
8
Efficient AI-based Attack Detection Methods

for Sensitive Edge Devices and Systems

Daniel Hirsch1, Falk Hoffmann1, Andrija Neskovic2,
Celine Thermann2, Rainer Buchty2, Mladen Berekovic2,

and Saleh Mulhem2

1NXP Semiconductors, Germany.
2Universität zu Lübeck, Germany

Abstract

An increasing number of edge devices store and process sensitive user data,
presenting an attractive target for attackers. This trend of data storage and
processing at the edge is expected to continue. As secure devices are inte-
grated into new systems with increased device operation times, exposure
to environmental stress also increases significantly. Especially, for stan-
dalone micro-Edge devices the relevance of this is increasing. Enhanced
protection mechanisms are required and AI-based approaches are promising
candidates.

In this contribution, we examine the requirements for such mechanisms
and the sensing capabilities of state-of-the-art secure devices. Based on
these capabilities and attack models, a dataset for training and validation is
generated. Considering the requirements and the available dataset, a selection
of applicable algorithms is defined. The selected algorithms are evaluated and
compared based on the obtained results and computational loads, as the basis
for future work.

Keywords: artificial intelligence, machine learning, security, attack detec-
tion, edge AI, micro-Edge, autonomous security, AI security.

177



178 Efficient AI-based Attack Detection Methods

8.1 Introduction and Background

Edge Computing (EC) is one of the most practical computing concepts
used in day-to-day life applications. The architecture of edge computing is
illustrated in Figure 8.1. EC is divided into three levels: Edge/IoT device,
Edge device/node, and Cloud level. The core idea of EC is to perform
computations and storage directly at the end-user level [1]. i.e., at the network
edge [2, 3]. Handling sensitive data becomes prominent. The extraction of
these sensitive data and the manipulation of security-relevant features of IoT
and edge devices represent a lucrative target for attackers. Therefore, the
need to securely protect and handle these data becomes important. Protection
mechanisms that work towards this goal can be deployed on all three levels.

Security features are usually implemented to protect these data assets.
The most straightforward way to identify manipulation or attacks is by
checking both environmental and the device’s internal sensors. Another way
is to observe the logical monitoring and protection mechanisms that trigger
a device reset or limit further use of the device. In extreme cases, device
operation is temporarily or permanently blocked.

False alarms may be triggered in cases where sensor information is
directly used without any further evaluation of severity, application relevance,

Figure 8.1 Architecture of Edge System



8.1 Introduction and Background 179

or statistical analysis of environmental effects. The consequence of such false
alarms may be severe, leading to DoS attacks, for example. As secure devices
are being integrated into an increasing number of systems with extended
duty cycles, even up to permanent power-on conditions, the exposure to
environmental stress increases significantly. A more advanced evaluation of
sensor events and more flexible reactions need to be considered.

To ensure correct functionality of these systems and the integrity of user
data, the evaluation of the security mechanisms with the help of AI algorithms
represents a promising alternative to conventional approaches. To identify
applicable algorithms for attack detection, an evaluation of the requirement
specifications is carried out. However, due to the field of application and the
special limitations in the physical domain of IoT and other edge devices, the
requirements are challenging.

Relevant attacks on the edge

Studying security attacks on electronic devices and systems is a well-
established field, but edge devices have certain characteristics that make them
more prone to certain attacks and threats when compared to more capable
computing devices. In [4], some of the aspects are pointed out, namely:

• Weak Computation Power: Edge devices are less powerful than cloud
servers, making them susceptible to attacks not effective on cloud coun-
terparts. Fragile defence systems on edge devices further expose them to
unique threats.

• Attack Unawareness: IoT’s lack of user interfaces limits awareness of
device status, hindering attack detection.

• Operating System (OS) and Protocol Differences: Edge devices lack
uniform OSes and protocols, complicating the creation of a unified
security approach.

• Limited Access Control Precision: Edge computing’s complex sys-
tems demand fine-grained access control, unlike current coarse-grained
models.

