point to a combination of novel
approaches, such as edge−cloud architectures [1], [2]; Artificial Intelligence
(AI)/Machine Learning (ML); semantic technologies; and Industrial IoT
(IIoT) to sustain a MaaS distributed edge−cloud vision.

This chapter addresses the MaaS paradigm based on the European con-
nected factory platform for agile manufacturing (EFPF)2 concept and
learnings, which integrate over 30 partners across the whole manufacturing
value-chain (users, technology providers, consultants, and research institutes)
from 11 European countries.

The key contributions of this chapter are:

• A presentation of an active MaaS concept, the EFPF architecture based
on the implementation of advanced interoperability concept (Data Spine
[3]) through innovative technologies.

• An overview of the EFPF SDK, which can be used by SMEs to compose
and develop innovative applications that profit from the EFPF services
and from the highly interoperable EFPF Data Spine.

• An overview of EFPF pilots deployed across Europe, describing chal-
lenges and solutions thereof.

16.2 Related Work

The European vision on Industry 4.0, the fourth industrial revolution,
addresses the need to integrate a high degree of smart automation, where
not just technology processes but also societal patterns are to be supported.
Several related work has therefore been focusing on addressing the interop-
erability challenge in flexible, smart manufacturing. For instance, Datta et al.
propose a secure and interoperable platform for lot-size-one manufacturing
[4]. This platform is based on the EFPF collaboration tool, showing benefits
in terms of interconnection of entities focusing on lot-size-one production.

Traditionally, the fastest step toward complete and integrated interoper-
able digitization is to rely on a cloud-based approach, as it provides more

2 https://www.efpf.org/
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flexibility in terms of product development, scaling, and product dissemina-
tion [5]. Cost-wise, cloud-based services become cheaper than investing on
dedicated hardware. The use of cloud-based services is usually done based
on an integrative perspective, where it is feasible to consider marketplace
platforms to test and to try new suppliers, or eventually new customers based
on a low-cost approach. This implies the development of highly interoperable
and secure platforms, which on its turn require a vast support of different
connectors, at different layers of the OSI stack [6].

The MaaS approach goes beyond cloud manufacturing platforms, in the
sense that it addresses a collaborative, decentralized perspective integrating
IIoT to boost new levels of process efficiency and productivity; sharing
or community-oriented business models; and open-source software [7], [8].
Furthermore, a stronger involvement of all stakeholders, including the cus-
tomer, in the overall manufacturing wholesale value-chain, is supported in the
MaaS vision, by aiming at a higher degree of customization that is customer-
driven [9]. This requires, as explained before, to integrate intelligence across
the whole value-chain of manufacturing (across edge-cloud) and providing
a distributed abstraction approach that can sustain the integration of the
different manufacturing stakeholders, since the creation of materials, until
the delivery of customized products on the market.

In this context, the work described in this chapter focuses on the initial
steps that have been taken in the context of the European H2020 project EFPF,
to provide an operational instantiation of a MaaS approach.

16.3 The EFPF Architecture

EFPF is a federated smart factory ecosystem that enables the federation
of digital manufacturing platforms and interlinks different stakeholders of
the digital manufacturing domain. The EFPF ecosystem enables users to
utilize advanced interoperability solutions, implement innovative technolo-
gies, experiment with disruptive approaches, and develop custom solutions
to maximize connectivity, interoperability, and efficiency across the supply
chains.

16.3.1 The EFPF ecosystem as a federation of digital
manufacturing platforms

The key components underpinning the EFPF federated platform ecosystem
is illustrated in Figure 16.1. The EFPF ecosystem is formed by connect-
ing a number of digital manufacturing platforms that provide ready to use
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Figure 16.1 High-level architecture of the EFPF ecosystem.

and reusable functionalities. A set of central components called “ecosystem
enablers” provide the core functionality that is needed to federate these
platforms and enable interoperation among them. This ensures seamless
access to the platforms’ resources such as tools, services, and data, thereby
enabling reusability and sustainability. The ecosystem enablers together with
the tools and services of the connected platforms provide the necessary
techniques and technologies to support the adoption and development of
advanced manufacturing applications.

Some of the key components in the EFPF federated platform ecosystem
include:

• Data Spine [3]: Corresponds to the core of the EFPF ecosystem that
enables interconnection and interoperability. The Data Spine provides
services such as single sign on; service registration and discovery;
message brokering; and dataflow management and service composition.
Being the interoperability backbone of the EFPF platform, one of the
Data Spine’s focuses is to bridge the interoperability gaps at the levels
of identity providers, data models, protocols, and processes between
the tools that it interconnects. The Data Spine supports both syn-
chronous request-response as well as asynchronous publish/subscribe
(Pub/Sub) communication patterns. The Data Spine’s architecture and
capabilities are explained further in the next section.
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• EFPF Portal3 [4]: Acts as the single point of entry for the EFPF
ecosystem. It allows the users to access connected tools, services, plat-
forms, and marketplaces through a unified graphical user interface
(GUI). The GUIs of many tools and services in the EFPF ecosystem
are integrated with the EFPF portal and can be accessed directly through
the portal.

• Integrated marketplace [4]: Provides an extensible framework to
integrate multiple marketplaces, allowing users to access distributed
offerings (from multiple marketplaces) through a unified interface.
Moreover, the integrated marketplace framework consists of a compo-
nent called “accountancy service” that tracks the user journeys from
EFPF ecosystem to the interlinked marketplace(s), while supporting the
sales-commission-based business models.

• Matchmaking service: Provides a federated search functionality that
facilitates EFPF users to find the best suited suppliers from across
different platforms and enables them to transact with them efficiently
and effectively. Once a match of suitable partners is found, the match-
making service enables users to form teams or consortia, to be able to
jointly address specific business opportunities, and transact with them
efficiently and effectively.

• Factory connectors and IoT gateways: Correspond to communication
connectors deployed at the edge (e.g., MQTT Sparkplug connector) that
collect data from the sensors and make it available to the cloud-native
services such as the Data Spine. Some of the IoT gateways also consist of
a middleware that provides some form of data processing functionalities,
e.g., matchmaking between IoT data sources and services.

• EFPF platform: Provides unified access and interfaces to distributed
smart factory tools and services. Examples of such tools and services
include data analytics, predictive maintenance, track and trace, process
design and execution, etc.

• Base platforms: Correspond to the four digital manufacturing platforms
from the European Factories-of-Future (FoF-11-2016) cluster focused
on supply chains and logistics, namely, COMPOSITION4, DIGICOR5,
NIMBLE6, and vf-OS7. The EFPF ecosystem is created by initially

3 https://www.efpf.org/
4 https://www.composition-project.eu/
5 https://www.digicor-project.eu/
6 https://www.nimble-project.org/
7 https://www.vf-os.eu/
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interlinking these base platforms. These platforms provide functional-
ity that is complementary to each other with minimum overlap, and,
hence, by interlinking them, the EFPF ecosystem is able to offer a
comprehensive set of business functions.

• Third-party platforms: Correspond to the digital manufacturing plat-
forms interlinked with the EFPF ecosystem that are provided by inde-
pendent third parties. Each platform offers a range of tools and services
that can be used by the users in the federation.

• Third-party tools, services, and data: Correspond to the individual
tools, services, data APIs, etc., provided by independent third parties
that do not belong to an existing platform.Interoperable Data Spine:

Figure 16.2 illustrates the EFPF Data Spine [3] as the central entity
that enables the creation of the EFPF ecosystem by interlinking various
platforms and enabling communication among them. The Data Spine follows
a federation approach to interoperability, where the interoperability between
a pair of services is established “on-demand,” i.e., when required by a use
case. There is no common data model or API imposed at the ecosystem
level. This enables the creation of a modular, flexible, scalable, and extensible
ecosystem.

The Data Spine consists of the following components that bridge the
interoperability gaps among platform services at the levels of identity
providers, data models, protocols, and processes and enables the creation of
cross-platform applications in an easy and intuitive manner:

• EFPF security portal (EFS) federates the identity providers of the
connected platforms and enables single sign-on (SSO) functionality in
the ecosystem.

• Integration flow engine (IFE) provides a low-code development envi-
ronment that can be used to create composite applications in the form
of dataflows or “integration flows.” The IFE provides a drag-and-drop
style visual interface and built-in reusable components such as protocol
connectors and data transformation processors that can be used to bridge
the interoperability gaps among services.

• EFPF message bus enables asynchronous pub/sub-based communica-
tion in the EFPF ecosystem.

• EFPF service registry enables the lifecycle management and discovery
of the service/API metadata that is needed for finding and consuming
the services across the connected platforms.
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Figure 16.2 High-level architecture of the Data Spine [3].

• API security gateway acts as the policy enforcement point for the
HTTP-based APIs exposed by the integration flows.

The Data Spine is realized through the implementation of several open-
source components and the overall solution is made available as a permissive
open-source solution for addressing interoperability challenges at diverse
levels of the digital infrastructure. Overarching the interoperability features,
holistic security, and privacy concepts are implemented to ensure transparent
utilization of tools and services, as well as secure data exchange based on
HTTP, MQTT, and AMQP protocols in the EFPF ecosystem.

The Data Spine was validated through the establishment of a platform
federation that initially interlinked the tools, services, and user communities
from the base platforms. Additional validations are carried out by adding
external industrial platforms (from EFPF partners) in the federation.
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Based on the interconnectivity and interoperability enabled by the Data
Spine, the EFPF federation represents a vibrant digital ecosystem that brings
together and interconnects the providers and consumers of smart factory
tools, services, and interfaces. The tools and services in the EFPF ecosystem
cover the complete lifecycle of production and logistic processes that take
place in a modern industrial environment. Examples of the tools include, e.g.,
data gateways, distributed production planning and scheduling, distributed
process design, production monitoring, real-time decision support, process
optimization, risk management, and blockchain-based trust and message
exchange.

16.4 EFPF SDK

The EFPF project aims to provide manufacturing businesses as an essential
artifact, which is to have mechanisms to enable them to create their own
applications, which can be best suited to the specific needs of the business, so
that they do not require specialized companies (tied to EFPF) to make these
applications. The objective is to enable the development of applications that
can be done by small third parties or even developers from the manufacturing
customer. This, on one hand, allows the customers to be less dependent on
specialized companies for performing any development that involves EFPF,
fostering an environment where the services of EFPF are made available in a
centralized way so that they can be configured and applied to small high-value
applications. On the other hand, this development environment also allows
external third-party software development companies to use it for developing
their own applications using the EFPF framework, where these developed
applications can then be built and published in the EFPF marketplace, thus
fostering a parallel business model that can bring them interesting revenue.

EFPF provides a range of tools included in its SDK8 to help achieve the
above goals. Several Business Intelligence Applications (BI Apps) were
also developed to demonstrate its benefits to business as well as to highlight
the SDK capabilities, which utilize different technologies provided by the
EFPF SDK. Examples of these BI Apps are the Shopfloor Intelligence BI
App, the Lagrama Predictive Maintenance App, and the Spray Booth BI
App, which represent specific use cases that show users what they can achieve
by using the SDK.

8 https://www.efpf.org/sdk
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The development environment is very rich, featuring best-of-breed solu-
tions such as an SDK that centralizes the EFPF features and APIs so that they
can be accessed, a full web-based IDE (based on Eclipse CHE, a project of
the Eclipse foundation) to develop the applications, which is integrated with
the SDK and with other EFPF-developed tools such as a Frontend Editor,
which provides a simple way to produce the application’s look and feel, the
integration with WASP’s Process Designer, which allows the users to define
BPMN flows of the application behavior, and integrating the generating code
back in the IDE. Other tools are also integrated such as the EFPF Engagement
Hub, a portal that is aimed to promote the connection and interactivity
between the developers, fostering open source and collaboration between
them, as can be seen in Figure 16.3.

The EFPF SDK is a Javascript wrapper that comprises calls to the EFPF
APIs, which then can be integrated in the IDE to make successful calls to
the EFPF services as long as they are conformant with the corresponding
protocols. The internal scripts have a flow that can be seen in Figure 16.4.

Moving along the SDK framework, the SDK Studio is a full-fledged
integrated development environment (IDE), based on one of the most pop-
ular development platforms, Eclipse CHE, which allows having all the
EFPF development environment in a Web-based platform, as can be seen in
Figure 16.5.

Figure 16.3 EFPF SDK architecture.
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Figure 16.4 EFPF SDK flow.

The SDK Studio is able to develop applications in multiple languages
and integrate with different technological stacks, and, of course, includes
all the best features of the Eclipse IDE, such as the project development
management, extensions, a complete editor with syntax highlighting, and
many others. Despite the fact that the project uses Eclipse CHE, numerous
customizations needed to be performed to integrate it with the EFPF envi-
ronment, namely the SDK, the SDK Frontend, EFPF Keycloak, the WASP
Process Designer, etc.

To enrich the look and feel of the developed applications, the EFPF
SDK Frontend Editor is designed to support the development of custom
applications initiated with the EFPF software development kit (SDK) based
on the services provided by the EFPF platform. The Frontend’s main func-
tionality is to provide developers with a GUI editor for prototyping, to
integrate and customize applications built with the SDK. Developers can
combine all microservices based on implementations of the SDK integrated
functionalities.

The frontend can be accessed by the SDK Studio interface using a
plain browser. The solution is based on predefined templates that stand for
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Figure 16.5 EFPF SDK Studio.

themselves (e.g., customized GUI elements) and can bind data sources from
EFPF that are orchestrated by Application Development Studio. Application
developers have a high degree of flexibility and power by combining the
predefined templates and visual elements that can be used inline or nested.
This approach results in a multitude of application designs.

The Frontend UI offers additional guidance and allows developers to
speed up the process of rapid prototyping. Any design strategy is supported,
and a broad range of applications can result from mixing single-page, multi-
page, and progressive web application designs. The workflows are highly
configurable translating business process models of the use-case scenarios
into functional maintainable applications, as illustrated in Figure 16.6.

The main purpose of this web-based frontend is to get information from
data-sources (e.g., databases, live sensor data, etc.) and display it in different
components (e.g., tables, charts, etc.) in order to provide a better under-
standing of data, by using various visualizations elements. Each component
presents specific data for each requested scenario. The Frontend Editor com-
prises numerous categories of components, such as horizontal/vertical tabs,
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Figure 16.6 Frontend Editor architecture.

headers and footers, images, text labels and boxes, tables, and a variety of
charts to display the proposed data.

To complement the set of tools available in the SDK framework, the EFPF
Developer Engagement Hub has the purpose to define and develop a suite of
tools that fit together and consist of a platform to support developer collab-
oration between developers, customers, and communities. It is a framework
available from one single web-based platform, which not only supports the
development of tools, but it also involves the development community, fosters
their active contributions in the shape of tests, comments, suggestions, and
new requests in the form of change requests in existing applications, e.g., to
support other platforms, trends, needs, or extensions. It allows the community
to download/reuse/fork the existing code from the Studio (if published) and
actually use/test it on new conditions or scenarios. The outcomes of these tests
will always come in the form of issues, reports, comments, or suggestions.
It also promotes the usage and creation of standards, methodologies, and
best practices. This framework includes mechanisms such as wikis, issue
trackers, forums, and blogs. Other tools such as configuration management,
business continuity, and business process design and management are initially
conceived out of scope of this component and relevant to other components
such as the SDK Studio.
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This tool was developed on top of best-of-breed portal GitLab community
edition (CE). Besides having all the standard features of GitLab, numerous
developments were added to the base platform, such as allowing multiple
level projects (useful for maintaining large projects) with multiple-level issue
trackers as well, and the inclusion of a chatting tool for better collaboration
between the developers, integration with the SDK Studio and many other
features.

The methodology to develop apps using the EFPF SDK is very flexible,
which can be shown in the prototypes developed within the scope of the
project, where some were developed by developing a backend application,
defining the application flow in the EFPF tool WASP Process Designer,
then exporting the results of the flow definition to the EFPF SDK, and then
defining a frontend for the application; others were performed defining a
data source using the EFPF Data Spine AMQP tool and then displaying the
resulting information on charts defined.

16.5 EFPF Selected Pilots

EFPF has addressed multiple scenarios in the context of Aerospace manufac-
turing9, and out of the developed pilots, this chapter describes three specific
pilots for different manufacturing environments, to provide an explanation
on the interactions of different components across edge−cloud and on the
value-add provided to manufacturing stakeholders via the EFPF tools.

16.5.1 Aerospace manufacturing pilot: environmental
monitoring

This pilot aimed at addressing the need for highly customized solutions
provided by small but innovative high-tech companies to commercial aircraft
vendors. Currently, customer demands for specific features (e.g., novel cabin
features) imply a fast answer with OEMs, e.g., Airbus, and high-tech SMEs’
close cooperation. For this, it is relevant to be able to provide diversity in
terms of production and supply network, which is often done based on a
cluster centered on the OEM. EFPF has addressed the design for such needs
and proposed implementation aspects for distinctive features, ranging from
material parameter monitoring to bidding. The full description of the pilot
is available in EFPF Deliverable D9.1 [10]. In this sub-section, two specific

9 https://www.efpf.org/_files/ugd/26f25a_b498d53f78174f94b3077eaca42d34d3.pdf
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technical scenarios are described: automated environmental monitoring and
continuous monitoring of production machines.

The main aim of this use case is related to developing an interconnectable
service that could capture environmental material data on a traditional shop-
floor controlled by a manufacturing entity that does not integrate IT skills.

This use case has been developed together with two aerospace SMEs.
The first, Walter Otto Müller (WOM)10, aimed at controlling environmental
aspects such as temperature and humidity in their manufacturing area, to
ensure consistent quality and environmental conditions required for com-
ponent tolerances. Aeronautics manufacturing handles strict specifications
provided by large OEMs (e.g., Airbus, Boeing, etc.), including fine-grained
requirements for the monitoring of varied materials in a component, e.g.,
paint. The second, Innovint Aircraft Interior GmbH (IAI)11, aimed at
monitoring the vacuum in vacuum-forming machines. Key aspects in this use
case are related with adequately modeling and interconnecting the sensors
that should be selected to perform the monitoring; how these could be
digitized to visualize them in the EFPF user interface, and also how to allow
for an automated result to be provided based on data extracted from multiple
sensors, and a customized service deployment via the EFPF Data Spine.

The overall concept is illustrated in Figure 16.7. Different environmental
sensors have been deployed in the shop-floors of WOM and IAI (IoT sensor
device). The sensors on the shop-floor communicate (via wireless or wired
interconnections) to a local IoT gateway (TSMatch) [12], [13]. The fortiss
TSMatch gateway12 provides a way to automate the detection and selection of
sensors on a shop-floor (in the case of this pilot, environmental sensors). The
raw data is processed via MQTT; semantic abstractions of the sensors are kept
in TSMatch. A TSMatch application provides the user with a monitoring and
notification application. This is therefore performed at a local level, within
the shop-floor.

TSMatch results are sent via MQTT to the EFPF Data Spine. Therefore,
to allow visualization of the data analytics supported by EFPF, the Symphony
Factory Connector is used, to provide results (stored in the Data Spine) to the
end-user anywhere.

The Symphony platform has been adopted in addition to TSMatch to
provide a consistent edge/cloud distributed IIoT management service. To

10 https://www.wom.gmbh/
11 https://www.innovint.de/
12 https://git.fortiss.org/iiot_external/tsmatch
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Figure 16.7 Interconnected components on the EFPF environmental monitoring pilot.

this purpose, two instances of Symphony have been deployed as illustrated
in Figure 16.7. Sensors and actuators are managed by the edge instance
of the platform, together with TSMatch, to provide low-latency functions
(such as alerts requiring immediate action); historical storage, data analytics,
and time-insensitive event reaction logic are provided by the cloud instance,
together with a remote-control panel and visualization dashboard.

It is worth mentioning that the cloud instance of Symphony provides the
digital twin models for some of the sensors and actuators in the shop-floor:
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Figure 16.8 WOM settings for the control of temperature and humidity in a manufactur-
ing area to ensure consistent quality and environmental conditions required for component
tolerances.

the remote control panel reads values and performs actions using a cloud-
based model of the devices, which is then synchronized with the actual state
of the devices through the EFPF Data Spine, which is responsible for the
edge-to-cloud communication and data model interoperability (as described
in the previous sections).

The overall pilot requires the integration of sensors, which have been
deployed based on embedded hardware as shown in Figures 16.8 and 16.9.
The hardware has been installed in accordance with the strict requirements of
aeronautics certification by the companies WOM and IAI.

Figure 16.9 shows some of the sensors installed in the pilot environment.
The pressure sensor at the vacuum machine has been used to set up an AI/ML
pipeline to remotely monitor the operational status of the machine itself and
provide a predictive maintenance function. The pressure sensor at the vacuum
machine has been used to set up an AI/ML pipeline to remotely monitor the
operational status of the machine itself and provide a predictive maintenance
function. The ML algorithm has been deployed as a service on the cloud
instance of Symphony, again using the Data Spine as a message bus and
data model interoperability tool. The continuous training of the model is
performed in the cloud and fed by the data streams coming from the shop-
floor. A user-friendly interface, built with the Symphony Visualization App,
gives the user real-time feedback of the algorithm outputs (number of pump
cycles and efficiency of the machine), together with a graphical plot of the
sensor time series, as shown in Figures 16.10 and 16.11.
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Figure 16.9 IAI settings for the remote monitoring of a vacuum forming machine to enable
immediate actions when pressure values fall out of tolerance.

The setup of this pilot has clearly demonstrated the modularity and flexi-
bility of the EFPF platform, which, on one side, allowed the seamless integra-
tion of edge-based tools, such as TSMatch, with an IIoT cloud platform, the
Nextworks Symphony, providing data model interoperability; on the other
side, it enabled edge−cloud communication between the two instances of
Symphony, effectively decoupling low-level hardware interfacing, semantic
data exchange, and high-level services provision.

The pilot further demonstrated how easily an effective solution can be
deployed and applied to real-world scenarios, when the right tools and
technologies are available.

16.5.2 Furniture manufacturing pilot: factory connectivity

The EFPF furniture manufacturing pilot13 is represented by LAGRAMA
as a furniture manufacturer SME based in Vinaròs, Spain, producing youth
rooms, home offices, and specific home items such as lounges and wardrobes.
Today’s market requires permanent innovation in product development due

13 https://www.efpf.org/_files/ugd/26f25a_753cd1c1db194c39b66c74957520a5f8.pdf
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Figure 16.10 The Symphony Visualization App shows the output of the AI/ML Predictive
Maintenance App.

Figure 16.11 Symphony Visualization App displays the behavior of the remote pressure
sensor.

to the changeability of the behavior of the new customers. This customiza-
tion of the products implies dynamic changes in the production workflow
where problems detected in machines and processes mean a reduction in
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the efficiency. The furniture pilot covers various aspects related to the daily
production activities, such as machine operation, process definition and exe-
cution, monitoring, supply activities, and catalog management. Among all
these features, the current description focuses on the behavior of the edge
banding machine where wooden pieces are processed between the cutting
and the drilling stages. This point is especially relevant; so any unplanned
maintenance task comprises the overall capacity of the factory. In this case,
the production is based on batches of parts of heterogeneous size and shape.
Sensors are placed in selected motors in the machine and connected to an
interface board on a factory connector, which monitors the measured values
and publishes them to the Data Spine Message Broker. Data collected from
the machine includes temperature, pressure, and electrical current. At this
point, parameters such as the size of the datasets, the frequency of the data
gathering, and the reliability of the prediction algorithms become extremely
important [14].

The factory connectivity topic, represented by the edge banding machine
operation at LAGRAMA, involves two main targets: the production improve-
ment and the predictive maintenance.

The improvement of the efficiency of the edge banding machine of
LAGRAMA to speed up the production reducing the overall time to serve
the customer is the target of the production improvement objective. This has
been achieved by displaying clear instructions to the operator about how
to proceed with the processed pieces. This capability avoids mistakes in
the classification process and detects any machine operation error. To this
end, the barcode labels attached to the pieces that process the machine are
scanned with a camera connected to the Industreweb Factory Connector,
which queries an enterprise system to retrieve the information of the piece.
Then, the instructions associated with the scanned piece are shown on a
display to the worker. Figure 16.12 depicts the position of the elements
involved in the solution around the edge banding machine.