Figure 8.2 shows distributions of the attack types on edge devices as
presented in [4].



180 Efficient AI-based Attack Detection Methods

Figure 8.2 Possible Attacks against Edge Devices (Adapted From [4])

In the following, we summarize some possible attacks against edge
devices, cloud, and edge systems:

1. Possible Attacks on Edge Devices and Nodes

• Malware Injection Attacks: Malware Injection Attacks inject mali-
cious code into the target device. These attacks can lead to arbitrary
code execution which can compromise the security of further devices in
the network. Considering the case of edge devices, protection becomes
much more difficult because the limited computing power does not
allow for classical high-performance firewalls or threat protection
systems, like with general-purpose computers.

• DDOS Attacks: DDoS, short for Distributed Denial of Service, is
a cyber assault that involves perpetrators attempting to interrupt the
regular operations of one or multiple servers. This is achieved by
leveraging distributed resources, often in the form of a network of
compromised edge devices, also known as a botnet [4]. It constitutes a
potent form of attack that seeks to hinder the legitimate utilization of a
particular service.

• Authentication and Authorization Attacks: Authentication is the
processing of verifying a user’s identity who requests certain ser-
vices and authorization grants that user rights to perform operations.



8.1 Introduction and Background 181

An adversary could exploit weaknesses in the authentication and autho-
rization mechanisms to obtain privileged access rights and perform
malicious operations.

• Side-channel Attacks: Refer to a type of attack, where the adver-
sary can exploit information leakage of security-sensitive information
via publicly accessible information which is not security-sensitive by
nature. Most prominent examples of side-channel attacks exploit the
power consumption or timing behaviour of a device while executing
sensitive information. Side-channel attacks on the device level can
potentially come from two sources, malicious tasks or a malicious
OS. Task-level attacks or Timing attacks are typically cache-based
such as Flush+Reload [5], Flush+Flush [6], Prime+Probe [7], Evict
& Time [8], Evict & Reload [9], Spectre [10] and Meltdown [11]
attacks. Here, the attacker aims at getting sensitive data by exploiting
sharing vulnerabilities in caches [10, 11] and, in the case of Spectre
and Meltdown, out-of-order optimization issues. The attack surface is
large, also comprising several proposed and existing covert-channel
attacks [12, 13, 14]. Multiple mitigation techniques have already been
proposed, typically featuring either logical or physical separation,
noise-based techniques, scheduler-based techniques, and constant time
techniques. Attackers can exploit the power consumption of the edge
device via a power side-channel attack. The concept of side-channel
analysis appeared in the late 1990s [15], with Differential Power Anal-
ysis (DPA) [16] becoming a successful attack method. It was utilized
to attack AES with a Simple Power Analysis (SPA) [17]. With the
growing interest in the topic, more elaborate attack methods have been
presented, e.g., Correlation Power Analysis (CPA) [18]. These types
of attacks pose a significant threat to security-critical applications.
Nowadays, even more powerful attack methods based on Template
Attacks or utilizing AI as an attack tool for side-channel analysis are
present. Fault injection attacks aim at maliciously altering an edge
device’s functionality. This can range from disturbances in the power
supply voltage, irregularities in the clock signal, electromagnetic or
radiation disturbances or overheating as described in [19]. The attack
objective could be as complex as revealing the secret key of cryp-
tographic primitives, but also simple, like blocking the computation,
i.e., denial of service. The complexity and cost to perform a successful
Fault Injection Attack can vary based on equipment costs and required
knowledge about the underlying hardware. Although fault attack can



182 Efficient AI-based Attack Detection Methods

be expensive in terms of complexity and cost, it is practical and can
be mounted on most commonly used architectures from ARM, Intel
and AMD [20]. In recent years, even more elegant software-based
approaches exploiting voltage scaling led to successful attacks on the
Intel SGX secure enclave [21].