The Edge Factory Connector allows the monitoring of the selected
machine data by measuring KPIs, revealing opportunities for improvements
in productivity and efficiency.

Reliable instructions and complete traceability of the manufactured pieces
are provided by this deployment. The collected data is available to be used
by other tools focused on other areas such as analytics and machine learn-
ing, risk evaluation, and reporting. This production optimization solution
demonstrates an improvement in the overall production performance. From
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Figure 16.12 Basic layout representing the placement of devices in the machine.

Figure 16.13 Camera for pieces’ label scanning and display showing the instructions to the
operator.

a business perspective, the vision system provides time saving in the classifi-
cation process and reduction of errors leading to benefits related to production
costs, ensuring the quality level of the products. From the workers’ perspec-
tive, the system supports the human tasks in the edge banding area, making
the operators feel more confident during the handling of pieces. The overall
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solution for the production optimization increases the productivity of the
workers at the edge banding stage of the production line [15].

The predictive maintenance target − which makes use of the sensors
deployed in the machine − increases the machine availability by avoiding
potential failures that take longer than the regular maintenance activities.

Data analytics applied to the industrial processes and equipment improves
the manufacturing by reducing the machine downtimes and improving the
quality of the deliveries. The data collected can be then processed by the
analytics tools integrated in the component, as follows:

• The anomaly detection service is used to detect problems during the
machine operation. This makes use of machine learning algorithms that
take several months of machine operation to provide reliable informa-
tion. The system also manages thresholds that represent the acceptable
values of machine operation and are used to monitor the behavior of the
line.

• The Risk, Opportunity, Analysis, and Monitoring (ROAM) trans-
forms the data streams collected from the sensors into metrics. This
provides a visualization to get insights about costs, risks, and oppor-
tunities. The tool sends warning emails to the users and manages recipes
that can be adjusted to the production environment under consideration.

• The Deep Learning Toolkit (DLT) is another analytics tool that con-
sumes the sensor data to predict machine failures. The collected data
is labeled as right or wrong depending on thresholds and is processed
through a neural network for training. The DLT brings real-time predic-
tion of the machine operation on a short-term basis, keeping a confidence
score that depends on the training process considering that, the more data
is collected and processed, the more insights can be retrieved from the
obtained results.

• The Visual and Data Analytics Tool provides the anomaly detec-
tion functionality with dashboard visualization. The EFPF Data Spine
enables the integration with the pilot site and the EFPF Portal used by the
end-users to access the different tools. This is depicted in Figure 16.14.

The factory data is sent to the Data Spine through the Factory Connector
and is adhered to a raw/custom data model. The API of the Factory Connector
together with the specification of this custom data model is registered to the
service registry of the Data Spine. The API metadata of the data APIs from
the registry are fetched to create iFlows, while the integration flow engine is
used to transform the raw data into heterogeneous data models, as expected



16.5 EFPF Selected Pilots 341

Figure 16.14 Overall architecture of the Visual and Data Analytics Tool and information
flow [14].

by the tool. The data is then published to a topic through MQTT; so the tool
can retrieve it to provide a graphical view through the visualization modules.
The user interface is accessible from the EFPF portal ensuring the security by
the use of the SSO capabilities provided by the platform [14].

The monitoring of the operation of the edge banding machine is particu-
larly relevant when manufacturing in batches. Therefore, predictive mainte-
nance enables LAGRAMA as furniture producer to prevent some parts of the
machine from being damaged, leading to a decrease in productivity, losses,
and bad reputation when deliveries are late. The machine learning model
requires considerable time to be profoundly exploited. However, abnormal
values can be detected outside the defined ranges according to the selected
parameters. Getting warnings about the need for maintenance when any
failure risk is detected in the machine operation provides a huge value from
the business perspective.

16.5.3 Circular economy pilot − a waste to energy scenario

In this scenario, a circular supply chain loop has been enabled using the
EFPF core infrastructure and tools [16]. Three companies participate in this
scenario: (a) KLEEMANN, a global manufacturer of lift systems, escalators,
moving walks, etc., which acts as a waste producer for this scenario; (b)
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ELDIA, the largest waste management and recycling company in northern
Greece that acts as waste transporter and pre-processor; and (c) MILOIL,
an SME that produces Biodiesel, which acts as a transformer of the pre-
processed wastes. The (wood) wastes are turned to energy that is finally used
by KLEEMANN for its production processes. The latter closes the waste to
energy loop, as illustrated in Figure 16.15.

EFPF provides various tools and services to enable the realization of the
aforementioned circular economy scenario through EFPF portal interfaces, as
described next.

16.5.3.1 Predictive maintenance services
Effective waste management, which is a core concept of this scenario,
starts from waste reduction during production processes. Anomaly detection
services have been applied to KLEEMANN’s polishing machine in order
to reduce defect parts and scrap metal wastes. The Visual Analytics tool
from EFPF/CERTH has been used in this case [14]. The real-time anomaly
detection is enabled from IoT vibration sensors. The data of sensors are pre-
processed at the edge and, after that, are available to the Visual Analytics tool
(cloud-based tool) through the EFPF Data Spine.

Figure 16.15 EFPF circular economy scenario and EFPF tools’ usage.
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Figure 16.16 Real-time anomaly detection for polishing machine.

16.5.3.2 Fill level sensors – IoT-based monitoring system
IoT fill level sensors have been installed in various bins and open top con-
tainers at KLEEMANN premises in order to enable the distance monitoring
and the speedy delivery of waste management services. The fill level sensors
functioned based on ultrasonic and IR sensors and their connectivity with
EFPF ecosystem was enabled by setting up a LoRa network. A monitoring
dashboard for various bins’ fill level was realized through EFPF Data Spine
and Visual Analytics tool interfaces. Furthermore, trend analysis services are
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provided in order to enable users to estimate the date that a bin should be
emptied.

16.5.3.3 Online bidding process
Aiming to automate the negotiations among the participants in the circular
supply chain scenario, an online bidding process tool was provided. This tool
provides a virtual agent that represents each company. A semantic framework
at the backend that is used to model companies, wastes, etc., enables the
matchmaking of the agents. Moreover, the matchmaking capabilities of the
solution enables the matching of a request with the best available offer based
on best score algorithms.

16.5.3.4 Blockchain Track and Trace App
An application based on blockchain and smart contracts, shown in
Figure 16.17, enables the secure handshake in wastes being exchanged and
ensures the monitoring of the wastes in all the stages of the circular loop. The
immutable transactions in the blockchain nodes provide full visibility and
transparency in all stages of the scenario. The stage monitoring is available
through EFPF web-based interfaces that provide the functionality to waste

Figure 16.17 Secure handshake based on Blockchain Track and Trace App.
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producers to issue a digitally signed certification of its waste management
process. The secure handshake among the participants that exchange wastes
is enabled by a dedicated mobile app (both Android and iOS devices are
supported).

16.5.3.5 Tonnage and price forecasting services
Visual Analytics tool provides services to companies ELDIA and MILOIL
regarding the forecasting of future wastes tonnage and future prices of waste
materials. The forecasting services are based on machine and deep learning
techniques. The services enable the end-users to optimize their planning
services and their waste collection processes.

16.6 Summary

This chapter describes the EFPF MaaS, which integrates over 30 partners
across the whole manufacturing value-chain (users, technology providers,
consultants, and research institutes) from 11 European countries and pro-
vides several tools that can assist a flexible and speedier digitization of
manufacturing stakeholders. The chapter described the EFPF architecture
and its main components, in particular, its SDK. Then, several pilots that
have been developed together between research partners and SMEs have been
described, explaining how the realization and support for data communication
and processing across edge−cloud can be performed.

The developed tools and the learnings thereof have been applied in several
pilots and open calls and are available to be experimented via thirds, via the
EFPF marketplace.
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Abstract

This chapter sheds light on the ever-important issue of IoT skills develop-
ment, which is a key prerequisite for the successful development, deployment,
and operation of IoT systems. It first reviews the wide array of different
IoT skills that are typically required for the development, deployment, and
operation of nontrivial IoT systems, including technical and non-technical
skills. Accordingly, it introduces the IoT skills framework of the H2020 EU-
IoT project, which provides a taxonomy of modern IoT skills, along with an
approach for defining skills profiles, as well as related educational activities
and learning paths. It also leverages the results of a skills survey to identify
popular and high in-demand skills profiles. Finally, it uses the introduced
framework to drive the specification of practical learning paths for these
profiles.

Keywords: Internet of Things, skills, education, skills framework, courses,
training, human resources, future of work, technical skills, social skills, soft
skills, management skills.
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17.1 Introduction

Recent studies have concluded that IoT skills are a catalyst for the accelerated
adoption of IoT solutions and for the subsequent growth of the IoT market.
This is because the IoT skills shortage is identified as one of the factors that
hinder IoT deployment [1]. Figure 17.1 illustrates some of the most important
factors that lead to the proclaimed skills shortage. These factors include:

• The multi-facet nature of IoT skills: Nontrivial IoT solutions integrate
multiple technology solutions such as embedded systems, broadband
networks, cloud computing, machine learning, and cybersecurity. There-
fore, most IoT professionals are required to possess multiple skills
from different technological areas. Furthermore, many IoT skills profiles
ask for non-technical skills like business development, marketing, and
collaboration skills.

• The complexity of IoT solutions: In recent years, IoT solutions have
become more sophisticated. State-of-the-art IoT solutions comprise
multiple technology infrastructures, which have diverse development
and deployment requirements. To deal with this complexity, IoT teams
must comprise professionals with multi-disciplinary profiles and dif-
ferent skillsets. The latter go beyond the basics of IoT systems and
technologies.

• Technology acceleration: Digital technologies are evolving at a rapid
pace, which results in a fast-changing IoT landscape. For instance,
technologies like mixed reality (MR) and augmented reality (AR) were
not in the IoT landscape a few years ago. In this dynamic IoT landscape,
it is very difficult for skills development activities to keep up with the
evolution of the state-of-the-art.

• The skills shortage in related technologies: IoT projects require skills
in cutting-edge technological areas like machine learning (ML), artificial
intelligence (AI), and cybersecurity. Each of these technology areas is
experiencing its own skills shortage, which makes it very difficult to
staff complex IoT projects.

• The need for collaboration in IoT projects: Successful IoT deploy-
ments require collaboration between different stakeholders. This asks for
interdisciplinary and multi-disciplinary expertise, which can be hardly
found in modern IoT teams.

In this landscape, most organizations are faced with significant skills
gaps, which asks for frequent reskilling processes. In a recent survey of the
World Economic Forum (WEF) [2] the participating companies pointed out
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Figure 17.1 Factors contributing to the IoT skills shortage.

that they expected approximately 40% of their workers to undergo reskilling
every six months. The same survey identifies the technical skills that are
currently high in demand by companies, which include IoT. Moreover,
the importance of non-technical skills like active learning and flexibility
is stressed. Overall, employers acknowledge the need to intensify their
investments in human skills development and are willing to undertake such
investments. At the same time, policy makers are developing policies that
foster digital skills development. For instance, the European Commission is
currently implementing the ambitious European Skills Agenda [3], which is
Europe’s plan to help individuals and businesses to develop more and better
skills. This skills agenda pays special emphasis on developing digital skills,
including skills in areas like IoT, cloud computing, and AI.

To effectively plan their IoT upskilling and reskilling processes, organi-
zations need to understand the various IoT skills and their interrelationships.
Moreover, they must be able to map them to learning paths, training pro-
grams, and career development paths. This is also important for training
and educating policy makers to develop effective reskilling and upskilling
policies for both students and professionals. Therefore, there is a need for
skills taxonomies that illustrate how diverse IoT skills are related to each, as
well as how they can be bundled into coherent skills profiles.
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In recent years, various educational organizations, consulting firms, and
policy makers have identified skills that empower the development and oper-
ation of modern IoT systems. In several cases, they have also identified the
interrelationships of these skills. Nevertheless, there is still a lack of an IoT
skills framework that considers the latest developments in the IoT market
and technologies. Considering this gap, this paper provides the following
contributions:

• It introduces a novel framework for IoT skills, which considers recent
advances in IoT technologies, as well as the need for complementing
technical skills with social, business, and management skills. The frame-
work has been developed in the scope of the EU-funded EU-IoT project,
which provides resources and support services to the European IoT
research community. It includes a taxonomy of IoT skills and can serve
as a basis for defining skills profiles, education activities, and learning
paths.