2. Possible Attacks on the Cloud

Securing cloud services is mainly achieved by separating a cloud’s tenants.
These must not be able to escape their individual virtual machines and get
access to other tenant’s data. Unfortunately, such has been proven viable via
side-channel attacks, leading to cross-VM secret leakage via different levels
of CPU cache side-channel attacks [5, 9, 22, 23, 24, 25, 26]. Mitigation is
technically possible, but typically requires significant changes to hardware
[27, 28, 29, 30], hypervisors [31, 32, 33, 34, 35, 36], or guest OSes [36].
Such approaches are not easily applicable to existing data centres. Mitigation
by frequent VM migration [37, 38] is theoretically also feasible but comes
at prohibitively high migration cost, i.e. several minutes of migration time
[39], and hence only addresses the issue of long-term co-location. Attacks by
malicious VMs however take only milliseconds [5, 24].

3. Intrusion Attacks on Edge System

The network-based exchange of data and commands between edge devices
and cloud infrastructure implies several threats that can affect the edge system
due to an insecure network. For instance, attackers can block the data transfer
by malicious gateway access or network floods [40]. Similarly, attackers can
perform attacks such as impersonation attacks, communication interception,
password guessing attacks, data integrity violations, Denial of Service (DOS)
and bad Quality of Service (QoS) [40].

Several countermeasures have been proposed to prevent or detect such
attacks. The problem with these existing countermeasures is that they usually
only address one specific attack, where an attacker can launch a multitude
of attacks. To identify such attacks, two essential approaches exist which
are signature-based and anomaly-based detection. By nature, signature-based
attacks can be overcome by altering the attack code to evade detection and
do not protect against previously unknown attacks [41]. Anomaly-based
detection, in turn, is prone to false positives as legitimate applications may
appear as malicious [41]. The combination of both methods mitigates some
of the named individual shortcomings [41, 42].

Intrusion detection systems (IDS) are essential tools for monitoring and
detecting of anomalous activities in a network of edge devices and systems



8.2 Efficient Attack Detection 183

and responding to these attacks. Traditional IDS relies on signatures or rules
to detect known attacks, but these methods are not effective against new and
evolving threats. An anomaly detection system, on the other hand, relies
on identifying abnormal behaviour in network traffic data. However, these
systems can generate false positives, making them less reliable, and are
inability to detect new/unknown attacks [40].

8.2 Efficient Attack Detection

In this section, the approach of selecting an appropriate solution for attack
detection on resource-constrained micro-Edge ICs is described. The stan-
dalone IC protects on-chip data and secrets by preventing unauthorized
access. First, the requirements related to this task are described, followed
by a section on the dataset. Based on the requirements and the available
dataset, a selection of applicable algorithms obtained from thorough research
is specified.

8.2.1 Requirements

An implementation must meet requirements in the three domains of security,
user experience, and realizability. The correlation of the requirements focus-
ing on the three general domains is depicted in Figure 8.3 using a top-down
representation.

Figure 8.3 Correlation of requirements



184 Efficient AI-based Attack Detection Methods

The main goal is to target the domain of security. Based on AI, an
algorithm capable of improving the present security mechanisms will be
researched and evaluated. Since the devices handle sensitive data during
operation, requirements covering the targeted levels of security must be
defined. The second domain is represented by the user experience. Due to
the commercial nature of the products, and since the additional functionality
does not necessarily translate to a direct added value for the user, the user
experience during usage is not allowed to be negatively influenced by the
implemented solution.

Lastly, it must be noted that the available resources for implementing the
functionality on the considered devices are limited in terms of computational
power, area, and current consumption. Therefore, to benefit from the devel-
oped solution, it is also necessary to formulate implementation requirements
that are realistic and applicable. These requirements are summarized in the
domain of realizability.

Starting from the security perspective, the target of evaluation can contain
highly sensitive data, therefore, a low miss rate in terms of detection of actual
and exploitable attacks is mandatory to ensure the security and integrity of
data stored on the device. Also, the implemented solution should not reduce
the usability of the product or affect the user experience negatively. This
requirement demands the lowest possible false alarm rate. Furthermore, the
implemented solution should have minimal impact on the performance of the
main application to achieve a satisfying user experience.