• It provides some concrete examples of IoT skills profiles, notably pro-
files that comprise skills that are high in demand in the IoT market. In
this direction, the presented work leverages the results of an IoT skills
survey that engaged over 100 professionals in the assessment of the
relevant importance of various IoT skills. The survey was structured
considering the introduced framework. Specifically, the participants
were presented with lists of skills that were structured according to the
framework.

• It illustrates some concrete examples of IoT skills profiles, along with
learning paths that can be used to foster their development. Specifically,
the suggested learning paths are associated with concrete courses in the
training catalog of the EU-IoT project.

Note that the chapter consolidates and summarized findings that are
already presented in the open-access whitepaper of the EU-IoT project [4].
These findings are included in this open-access book to boost the com-
munity’s unlimited access to the EU-IoT project’s results about IoT skills
development.

The remainder of this chapter is structured as follows:

• Section 2, following this introductory section, provides an overview of
research reports on IoT skills, including a review of relevant taxonomies.
The section highlights the lack of a well-structured skills framework that
considers the latest advances in IoT technologies.
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• Section 3 introduces the EU-IoT skills framework as a multi-layer
taxonomy. The framework considers the latest developments in IoT
technologies, including developments in networking, IoT data analytics,
machine learning IoT programming, and IoT security.

• Section 4 summarizes the results of a skills survey that was carried out
with the active participation of more than 100 IoT professionals, who
provided insights on the relevant importance of different IoT skills. A
detailed presentation of the results of the survey is available in [4].

• Section 5 constructs some IoT profiles based on some skills that were
identified as important in the skills survey. It also illustrates some
indicative learning paths for the specified skills profiles.

• Section 6 is the final and concluding section of the chapter.

17.2 Related Work

IoT education and skills are catalysts for the adoption and growth of the
IoT computing paradigm. At the same time, IoT skills are important for
the development, deployment, and adoption of a range of related technolo-
gies such as AI and cyber physical production systems (CPPS). Moreover,
industrial workers must develop IoT skills, to support the deployment and
operation of Industrial IoT systems in their organizations in sectors like
manufacturing, energy, oil and gas, mining, and healthcare. In general, IoT
skills are important for most jobs and occupations of the future of work.

The future of work addresses a variety of industrial sectors, which require
a broad range of IoT-related job profiles in various industries. Therefore,
there is a need for identifying and properly structuring the various IoT
skills in some IoT skills framework. To this end, many industrial, edu-
cational, and research actors have attempted to identify, document, and
structure the rich set of modern IoT skills. The resulting classifications had
different aims and objectives, such as employment, recruitment, education
planning (e.g., [5]), curriculum development (e.g., [6]), industrial training
(e.g., [7]), reskilling/upskilling, as well as policy development purposes [8]
(e.g., industry/university collaboration [9]).

Several IoT skills reviews have focused on technical and technological
skills. This is the case for reviews that aim at analyzing the technical skills
required for developing and deploying IoT solutions. For instance, [10] out-
lines the importance of programming skills (e.g., Python, C, C#, Java Script)
and knowledge of IoT protocols (e.g., Message Queuing Telemetry Trans-
port (MQTT)) for IoT systems development and deployment. Furthermore,
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there are articles that structure technical skills in integrated IoT profiles like
hardware designers, embedded firmware developers, backend developers,
frontend developers, IoT application developers, automation, and systems
integration engineers, as well as data scientists [11]. These roles include
profiles that are more general than the scope of IoT applications (e.g., fron-
tend/backend developers). However, IoT technical jobs and IoT profiles go
often beyond hardware and software development. Specifically, they cover
roles like IoT engineers, IoT architects, and IoT researchers [12].

Nevertheless, taking a purely technical view of IoT skills is not enough.
This is evident in policy-related studies (e.g., [13]), including the European
Skills Agenda [3]. These studies underline the merits and importance of com-
plementary skills such as soft skills. The latter are considered prerequisites
both for building IoT and automation systems and for alleviating the adverse
effects of automation in employment. Typical examples of soft skills include
problem-solving, creativity, communication, and persuasion.

Due to the importance of non-technical skills, various IoT and Industrial
Internet of Things (IIoT) skills surveys suggest that thinking, social, and other
soft skills are critical elements of IoT education or reskilling for industry pro-
fessionals [14]. For instance, [15] illustrates skills for managerial positions.
The authors identify skills like problem-solving, IoT usage, analytical capa-
bilities, communications, lifelong learning, management skills, teamwork,
openness for change, openness to digitization, openness to automation, and
more. Additional non-technical skills are mentioned in [14]. They include
self-awareness, self-organization, interpersonal and intercultural skills, social
responsibility and accountability, leadership skills, people management,
emotional intelligence, negotiation skills, entrepreneurship, and adaptability.

The above-listed reports and surveys on IoT skills do not provide any
structured taxonomy of IoT skills. Moreover, they do not refer to some
of the most recent IoT technologies in areas like analytics, embedded sys-
tems, and IoT networking. This is a significant gap for stakeholders like
human resources professionals and policy makers, who need to understand
the importance and interrelationships of various IoT-related skills prior to
developing effective training programs and policies.

17.3 The Eu-IoT Skills Framework

17.3.1 Main principles

The EU-IoT framework has been developed based on the following princi-
ples:
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• Support for technical and non-technical skills. The framework
addresses technical and technological IoT skills, but also soft skills that
relate to IoT professionals’ roles.

• Consideration of standards-based IoT stacks in the classification of
IoT technical skills. The framework structures the various technical IoT
skills in-line with layered taxonomies of IoT technologies, such as the
layers of standards-based IoT stacks like the stack of the IICF (industrial
internet connectivity framework).

• Classification of non-technical skills. The framework structures the
complementary non-technical skills into various categories such as legal,
business, marketing, and social skills.

• Extensibility. The framework provides a way for structuring the various
IoT-related skills. Interested parties can extend the framework with more
skills while retaining its core structure.

17.3.2 Top-level categorization of IoT skills

The framework classifies IoT-related skills into four broad categories, as
illustrated in Figure 17.2 and further detailed below:

• IoT technical and technological skills: This category comprises skills
related to IoT technologies, including skills required to develop, deploy,
and operate IoT systems. It provides broad coverage of the rich set of
technologies that are currently associated with IoT systems.

• Management, marketing, and regulatory skills: This category com-
prises marketing and management skills that fall in the realm of IoT
product and service development. It also includes regulatory-related
skills such as general data privacy regulation (GDPR)-related skills and
ethics-related skills.

• IoT end-users and operator 4.0 skills: This category consists of skills
required for using and operating IoT systems in various sectors of the
economy with an emphasis on industrial sectors.

• Social and soft skills: This comprises soft skills that are important
for the development, deployment, operation, and use of IoT systems.
It includes popular skills like teamwork, lifelong learning, and collabo-
ration, which have clear relevance to IoT professionals as well.

Each of the four skills categories comprises a rich set of IoT skills, which
are structured in subcategories. The structuring of the various skills provides
a sound basis for understanding the types of skills needed for successfully
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Figure 17.2 High-level taxonomy of the EU-IoT skills framework.

developing, deploying, operating, managing, and monetizing IoT systems.
Hence, the various categories provide good coverage of the various types of
IoT skills. Nevertheless, the listed skills provide by no means an exhaustive
coverage of all the available IoT skills. As already outlined, interested parties
can enhance the framework with more skills by expanding the list of skills
that belong to the various (sub)categories.

17.3.3 The four categories of IoT skills

17.3.3.1 IoT technical and technological skills
The IoT technical and technological skills are further segmented into the
following subcategories:

• IoT devices skills: This subcategory comprises skills associated with
different types of internet-connected devices. Specifically, it includes
skills associated with sensors, actuators, digital signal processing (DSP),
field programmable gate arrays (FPGAs), the global positioning system
(GPS), programmable logic controllers (PLC), wireless sensor networks
(WSN), ad-hoc networks, radio frequency identification (RFID) devices
and more. Each one of these skills corresponds to expertise regarding
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the structure, the computational capabilities, and the networking func-
tionalities of these IoT devices.

• Smart objects skills: This subcategory complements device-level skills
with additional skillsets that correspond to more complex and sophisti-
cated smart devices such as cyber-physical systems and unmanned aerial
vehicles (UAVs). These sophisticated devices are characterized as smart
objects. The sophistication of smart objects asks for special skills in
developing, deploying, and operating them.

• Networks and connectivity: This part of the IoT technical and techno-
logical skills focuses on networking and connectivity technologies that
support IoT deployments. Our list of skills in this subcategory includes
popular networking protocols and connectivity technologies such as Wi-
Fi, bluetooth, and low power wide area network (LPWAN) technologies.
It also comprises mobile networking technologies like 4G, long-term
evolution (LTE), 5G and 6G networking technologies.

• IoT protocols: This subcategory comprises skills associated with IoT
connectivity protocols such as MQTT, constrained application protocol
(CoAP), and data distribution service (DDS). These skills are essential
to the development and deployment of IoT systems since they abstract
the transport of IoT data from the device to the applications that consume
the data.

• Cloud/edge/mobile computing: Cloud computing, edge computing,
and mobile computing-related skills are important to the development,
deployment, and operation of nontrivial IoT systems, such as systems
that integrate data and services from multiple distributed IoT devices.
Hence this subcategory is devoted to cloud/edge/mobile computing-
related skills.

• IoT analytics: This subcategory comprises skills that enable the analysis
of IoT data using various technologies and techniques such as ML, deep
learning (DL), and AI. A wide array of such skills is nowadays important
for IoT systems development and deployment ranging from big data
analytics to embedded machine learning and TinyML.

• IoT security: Cybersecurity is a critical element of the safe and reliable
deployment of IoT systems. Thus, there is a need for security-related
IoT skills, such as skills relating to security processes (e.g., risk assess-
ment, pen testing) and to the secure operation of various types of IoT
devices.

• IoT software programming skills: Most IoT systems comprise soft-
ware components. Therefore, software development skills are important
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for the development of IoT systems and applications. This subcategory
includes the rich set of programming skills that enable the development
of the software parts of IoT systems. These skills include for example
programming in popular languages like Python, Java and Javascript, as
well as in other specialized skills for programming of IoT devices, for
example, robotics programming and Arduino programming.

• IoT development methodologies: Many IoT products and services
are developed and deployed over scalable, distributed infrastructure
by distributed development teams. Therefore, the establishment of
state-of-the-art development infrastructures and the employment of
proper development methodologies over them is very important for
the deployment and operation of successful IoT services. Hence, this
subcategory includes skills associated with mainstream development
infrastructures and methodologies that are commonly used by develop-
ers and deployers of IoT systems. These infrastructures and method-
ologies include for example development and operations (DevOps),
data operations (DataOps), and machine learning operations (MLOps)
infrastructures.

• IoT development and deployment tools: This subcategory includes
skills linked to the operation and use of IoT development and deploy-
ment tools, such as integrated development environments (IDEs) for IoT
development.

These subcategories establish a useful taxonomy of IoT-related technical
and technological skills, which can be extended with more skills under
the specified skills groupings. The specification of these subcategories was
partly driven by popular reference architectures that specify the technical
building blocks of modern IoT systems. For instance, the devices, networking
technologies, and connectivity protocols are building blocks of IoT systems
specified in the scope of the industrial internet reference architecture (IIRA)
[16] and the industrial internet connectivity framework (IICF) [17] of the
industrial internet consortium (IIC). Nevertheless, skills related to the tech-
nical building blocks identified in these reference architectures have been
enhanced with skills pertaining to cloud infrastructures, software engineering,
and project management methodologies. The latter is not specific to IoT
systems only, but rather applicable to a broader range of future internet
systems. These broader skills are important for the development, deployment,
and operation of cutting-edge IoT systems, which is the reason why they have
been included in the taxonomy.
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17.3.3.2 Business, marketing, management, and regulatory
skills

This category of the EU-IoT skills framework underlines the importance
of marketing, management, and regulatory skills for tasks like IoT project
management and IoT product development. The category comprises skills
clustered in two subcategories, namely:

• Business, management, and marketing skills: This is a broad category
that comprises various business, management, and marketing skills for
IoT products and services. For instance, it includes project management,
product management, marketing, and financial management skills.

• Legal and regulatory skills: This subcategory includes the ever-
important legal and regulatory skills that are required for developing,
deploying, and operating enterprise-scale IoT products and services
with commercial relevance. Such products must adhere to applicable
laws and regulations such as the general data protection regulation
(GDPR) regarding data management and data protection. Therefore, the
subcategory includes skills associated with IoT ethics, GDPR, and other
IoT/AI-related regulations.

The list of skills in this category is purposefully shorter than the list
of technical IoT skills. This reflects the fact that the development and
deployment of IoT systems require primarily technical skills, yet business,
management, and regulatory skills are important as well. Like in the case
of other categories it is possible to extend the taxonomy with more skills of
business, management, and regulatory relevance.

17.3.3.3 IoT end-user and operator 4.0 skills
This category includes skills that should be possessed by the end users of
modern IoT systems. It includes the following subcategories of skills:

• Industrial automation skills: IIoT systems are usually deployed to
support, improve, and enhance industrial automation processes in sec-
tors like manufacturing, energy, oil & gas, and mining. Therefore, this
subcategory is devoted to industrial automation skills that end-users of
IoT systems must possess to successfully adopt, use, and fully lever-
age IoT functionalities. Such industrial automation skills include for
example skills associated with the use of legacy automation systems
and technologies (e.g., PLC and supervisory control and data acquisition
(SCADA)), as well as with popular industrial processes like quality con-
trol and production scheduling. It also includes skills linked to emerging
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digital tools for industrial automation like digital simulation and digital
twins.

• Asset management skills: Asset management applications are found
in almost all industrial sectors. They are deployed in all industries that
manage physical assets such as in manufacturing, energy, and smart
building applications. Therefore, end-users of IIoT applications for asset
management must have relevant skills including asset programming,
intelligent asset management, equipment maintenance, predictive main-
tenance, and more. The EU-IoT skills framework includes a special
subcategory for these skills.

• Visualization: End-users of IIoT applications must understand and use
visualizations of IoT data in industrial contexts. This subcategory is
devoted to visualization skills, such as big data visualization, AR, MR,
virtual reality (VR), and design of ergonomic user journeys.

Like in the case of the previous categories and subcategories, this list
of identified skills for IoT end-users is representative rather than exhaustive.
Interested parties (e.g., educators, human resources professionals, and policy
makers) can extend the framework with more skills.

17.3.3.4 Social, management, and other soft skills
This category signifies the importance of soft skills for the development,
deployment, and use of IoT systems. It comprises the following subcate-
gories:

• Thinking skills, such as critical thinking, analytical thinking, and
complex problem-solving.

• Social skills, such as teamwork, interpersonal skills, and professional
ethics.

• Personal skills, such as lifelong learning, time management, people
management, and emotional intelligence.

The relevance of soft skills for the development, deployment, and use of
technology systems and applications goes beyond the scope of IoT systems
and technologies. Their inclusion in the framework is aimed at ensuring that
they are not ignored when developing or seeking for IoT talent.

17.3.4 Using the EU-IoT skills framework

17.3.4.1 End-user groups
The introduced framework is a useful tool for several stakeholder groups that
engage in skills development processes, including:
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• IoT technology companies (e.g., IoT vendors and IoT solution inte-
grators): These companies can use the framework as part of their
hiring and skills development processes. It can serve as a guide for
searching for the right talent, evaluating candidate workers based on
their IoT knowledge and skills, as well as structuring training and skills
development processes.

• Users of IoT technology: The framework can help companies that
deploy and use IoT systems to properly shape the training and skills
development processes of their digital transformation. The latter pro-
cesses should put emphasis on developing or attracting professionals
with the right IoT skills to ensure that their investments in IoT tech-
nology are effective and yield the best possible return on investment
(ROI).

• Policy makers: Policy makers can consult our skills framework in the
scope of their policy development processes, notably when developing
educational and training policies. For example, they can use the frame-
work to plan for training programs and effective educational policies that
are relevant to modern IoT systems and address market needs.

17.3.4.2 Supporting training, hiring, and skills development
processes

Some concrete examples of how to use the framework to support different
types of training and skills development processes follow:

• Training processes: The framework can support the design and devel-
opment of training programs that lead to the acquisition of certain key
skills or even entire skills profiles. It can also help IoT professionals to
select a portfolio of courses for developing or strengthening their IoT
skills.

• Hiring processes: HR professionals can consult the framework when
implementing hiring processes. Specifically, they can use it to identify
the key skills required for specific positions. Moreover, it can help them
cluster relevant skills and identify skills interrelationships. The latter is
important when trying to hire or form a cohort of professionals that will
staff some IoT-related department or project.

• Skills development processes: HR experts and individual IoT profes-
sionals can leverage the framework when designing skills development
journeys. For instance, they can use it to cluster multiple related or
complementary skills into skills profiles. Moreover, policy makers can
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take advantage of the framework in their efforts to introduce new skills
development programs that address proven skills gaps in the market.

• Career development paths (CDP) specification: Also, HR profession-
als can consult the framework when specifying and implementing CDPs
for IoT roles. Specifically, the framework can help in the specification
of meaningful CDPs, as well as their implementation through carefully
selected collections of courses.

17.4 The Eu-IoT Skills Survey

17.4.1 Survey identity and methodological overview

In the scope of the H2020 EU-IoT project, we designed and executed an IoT
skills survey that aimed at identifying the skills that are high in demand in the
IoT market. The rationale behind the design and the implementation of the
survey was to identify the IoT-related skills with the highest relevance in the
IoT market. In this direction our methodology involved the following steps:

• Designing the survey in-line with the EU-IoT framework: The EU-
IoT framework was used to structure questions about the IoT skills
relevance and importance. Specifically, the survey was segmented into
four subsurveys as per the four top-level skills categories of the EU-IoT
framework. Hence, the four subsurveys concerned technical and techno-
logical skills, business and marketing skills, end-users, and operator 4.0
skills, as well as social and other soft skills. Each survey comprised lists
of IoT-related skills. Participants were asked to grade the importance
of each skill for the IoT market on a scale from 1 (very low) to 5
(very high). Hence, the importance of each skill was indicated by an
importance score that was computed based on the total weighted average
of the responses.

• Collecting answers from relevant professionals: IoT and HR profes-
sionals were invited to fill in the survey. The four different subsurveys
were provided to different groups of relevant professionals with expe-
rience and expertise in IoT skills and IoT projects. For instance, the
technical and technological skills subsurvey was answered by IoT pro-
fessionals with relevant technical experience and expertise, as well as by
HR professionals involved in IoT hiring processes. Likewise, the subsur-
vey on business, management, and marketing skills was answered by a
different group that comprised professionals with expertise in IoT mar-
keting and product management. Overall, as presented in Table 17.1, 70
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Table 17.1 Number of respondents in the four subsurveys.
Subsurvey Number of respondents
IoT technical and technological 70
Business, management, and marketing 37
End-users and operator 4.0 skills 40
Social and other soft skills 36

respondents answered the technical and technological skills subsurvey,
37 respondents answered the business and marketing skills subsurvey,
40 respondents answered the end-users and operator 4.0 skills subsurvey,
and 36 respondents answered the social and other soft skills subsurvey.
In total 183 respondents answered the four subsurveys. The participants
come from different industries, including manufacturing, smart cities,
energy, agriculture, and security. They also had various profiles and roles
including project managers, technical project managers, engineers, data
scientists, HR Professionals, developers, architects, researchers, product
managers, and business development experts. All participants had jobs
relevant to IoT and in most cases strong IoT knowledge and expertise.

• Analyzing the results and identifying the most popular skills: The
results of each one of the subsurveys were analyzed to identify the
popularity and importance of various IoT skills according to the opinions
of the respondents. As already outlined, the relevant importance of each
skill was ranked according to the weighted averages of the responses
in the given scale. Skills falling within the same subcategory were
directly comparable in terms of their importance and market relevance.
For instance, the answers to the survey directly indicate the relevant
importance of different device-level IoT skills and IoT analytics-related
IoT skills. Skills falling in different subcategories of the same subsurvey
(e.g., IoT networking vs. IoT devices skills) can only be indirectly
compared.

17.4.2 Analysis of results and main findings

An exhaustive presentation of the results of the survey is beyond the scope
of the book chapter. Interested readers are advised to consult [4], where the
received responses and their analysis are described in detail. The following
paragraphs illustrate and discuss the main findings of the analysis.

In general, the results of the survey indicate some of the most popular IoT
skills according to the opinion of IoT professionals from different sectors.
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The popularity of the skills is linked to the market demand for these skills, as
the questions prompted the participants to rank the various skills according to
their market demand and relevance.

17.4.2.1 Popularity of broadly applicable skills
One of the most prominent findings is that the most general and broadly
applicable skills tend to be the most popular as well. The survey indicated
that companies seek for professionals with a sound understanding of the basic
skills due to their ubiquity and broad applicability. For instance, in machine
learning and IoT analytics, the most fundamental skills (e.g., Big Data, ML,
and Data Science) got higher ranks than more specialized and IoT-related
analytics skills (e.g., TinyML) (see Figure 17.3). Similarly, as illustrated in
Figure 17.4, MQTT skills were perceived as more important than other less
general, sector-focused IoT protocols like OPC-UA which is primarily used
in manufacturing and other industrial use cases.

Overall, the most popular skills were the ones that are broadly used in
the scope of IoT systems and applications. This is because these skills enable
professionals to engage in a wide range of IoT projects and activities.

17.4.2.2 Importance of specialized skills for sector-specific
audiences

The survey unveiled that specialized skills are very important for specific seg-
ments and groups of IoT professionals. Specifically, the more specialized IoT

Figure 17.3 Relevant importance of IoT analytics-related skills.
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Figure 17.4 Relevant importance of IoT protocols-related skills.

skills are perceived as being very important for professionals within specific
sectors. For instance, there are skills ranking very high within manufacturing
(e.g., PLC and OPC-UA) and skills that rank very high within sectors that
handle sensitive data (e.g., healthcare). This was evident in the segmentation
of the responses according to the industry of focus of the respondents.

17.4.2.3 The importance of soft skills
Soft skills are a very important asset that complements IoT technical and
technological skills. Several soft skills (e.g., lifelong learning skills) ranked
very high in the overall standings of the skills that were included in the survey.
Specifically, there are many skills that were graded over 70% (e.g., collabo-
ration skills (Figure 17.5), time management skills, and people management
skills) on the scale of the survey’s importance. Successful IoT professionals
cannot afford to ignore soft skills.

17.4.2.4 Skills clustering into skills profiles
The outcomes of the survey enable different approaches for clustering skills
into skills profiles. Specifically, one can set criteria for the ranked skills to
associate them with skills profiles. Such criteria may for example include
the popularity of the skills and the need to combine skills from different
(sub)categories of the framework. A set concrete and practical way to do this
is presented in the following section.
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Figure 17.5 Relevant importance of different thinking skills.

17.5 From IoT Skills to Profiles and Learning Paths

17.5.1 Skills profiles and learning path construction
methodology

To excel in the development, deployment, and operation of IoT systems and
applications workers need more than IoT skills. For instance, IoT technical
experts possess several of the previously presented skills from a single subcat-
egory. As a prominent example, an IoT developer is likely to know more than
one programming language to excel in the programming of the IoT Stack.
However, it is also common for IoT professionals to possess technical skills
from different subcategories of technical skills, such as programming skills
and skills relating to IoT protocols like MQTT and CoAP. In most cases, IoT
professionals match entire skills profiles that comprise multiple skills from
different technological areas as well as non-technical skills (e.g., soft skills).

Clustering multiple IoT skills into skills profiles is very important for
training and skills development processes. The latter is usually driven by the
need to develop professionals that possess groups of relevant skills that enable
them to undertake roles such as IoT software developer, IoT data engineer,
IoT software engineer, IoT systems architect, embedded systems developer,
and more. The EU-IoT skills framework can support the construction of skills
profiles by facilitating interested stakeholders in selecting the skills to be
clustered from a rich set of well-structured IoT skills. Using the framework
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stakeholders can easily identify available skills and how they relate to each
other. Hence, they can structure relevant skills profiles that meet the needs
of their organizations. There is a variety of different skills profiles such
as hardware designers, embedded firmware developments, IoT networking
experts, IoT solution integrators, IoT applications frontend developers, IoT
data scientists, IoT automation engineers, and many more.