Besides the presented requirements, a fast response time constitutes a
very important requirement in this application. To react quickly and prevent
performance issues, the response time needs to be as fast as possible. This
requirement can be attributed to the domains of security and user experience.
From a security perspective, a fast response time is required to protect the
secrets stored on the device. From the user’s perspective, customers are not
keen to see longer response times when using the devices. Therefore, in both
domains, a fast response time is seen as advantageous.

Since the developed solution is targeted to be implemented on low-power
edge or IoT devices, the available resources are very limited. Based on these
general preconditions, further requirements concerning the memory, required
die area, power efficiency, and CPU usage need to be formulated. Especially
considering the CPU usage, low utilization must be achieved to guarantee
minimal impairment of the main application.



8.2 Efficient Attack Detection 185

8.2.2 Underlying Dataset

To obtain a flexible solution that is applicable for a variety of devices, the
detection capabilities of state-of-the-art devices will be investigated. Since a
dataset cannot be obtained from measuring traces in the laboratory or gather-
ing field data, the dataset must be generated artificially. For this purpose, the
relevant phases within an application and available inputs will be analysed.

Based on this further possible attack scenarios need to be researched and
modeled. By the combination of capabilities and the theoretical consideration
of attacks, a dataset will be derived. In the process of dataset generation,
reasoned assumptions must be made and all decisions must be evaluated
critically. Furthermore, the choice of labeling is going to be justified and
strategies for the generation of a subset for the model validation will be
explained.

8.2.3 State-of- the-Art Attack Detection Methods

1. AI-based Attack Detection at Edge Device Level
The use of AI methods provides efficient countermeasures. HAL [43]
provides a quantitative and qualitative analysis of several machine-
learning models for use in cache-based side-channel attack detection. It
specifically addresses real-time requirements, detection at an early stage,
and minimal performance overhead and demonstrates this in the context
of security applications (RSA and AES cryptosystems). It however does
not provide a definite answer on specific model usage.
Similarly, WHISPER [44] proposes a tool for side-channel attack detec-
tion based on machine learning. Instead of using a single approach,
it features multiple ML models in combination that interpret the
behavioural data of concurrent processes. This data is collected via
hardware performance counters. The authors demonstrate the tool’s
capability by achieving >99% accuracy of detecting a large and diverse
attack vector while introducing only a reasonably low performance
overhead.
In today’s secured systems, installation and execution of malicious
application software is typically rendered impossible by so-called
shielded execution e.g. provided by the Intel Software Execution Guard
[45]. However, such shielded execution can be compromised by priv-
ileged attackers, e.g. by changing page-table entries of memory pages
that are specifically used by shielded execution. By this approach, a
malicious OS kernel can observe corresponding memory-page accesses



186 Efficient AI-based Attack Detection Methods

and hence extract potentially sensitive information. DejaVu [46] is a
software framework that enables self-protection detecting such priv-
ileged side-channel attacks from within the shielded execution. This
is enabled by the so-called pathlet execution time. For this, a dedi-
cated reference clock is employed that is specifically constructed using
the Intel Transactional Synchronisation Extension (TSX). By featuring
this robust reference clock, not only deviations in pathlet execution
time indicating an attack can be detected but also interruptions of the
reference-clock thread resulting in a transaction timeout.
Modern processors provide a limited number of registers known as hard-
ware performance counters (HPCs) that capture hardware-related events.
These special-purpose registers can be used to study the impact of side-
channel attacks (SCAs). Compared to normal operation, the number of
events when a system is under attack appears noticeably different. [47]
explores several different machine-learning models for real-time cache-
based SCA detection using HPCs. 16 HPC features are collected for both
victims under attack and victims not under attack at different sampling
rates. Overhead is reduced, by only using four features. This way they
all can be fetched synchronously. The authors determined that for a
sampling granularity of 500 μs, the systems incur 5% overhead while
maintaining good detection accuracy. In addition, they also considered
the latency for the different models. It was found that the Decision Tree
provides the best trade-off between performance and latency.
[48] provides another approach using HPCs for the detection of side-
channel attacks. The authors provide a two-step process comprised of
an offline and an online phase. In addition to covering cache-based
SCAs, they also consider branch-based and DRAM-based SCAs. The
HPC can be observed to follow a Gaussian distribution with different
means and variances. Anomalous behaviour shows a different distribu-
tion with a different mean. During the offline phase, data is collected
in different environments. This includes benign programs running in
the background, that make intensive use of the cache, branching, or
the RAM. Afterwards, during the online phase, HPCs are collected and
classified using an AI model. To counteract the high number of false-
positives, anomalous traces are correlated with traces in a database. A
high correlation indicates an attack, while a low correlation indicates a
benign program running.