A skills profile can drive the specification of learning pathways (i.e.,
collections of courses and other didactic activities) that lead to the acquisition
of the skills of a profile. These learning pathways can form the basis of entire
training programs at academic or professional levels. The simplest form of
learning pathway specifications involves the structuring of a set of courses
within a training program.

The H2020 EU-IoT project provides three powerful tools that facilitate
the construction of skills profiles and learning paths:

• The EU-IoT skills framework, which facilitates the construction of
coherent skills profiles that comprise well-structured and complemen-
tary collections of courses.

• The EU-IoT survey [4], which can drive the specification of skills
profiles subject to criteria like the overall popularity of certain skills,
their relevance to specific industries (e.g., manufacturing), as well as
their complementarity. For instance, the most popular IoT analytics-
related technical skills can be used to form an IoT data scientist skills
profile. As another example, a collection of popular methodologies (e.g.,
DevOps), tools (e.g., NodeRed), programming languages (e.g., Python),
and devices (e.g., sensors, WSN) related skills can serve as the basis for
the specification of an IoT developer profile.

• The EU-IoT training catalog [18], which provides a pool of training
resources that can be used to specify training programs that lead to the
key skills of a given skills profile. Specifically, with a skills profile at
hand, interested stakeholders can consult the IoT training resources cat-
alog to identify a concrete set of available courses that can be structured
in a learning pathway for the given skills profile.

17.5.2 Examples of IoT learning paths

The following tables provide six concrete examples of skills profiles, along
with the skills they comprise. They also provide an indicative set of courses
that can support the development of the proper skills for each profile. The
listed courses can be found in the Udemy training ecosystem and the EU-IoT
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Table 17.2 Skills and learning path for the “IoT application developer” skills profile.
IoT skills profile: IoT application developer
Individual skills of the profile: Python, JavaScript, IoT & Cloud Computing, DevOps,
Docker, Kubernetes, Sensors, WSN, Arduino, MQTT
Courses of the main learning path:
1. Practical iot concepts-devices, IoT protocols and servers DevOps
2. Introduction to IoT programming with JavaScript
3. Exploring AWS IoT
4. Project – 2022: CI/CD with Jenkins Ansible Kubernetes
5. Arduino for beginners – 2022 complete course
Other relevant courses:
1. Collaboration and emotional intelligence
2. I.T. project management for beginners: a step-by-step guide

Table 17.3 Skills and learning path for the “IoT data analytics expert” skills profile.
IoT skills profile: IoT data analytics expert
Individual skills of the profile: Data science, machine learning, TinyML, sensors, WSN
Courses of the main learning path:
1. Master machine learning and data science with Python
2. Intro to embedded machine learning
3. Sensors/actuators/data visualization with microcontrollers – IoT dashboard with
Arduino
Other relevant courses:
1. Statistics for data science and business analysis
2. Collaboration and emotional intelligence

Table 17.4 Skills and learning path for the “IoT networking engineer” skills profile.
IoT skills profile: IoT network engineer
Individual skills of the profile: Sensors and IoT Devices, LPWAN, 4G/5G/6G, WiFi,
Bluetooth, MQTT
Courses of the main learning path:
1. Internet of things (IoT) – demystified using three IoT devices
2. 5G Masterclass: architecture, NR RAN, core, and call flows
3. The ultimate WLAN and WiFi training course
4. The complete bluetooth/IoT design course for iOS
Other relevant courses:
1. Collaboration and emotional intelligence
2. I.T. Project management for beginners: a step-by-step guide

training resources catalog. Specifically, each of the contents of the table
presents the following information for each one of the six skills profiles:

• Individual skills of the profile: This is the list of skills that an IoT
professional must possess to qualify for roles associated with the skills
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Table 17.5 Skills and learning path for the “embedded systems engineer” skills profile.
IoT skills profile: embedded systems engineer
Individual skills of the profile: Embedded systems, FPGA, printed circuit board (PCB)
design, sensors, actuators, WSN
Courses of the main learning path:
1. Mastering microcontroller and embedded driver development
2. Learn the fundamentals of VHDL and FPGA development
3. Sensors/actuators/data visualization with microcontrollers – IoT dashboard with
Arduino
4. Crash course electronics and PCB design
Other relevant courses:
1. Arduino: electronics circuit, PCB Design & IoT programming
2. Collaboration and emotional intelligence

Table 17.6 Skills and learning path for the “IoT project manager” skills profile.
IoT skills profile: IoT project manager
Individual skills of the profile: Project management, sensors, WSN, DevOps, agile
development
Courses of the main learning path:
1. I.T. project management for beginners: a step-by-step guide
2. Agile PM 301 – mastering agile project management
3. Project – 2022: CI/CD with Jenkins Ansible Kubernetes
4. Sensors/actuators/data visualization with microcontrollers – IoT dashboard with
Arduino
Other relevant courses:
1. Presentation skills: master confident presentations
2. Management skills – team leadership skills masterclass 2022
3. Collaboration and emotional intelligence

profile. The presented lists are indicative. It is possible to broaden the
scope of a skills profile by including additional skills in the list. As
already outlined, the development of skills profile could consider the
results of our survey toward including both relevant and popular skills
in the profile.

• Courses of the learning path: This field includes a list of courses that
can help professionals learn the listed skills. The tables include courses
from the EU-IoT training catalog and the Udemy training ecosystem
[19]. These courses are considered mandatory for acquiring the skills
that are mandated by the skills profile. There is a variety of equivalent
or similar courses in the training catalog and other ecosystems (e.g.,
Coursera and EdX) that could help build similar learning paths. In
principle, the development of a proper learning path can be a challenging
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Table 17.7 Skills and learning path for the “IoT product manager” skills profile.
IoT skills profile: IoT product manager
Individual skills of the profile: Product management, sensors, WSN, cyber-physical
systems
Courses of the main learning path:
1. Agile PM 301 – mastering agile project management
2. Great product manager: product management by a big tech’s PM
3. Complete guide to build IoT things from scratch to market
4. Sensors/actuators/data visualization with microcontrollers – IoT dashboard with
Arduino
Other relevant courses:
1. Presentation skills: master confident presentations
2. Management skills – team leadership skills masterclass 2022
3. Advanced product management: vision, strategy, and metrics

process that should seek the optimal complementarity and compatibility
of the selected courses.

• Other relevant courses: This field includes additional courses that
could strengthen the learning path for the skills profile at hand. These
courses could be considered optional or “nice to have” for the target
profile. Like in the case of mandatory courses, the tables include courses
from the EU-IoT training catalog and the Udemy training ecosystem.
However, there is a variety of equivalent or similar courses in the training
catalog and in other ecosystems (e.g., Coursera and EdX) that could
help to provide an alternative collection of optional courses in order to
strengthen the learning path.

Overall, the tables provide a set of representative examples that aim
at illustrating the process of specifying learning paths based on available
catalogs of training resources. There is however much room for interested
stakeholders to fine-tune the learning paths development process by scrutiniz-
ing the vast amount of training resources that are available in existing course
platforms.

17.6 Conclusions

Nowadays, there is a proclaimed gap in skills for automation and the future
of work [20]. Closing this skills gap is very important for adopting and lever-
aging cutting-edge technologies of the fourth industrial revolution in many
economic sectors [21]. IoT skills are among the most important elements of
the skills puzzle, as IoT technologies have a broad scope and are widely used
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in sectors like manufacturing, energy, healthcare, transport, retail, agriculture,
and supply chain management [22]. State-of-the-art skills surveys identify
some of the skills that are high in demand in the market. Nevertheless, they
usually take a broad view that address many different digital technologies
rather than focusing on the IoT skills and the IoT market. Motivated by this
gap, this chapter has:

• Presented the findings of various skills surveys regarding the shortage of
IoT skills.

• Introduced the EU-IoT skills framework as a structured taxonomy of IoT
skills, including technical, management, and user-related skills, as well
as the ever-important soft skills for IoT professionals. The framework
can be extended with additional IoT skills.

• Summarized the findings of an IoT skills survey, which aimed at eliciting
information about the IoT skills that are in the highest demand in the
market.

• Illustrated how the skills survey and the EU-IoT framework can drive
the clustering of individual IoT skills into wider IoT skills profiles.

• Provided concrete examples of learning paths for specific skills pro-
files based on courses and training resources of the EU-IoT training
catalog [18].

Overall, this chapter has highlighted three tangible outcomes of the EU-
IoT project (i.e., the skills framework, the survey, and the training resources
catalog), which can be a great help to HR professionals and policy makers that
plan, specify and execute skills development processes for the IoT computing
paradigm.
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Abstract

This paper presents the state-of-the-art novel and disruptive IoT business
model practices, trends, and patterns in different industries studied under the
EU-IoT project ecosystem. The patterns and best practices suggest an appro-
priate toolbox for stimulating a higher degree of innovation-driven thinking
and exploitation. In addition, results from data collection, analysis, and
architectural patterns, across 30 IoT use cases and surveys distributed over
different domains, companies, and technologies, are presented. These results
will act as guiding beacon and impact the future European IoT ecosystem.
Beyond that, this will also exemplify best practices and technologies used
to harness successful IoT solutions and relevant operation aspects in different
domains. Essentially, this paper targets industry, innovators, IoT learners, and
policy makers, offering inspiration and providing general guidelines on how
novel technologies can be leveraged in the fast-changing landscape, thereby
lowering the barriers for European stakeholders to adopt best practices that
cover business-techno aspects for achieving success in the IoT area.

Keywords: IoT, business model evaluation, value network, EU-IoT, use
cases, best practices, technology trends and patterns, DMAT.
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18.1 Introduction

IoT is one of the most promising and revolutionary technology areas for
future digital applications [1]. IoT is used for a wide range of domains such
as industrial automation, healthcare, education, logistics, etc., and it spans
from smart things [2], [3] to smart cities [1], [4] and smart industries [5–7].
IoT is predicted to change our lives as it comes with an enormous economic
potential. The IoT architecture, which is applicable for all IoT solutions,
generally consists of four layers: device, connectivity, cloud, and application
[8]. The evolution of IoT is more than just technologies linked together as
it involves entire ecosystems that consist of both technology and business
constructs [8]. IoT ecosystems include many partners and stakeholders such
as hardware makers, device manufactures, network service providers, cloud
service providers, software vendors, standards bodies, regulators, industry
groups, customers etc. [9]. This makes IoT domain a dynamic ecosystem,
which is constantly improving, evolving, and bringing new business oppor-
tunities and challenges. Therefore, companies must develop and implement
new business models that can help them to create, deliver, and capture the
value produced by IoT [10], [11]. In addition, companies that succeed in
developing and/or adapting their present BMs to the new technological poten-
tials have extensive opportunities to innovate and to be highly competitive in
market by generating values [12].

The success of businesses at present and in future relies heavily on the
optimal utilization of technology [13]. Therefore, forces around the world,
such as European Commission, are pushing hard for an evolution of the next-
generation internet and relevant technologies. Key drivers of this evolution
include IoT [14], [15], distributed edge computing, federated AI and ana-
lytics, augmented reality, tactile internet, data-centric services, blockchain
[16], distributed architectures, scalability and interoperability [17], 5G and
6G networks, etc. However, to properly support and accelerate development
of the evolution, there is a need of skills development in next-generation
technologies and business models for optimal utilization of novel technolo-
gies. Therefore, it is necessary to create an understanding and alignment
that enables industrial actors to adopt best practices for achieving success
in the fast-changing IoT landscape. For this, EU embraces several initiatives
that focus on the enhancement in the proliferation of new IoT solutions and
creating ecosystem around them. EU-IoT project is one such initiative of EU
that has vision to grow and consolidate the NG-IoT initiative and establish a
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competitive advantage by overcoming the current fragmentation of efforts to
succeed in the IoT landscape.

18.2 Statement of Purpose

The purpose of this study is to explore and analyze different business models
and technology patterns, values, trends, operational domains, and best prac-
tices that are enabled in IoT ecosystems in Europe by analyzing data based on
30 IoT use cases/success stories, for different industries. These use cases have
been studied as part of the EU-IoT project, a coordination and support action
under the H2020-EU program, grant agreement ID 956671. The EU-IoT
project is also involved in the development of IoT business model innovation
patterns and acceleration support oriented activities. These activities can
help in accelerating the adoption of IoT-empowered solutions by lowering
barriers in the IoT ecosystem and by supporting different stakeholders such as
industry, innovators, learners, and policy makers. This will build and enhance
required IoT skills and best practices ecosystem around different IoT business
models. This is achieved by providing a toolbox that offers tools, templates,
methods, and recommendations needed for practitioners to unlock successful
IoT business model innovation. Hence, as illustrated in Figure 18.1, it all
starts with the toolbox.

This toolbox offers (self-evaluation) tools, templates and methods that
are combined with a set of recommendations on how to apply the tool-
box, measure, and adopt best practices for IoT business model innovation.
This targets industry stakeholders and addresses both innovators that are
active users of IoT technologies already, but also the learners that are late
bloomers in leveraging the innovation potential of digital technologies. The
main objective of providing the toolbox is to effectively support industrial
stakeholders and initiatives that foster the next-generation internet while
stimulating innovation-driven thinking and exploitation. This will enable
different stakeholders to leverage the best practices of IoT frontrunners to
build the required skills and business models innovation in their domain of
interest.

18.3 Methodology and Relevant Tools

The process of reporting on best practices and business model patterns for
use cases has unfolded in three steps toward achieving the previously defined
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Figure 18.1 EU-IoT toolkit.

statement of purpose. The process that follows is composed of the steps that
are illustrated in Figure 18.2.

Outcomes of the process include:

• Use case catalog of written success stories that introduce the explored
IoT use cases. The catalog covers cases across 12 countries and 7
domains and in the scope of 18 different advanced technologies.

• Insights from analysis across all cases to identify and define archetypical
factors for achieving success with IoT-empowered solutions (factors
such as digital maturity levels on various dimensions, business model
patterns (BMPs), and BM configurations for innovation).
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Figure 18.2 Process for reporting on best practices for IoT use cases.

• Overview that concludes upon analytical insights and sums up the iden-
tified best practices for IoT use cases, serving as a guide for successful
IoT development and deployment.

18.3.1 Data collection and analysis methodologies

As mentioned earlier, this is the study of data that is collected across 30
IoT use cases and also contains findings of different surveys conducted at
industry level as part of EU-IoT project. The methodology used here for
collection and analysis of data relies on a range of methodological tools and
techniques:

For the collection data, our research has employed a range of method-
ological tools. These constitute the scientific frame of reference for estab-
lishing an appropriate mechanism to gather information on best practices for
IoT use cases, which includes interviews (semi-structured), digital maturity
assessment tool [18], and business model pattern survey [19].

It should be noted that data collection has relied on self-assessment
methodology, and results are therefore influenced heavily by the case compa-
nies’ own self-perception.

For the analysis of data, our research has further employed a range of
methodological techniques. These constitute the theoretical frame of ref-
erence for establishing a common understanding of the concepts that are
essential in exploring best practices for IoT use cases. These techniques
include digital maturity, BM patterns [20], and the configuration of BMs
for innovation. The methodological tools and techniques are employed in
symbiosis to explore the IoT use cases and produce the results that will be
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presented in the next section. The methodology is presented in a simplified
overview in Figure 18.3.

18.3.2 Interviews

Information and insights on IoT use cases are derived from dialogue with the
people that are/or have been severely involved in the use case. Hence, the

Figure 18.3 Methodological overview.
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tool for data collection has been interviews based on a range of predefined
questions to cover all relevant aspects and align the stories of the use cases.
The methodology used for interviews was of semi-structured type. The inter-
views were conducted with one or more employees from each case company
to ensure that their roles in developing and/or deploying the IoT solution
represent both a technical and a business perspective.

18.3.3 Digital maturity assessment

The assessment of digital maturity is based on the research by Presser et al.
[5], [18], and data collection was facilitated by the digital maturity assess-
ment tool (DMAT). The term digital maturity refers to the measure of an
organization’s ability to create value through the implementation of digital
solutions. Digital maturity is a key predictor of success for companies that
initiate a digital transformation and high levels of digital maturity are often
associated with having a competitive advantage. The DMAT assesses digital
maturity along the dimensions of strategy, culture, organization, processes,
technology, and/or customers and partners. The study takes an in-depth look
at business dynamics and technological dynamics of relevance to IoT success
in terms of digital maturity, BMPs, BM configuration for innovation, and
technology trends. The quantitative results presented in Section 18.4 cannot
be considered definitive but rather indicative for innovators and learners to
achieve success in the IoT area.

Digital maturity self-assessment:
The use case cluster has been assessed for the digital maturity of their

companies by scaling themselves (on a scale from 1 to 10) based on relevant
questions as illustrated in Figure 18.4, and the relevant points are given below:

• Best practice comparison: On a scale from 1 to 10, the case companies
assess themselves to an average score of 7.87. It indicates that the case
companies generally consider themselves close to being perfectly digi-
tally mature and close to the digital top performer(s) in their respective
sector.

• Digital maturity of organization: On a scale from 1 to 10, the case
companies assess themselves to an average score of 7.70. It indicates
that the case companies generally consider themselves to be at a high
level of digital maturity. This result is consistent with the total average
digital maturity score of 7.82, which indicates that the case companies
possess a great amount of self-knowledge.
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Figure 18.4 Digital maturity self-assessment.

• Digital maturity of BM: On a scale from 1 to 10, the case companies
assess themselves to an average score of 7.37. It indicates that the case
companies generally consider themselves to have a digitally mature
BM. This result, however, is lower than the self-defined digital maturity
of the organization, indicating that the case companies acknowledge
room for digital optimization in how value is created, delivered, and
captured, in economic, social, cultural, or other contexts.

18.3.4 Business model patterns survey

The study of BMPs is based on the research by Weking et al. [19], and
data collection was facilitated by a survey developed for the specific purpose
of the EU-IoT project by the Interdisciplinary Centre for Digital Business
Development, Aarhus University. The BMP survey is an online questionnaire
that can be accessed via the online link. The patterns of a BM help us
to understand the outline of the business. By using Weking et al.’s [19]
taxonomy from 2020 to explore the BM patterns of our use case cluster,
it is made very clear that they are all using the internet – or IT − as a
fundamental source for building and innovating their BMs. The taxonomy
depicts the super-patterns: integration that innovates its BM around new
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processes, servitization around new products, and expertization around a
hybrid of products and processes.

18.3.5 Business model evaluation – innovation and
configuration

The evaluation of BMs is based on the research by Gassmann et al. [21],
and data collection was facilitated by the combination of the employed
methodological tools. The concepts of BM innovation and BM configuration
are explored with the theoretical framework of St. Gallen University [21], as
shown in Figure 18.5, which depicts four dimensions that are the minimum
requirements to define a BM. The four dimensions of a BM describe the
rationale of how an organization creates, delivers, and captures value. This
can be summarized as follows:

• WHO (customer) − Who are the target customers of the solution?
• WHAT (value proposition) − What does the company offer the cus-

tomers? (Value design tool is the point of departure.)
• HOW (value chain) − How does the company, together with other

partners, create this solution?
• WHY (revenue model) − How does the company create value in the

form of revenue?

Figure 18.5 St. Gallen magic triangle.
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Ultimately, the configuration of the dimensions is a plan for the successful
operation of a business, and it provides the conceptual structure that supports
the viability of the business. BM innovation is the process of reinventing
or enhancing the BM by making simultaneous, and mutually supportive,
changes to the dimensions.

18.4 Results and Analysis

This section will provide the results from data collection across the cluster
of IoT use cases explored under the EU-IoT. The findings presented are
gathered from the interviews conducted following semi-structured approach,
and assessments of digital maturity dimensions, technology trends, and BM
patterns using methods explained in Section 18.3.

18.4.1 Use case companies overview

The results cover a broad overview of the 30 IoT use cases, and background
information on the case companies that have been selected as suitable units
of analysis. To establish a complete picture of best practices for IoT use
cases, data has been collected both qualitatively and quantitatively to ensure
that the exploration considers both the individual specifics of the cases and
the collective totality of the cluster. To make the data sources visible for
the exploration as the foundation of our findings on best practices for IoT
use cases, the case company details have been presented in Table 18.1. The
people who represent the case companies are varying in gender, age, and
professional role in the organization. All are, or have been, severely involved
in the IoT use case, and all were volunteered interviewees. The cluster of
case companies represent varying sizes measured on personnel numbers
wherein 80% of the case companies can be defined as SMEs (i.e., having
less than 250 employees), and the cluster thereby represents the backbone
of European economy well, where 99% of all businesses are in the defined
group of SMEs.

Some relevant information to consider in the exploration of best practices
for IoT includes the timing of significant milestones achieved by the case
company with regard to the use case. All the case companies covered in
the cluster were founded between 1935 and 2019, with the average year of
founding being 2006. Hence, majority of the case companies are founded in
the most recent decade, with precisely 63% in the period 2010−2020. All
the use cases covered in the cluster were initiated between 2007 and 2020,
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with the average year of founding being 2016. 80% of the IoT use cases were
initiated in the period from 2015 and onwards. Only one of the 30 use cases
was initiated before 2013.

Table 18.1 Data overview of case companies and related information.
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Table 18.1 (Continued.)

Data insights:

• The data indicates that the corporate world has started to realize the value
of developing and/or deploying IoT technology during the recent decade.
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This reflects the increasing trend and overall growth in IoT solutions in
the European landscape.

• None of the explored IoT use cases were initiated after 2020, which may
indicate that a period of some years must occur after the initiation of an
IoT initiative to mature it into a successful use case.

• Majority of best practice companies seems to be born digital and are
founded on the basis of an IoT initiative, or adopts an IoT initiative
within a short period of time after foundation.

18.4.2 Digital maturity

Digital maturity has been assessed to explore how successful IoT develop-
ment and deployment interlinks with the digital maturity of a company. Based
on an assessment of 30 use cases, the digital maturity patterns, studied for
different companies, have been described in this section. It is found that the
overall digital maturity score is 7.82 as highlighted in Figure 18.6 and the
domain specific score is shown in Figure 18.8. The digital maturity (on a
scale from 1 to 5) is mapped out on the six dimensions defined by the DMAT
methodology, and the average distribution across the dimensions is illustrated
in Figure 18.7. Across all case companies, culture is the most digitally
mature dimension, and therefore likely to be a driver of digital competitive
advantages.

Processes is the least digitally mature dimension and therefore likely to
contain digital development areas. It has been observed that companies
in the manufacturing domain demonstrates the highest level of digital
maturity, whereas case companies in the energy & utility domain along with
case companies in the mobility & transportation domain demonstrates the
lowest level of digital maturity. In case of digital maturity across domains,
the average distribution across the dimensions is illustrated in Figure 18.9.
All domains are least digitally mature on the processes dimension.
Data insights:

• All domains are most digitally mature (DMAT score > 7) on the strategy,
technology, and customers & partners dimensions. This means they
are more digitally mature than the average for their respective sector
and have exceptional abilities to digitally transform and to adopt new
technology.



390 Digital Business IoT Maturity Patterns from EU-IoT Ecosystem

Figure 18.6 Digital maturity score across use case companies.

Figure 18.7 Digital maturity dimensions distribution.

Figure 18.8 Digital maturity across domains.

• Strategy is likely to be the driver of digital competitive advantages for
case companies in agri-food, mobility & transportation, and other, as
this is the most digitally mature dimension of these domains.

• Technology is likely to be the driver of digital competitive advantages
for case companies in health & care and smart cities & communities, as
this is the most digitally mature dimension of these domains.
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Figure 18.9 Digital maturity dimensions distribution across domains.

• Customers & partners is likely to be the driver of digital competitive
advantages for case companies in manufacturing as this is the most
digitally mature dimension of these domains. The same is true for energy
& utility, although in combination with the technology dimension.

• Culture is the most digitally mature dimension on average across all
domains. However, it does not apply to any isolated domain.

• The most digitally mature dimension differs across domains and
includes strategy, technology, and customers & partners, indicating that
these are the main drivers of digital competitive advantages.

• The data indicates that the digital capabilities of the use case cluster are
vastly mature, which may be explicated by the origin of many of the case
companies being born digital.

• The data indicates that manufacturing is the most digitally mature
domain whereas energy & utility and the mobility & transportation
are the least digitally maturity domains.

• Processes is the least digitally mature dimension across all domains,
indicating that it is a digital development area for all companies
regardless of domain.
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18.4.3 Business model patterns

BMPs have been surveyed to explore how the BMs of use cases that
successfully leverage IoT technology are shaped by IoT applicable patterns.

Figures 18.10 and 18.11 illustrate a distribution of the BM super and sub-
patterns that have been archetypal for the IoT use case cluster. Majority of
the use cases are characterized by the BM super patterns servitization and
expertization. Only one of the 30 cases is characterized by the super pattern
integration, and two cases cannot be characterized by any of the patterns
suggested by the taxonomy.

• Integration implies that innovation initiatives made by the case com-
pany typically devote to new processes. This company strives to cover
more activities in the value chain rather than specializing on a single step
and/or selling directly to customers via online channels.

• Servitization implies that innovation initiatives made by the case com-
pany typically devote to new products or services. These companies
strive to become a solution provider by offering new product support
services instead of selling solely tangible products and/or integrating
sensors into products.

• Expertization implies that innovation initiatives made by the case com-
pany typically devote to a combination of processes and products or
services.

Figure 18.10 BM super patterns.
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Figure 18.11 BM sub-patterns.

Table 18.2 Total distribution of business model patterns.

*Note that two of the 30 use cases cannot be characterized by the patterns suggested by the
taxonomy, and percentages are therefore calculated based on the remaining 28 cases.

These companies strive to apply internally built expertise and know-
how in products, processes, or as a service. Table 18.2 is showing the BMP
distribution in terms of super and sub-pattern classification. The results are
showing that the servitization and expertization super patterns are trending
in the industry. Under sub-patterns, life-long partnership is the highest choice
of demand that the customer looks from the service provider of related
product under servitization.

18.4.4 Business model innovation and configuration

BMs have been evaluated to explore how successful development and deploy-
ment of IoT solutions correlate with the configuration of the four BM
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dimensions and BM innovation. Figure 18.12 illustrates the total distribution
of BM dimensions that have been subject to significant change, i.e., which
specific dimension(s) in the case company BMs that were impacted by the
development and/or deployment of the IoT solution.

Figure 18.13 shows the distribution of BM dimensions impacted per
domain by the development and/or deployment of the IoT solution.

Figure 18.12 BM dimension distribution.

Figure 18.13 BM dimension impact.

Data insights:

• The target customer was impacted in 47% of the cases by the IoT devel-
opment and/or deployment. Hence, the WHO of the BM has changed
significantly for 14 of the 30 case companies.

• The value proposition was impacted in 83% of the cases by the IoT
development and/or deployment. Hence, the WHAT of the BM has
changed significantly for 25 of the 30 case companies. This means
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the value proposition is typically the dominating subject of significant
change in the domains agri-food, health & care, and smart cities &
communities.

• The value chain was impacted in 83% of the cases by the IoT devel-
opment and/or deployment. Hence, the HOW of the BM has changed
significantly for 25 of the 30 case companies. The value chain is
typically the dominating subject of significant change in the domains
manufacturing and other.

• The revenue model was impacted in 47% of the cases by the IoT devel-
opment and/or deployment. Hence, the WHY of the BM has changed
significantly for 14 of the 30 case companies.

• The four dimensions are never equally impacted by the development
and/or deployment of the IoT empowered solution. Only one or two
dimensions can be simultaneously dominating subjects of significant
change.

• The WHO and WHY dimension are rarely dominating subjects of
significant change. These are either equally or less impacted than the
WHAT and WHY dimensions.

To determine the correlation between BM innovation and the develop-
ment and/or deployment of an IoT solution, we have explored the concept
in alignment with the theory proposed by the University of St. Gallen [21],
defining the occurrence of BM innovation with the occurrence of significant
change in at least two of the four BM dimensions. The outcome of BMI is
shown in Figure 18.14. Figure 18.15 illustrates the number of dimensions in
the BM of the case companies that are impacted in specific domain by the
development and/or deployment of the IoT solution. Figure 18.16 illustrates
the number of dimensions in the BM of the case companies that are impacted

Figure 18.14 BMI outcome.
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Figure 18.15 BM dimension impact across domains.

by the development and/or deployment of the IoT solution – distributed
across domains. Figure 18.17 illustrates all the BM configurations of the case
companies, i.e., the combination of BM dimensions that are impacted by the
development and/or deployment of the IoT solution. The BM dimension com-
binations WHO-WHAT-HOW-WHY, WHAT-HOW-WHY, and WHAT-HOW
are the most popular configurations that are subjected to significant change,
as an outcome of the case companies’ IoT development and deployment.

Data insights:

• Almost half (43.4%) of the case companies were impacted on two BM
dimensions, and almost a fourth (23.4 %) were impacted on three BM
dimensions and equivalent (23.4 %) on all four BM dimensions.

• All case companies were impacted on at least one BM dimension.
• The case companies were, on average, impacted on 2.65 dimensions.

This indicates that the best practices for IoT typically include significant
change in two or three BM dimensions.
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Figure 18.16 BMI-BM dimensions impacted per case.

Figure 18.17 BMI – number of BM dimensions accumulated impact.

• 90% of the case companies were impacted on more than one BM
dimension and are therefore cases of BM innovation.

• The case companies across all domains were on average impacted on
2.25−3.00 dimensions. This indicates that the best practices for IoT



398 Digital Business IoT Maturity Patterns from EU-IoT Ecosystem

− no matter what domain the company operates in − typically include
significant change in two or three BM dimensions.

• As an outcome of development and/or deployment of the IoT empow-
ered solution, companies in the domains manufacturing and mobility
& transportation are more likely to see impact on two BM dimensions,
whereas companies in the domains agri-food and health & care are more
likely to see impact on three BM dimensions.

• The data indicates that successful BMs in the IoT area are impacted
on their value proposition and/or value chain by the development and
deployment of IoT solutions. Hence, the single BM dimensions that are
most often subject to significant change are WHAT and WHO.

• The data indicates that the combinations of BM dimensions that
are most often subjected to significant change include: WHAT-HOW,
WHAT-HOW-WHY, and WHAT-HOW-WHY-WHO. These configura-
tions seem archetypical for achieving success in the IoT area.

• The data indicates that BM innovation − with 90% probability − is an
outcome of best practice of IoT development and/or deployment.

Figures 18.18–18.20 have illustrated all the BM configurations of the case
companies − both per case, the actual accumulated total of the cluster, and the
potential accumulated total of the cluster, which are summarized as follows:

Figure 18.18 BMI across domains.
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Figure 18.19 BM Config-Dimension combination per case.

• All illustrated two-dimensional BM configurations are applied in 37%
or more of all the potential BMI cases.

• All illustrated three-dimensional BM configurations are applied in 30%
or more of all the potential BMI cases.

• The four-dimensional BM configurations are applied in 26% of all the
potential BMI cases.

• The BM dimension combination WHAT-HOW was among the most
popular configurations for significant change (applied in 26% of all the
potential BMI cases).

• This specific combination was applied in 54% of the potential two-
dimensional BMI cases, and it is part of the BM configuration in 74
% of all the potential BMI cases.

• The BM dimension combination WHAT-WHY was not among the most
popular configurations for significant change (applied in 4% of all the
potential BMI cases).

• This specific combination was applied only in 8% of the potential two-
dimensional BMI cases, but it is, however, part of the BM configuration
in 48% of all the potential BMI cases.
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Figure 18.20 BM configuration – BM dimensions combination accumulated.
*Note that three of the use case cluster’s 30 BMs are not subjected to BMI. Potential

calculations are therefore based on the remaining 27 BMI cases.

• The BM dimension combination WHAT-HOW-WHY was among the
most popular configurations for significant change (applied in 19% of
all the potential BMI cases).

• This specific combination was applied in 36% of the potential three-
dimensional BMI cases, and it is part of the BM configuration in 44% of
all the potential BMI cases.

*Note that configurations not mentioned constitute less than 40% of the total
accumulated BMI cases.

18.4.5 Technology trends

Technology trends that characterize IoT use cases have been explored to
conclude whether the application of specific technologies is repetitive for
achieving success in the IoT area. In the setting of digital business, both IT
and IoT can play a role, as highlighted in Figure 18.21, which is constitutive,
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Figure 18.21 Role of IT and IoT.

value increasing via IoT solution development or deployment or irrelevant for
the general BM of the organization. Figure 18.22 shows technology trends
applied in the context of case companies.

Data insights:

• To 90% of the case companies, the specific IoT solution developed
and/or deployed adds value to the overall BM of the company. To
more than half (53.3%), the IoT solution even matures into having a
constitutive role, causing IoT to drive the selection of patterns that depict
the overall BM of the company.

• IT as a general phenomenon is value increasing for the business of
almost all the case companies explored and constitutive to 76.7% of
them. This indicates that the value potential of business directly relies
on the integration of IT-driven BM patterns for three-fourth of the
companies.

• The data indicates that IT as a general phenomenon often plays a con-
stitutive role in the BM of companies that successfully develop and/or
deploy IoT solutions. Hence, the best practice seems to rest upon the
digital underpinning.

• The data further indicates that the specific IoT solution being developed
and/or deployed should at least assume a value-increasing role for the
overall BM of the company to foster future success.

• The data indicates that key technological trends include sensors and/or
cameras, artificial intelligence, digital twins, machine learning, and
open software and/or hardware. These constitute the archetypical
technologies that presently seem repetitive for achieving success in the
IoT area.
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Figure 18.22 Technologies applied base case companies.

• Other technologies applied include addictive manufacturing, LoRa,
and software-defined networking (SDN) technology.

• Sensors and/or cameras is the utmost adopted and widespread tech-
nology, with 90% of the IoT use case cluster applying it in their case
companies.

• Artificial intelligence, digital twins, machine learning, and open soft-
ware and/or hardware are also common technologies that are applied
in half or more of the case companies.

• 6G, quantum computing, and nano electronics are the technologies
that are least applied in the case companies.



18.5 Conclusion 403

18.4.6 Relevant skill areas and patterns

This section highlights the trends of skills in the IoT area (Figures 18.23,
18.24) based on relevant survey conducted with various random professionals
across industries as part of the EU-IoT project study.

Data insights:

• All IoT skill areas are important. However, IoT data and related data
analytics skills and modern computing (cloud/edge/mobile) seem to be
the most important in modern times.

• IT sector is the most prevalent area where these skills are used and
known.

• At resource level, engineers are the most interested and expected to
be skilled in these areas.

18.5 Conclusion

This study has presented the analysis for 30 IoT use cases carried out as part
of the EU-IoT project with an objective to explore and analyze different busi-
ness models and technology patterns, values, trends, operational domains, and
best practices that are enabled in the IoT ecosystem. The data has been col-
lected across Europe from different domain companies that varied in size and
scale of operations. In order to fulfill the objective, various business modeling
tools have been used, which includes interviews, surveys, DMAT, St. Gallen’s
magic triangle, and BMP survey. This study also presented the background of

Figure 18.23 IoT skill areas importance.
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Figure 18.24 Skills survey sector distribution.

those tools and how they have been used in relevant context. There are a lot of
data collected for 30 use cases and each use case is then analyzed individually
and in an aggregate manner to derive the impact in terms of digital matu-
rity, business model patterns, business model innovation, and configuration
aspects. In addition, the applied technology trend in all the cases has also
been presented. Finally, for practitioners/recruiters, the required skill patterns
are also presented, which are mapped to relevant IoT skill areas based on the
surveys conducted with various professionals across industry. Beyond that,
it tells what kind of business models patterns (integration, expertization, and
servitization) are used in IoT ecosystems and what the role of the underlying
ecosystem is. The data indicates that IT as a general phenomenon often
plays a constitutive role in the BM of companies that successfully develop
and/or deploy IoT solutions. Hence, the best practice seems to rest upon
digital underpinning. The data further indicates that the specific IoT solution
being developed and/or deployed should at least assume a value-increasing
role for the overall BM of the company to foster future success. The data
also indicates that key technological trends include sensors and/or cameras,
Artificial intelligence, digital twins, machine learning, and open software
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and/or hardware. These constitute the archetypical technologies that presently
seem repetitive for achieving success in the IoT area.
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