8.2 Efficient Attack Detection 187

2. AI-based Attack Detection at Cloud Level
Several security countermeasures have been introduced to mitigate pos-
sible attacks on the cloud [49, 50]. For instance, CloudRadar [41]
proposes an approach to secure the cloud. This approach correlates
signature-based and anomaly-based detection techniques in to spot side-
channel attacks. Here, signature-based detection is used to identify
when a protected VM executes cryptographic applications. Anomaly-
based detection is orthogonally used to monitor and identify abnormal
cache behaviours typical of cache-based side-channel attacks. As such,
the approach is non-intrusive, not requiring any changes to hardware,
hypervisor, guest VM, and applications. It hence is comparatively easy
to deploy in existing cloud environments and, according to the authors,
requires only patching and a little overhead [51]. To improve the perfor-
mance of such detection techniques and cover more than the classical
cache attacks against edge devices, Recurrent Neural Networks (RNNs)
were proposed in [52]. The results show that additionally to the classical
detection of cache attacks, the RNN-based solutions efficiently detect
Rowhammer, Spectre, Meltdown, and Zombieload attacks as well.

3. AI-based Intrusion Detection System for Edge Systems
AI-based Intrusion Detection Systems (AI-IDS) are a promising alterna-
tive to traditional IDS. AI methods can identify patterns and anomalies
in network traffic data, enabling it to detect previously unseen, unknown,
and complex threats. AI-IDS faces three main challenges: (1) the quality
of the data used for training and testing the models, (2) the accuracy
of the chosen AI algorithm, and (3), the performance of the chosen AI
algorithm.
Various techniques have been proposed to enhance the accuracy and
performance of AI-IDS. For instance, the use of sampling techniques
to select representative datasets can improve both the accuracy and
speed of intrusion detection [53]. By combining a sampling technique
with a random forest machine learning algorithm, IDS exhibits very
good performance. However, it shows also different levels of detection
accuracy for different attacks. In [54], Gini Impurity-based Weighted
Random Forest (GIWRF) was used as a data feature selection technique.
Then, the accuracy of several AI algorithms deployed as AI-IDS was
analyzed. The results show that AI accuracy ranges from 88.99% to
99.98%.



188 Efficient AI-based Attack Detection Methods

8.2.4 Selection of Applicable Algorithms

In the following, the algorithms from research are evaluated in terms of their
applicability to the problem with the associated requirements.

• Neural Network (NN): Model built from basic computation units called
neurons that are usually organized into layers. Connections between
neurons are associated with trainable weights. Upon receiving input,
the input is weighted and aggregated. Afterwards, a possibly non-linear
function is applied. The complexity of these models increases with the
number of layers [55]. A Perceptron [56] is the simplest possible model
and consists of a single layer of neurons. In contrast, Multilayer feed-
forward Networks are comprised of multiple layers that are connected
in a feed-forward fashion. If there are not only forward connections but
also those connecting neurons to previous layers, the network is called
recurrent [55]. An example of these types of networks are long short-
term memory (LSTM) networks. These networks contain memory cells,
making it possible to retain information [57].

• Trees: Models that make their decisions based on tree-like structures.
One example of these types of models are decision trees (DT). They
can be used for both classification and regression tasks [55]. Isolation
Forests on the other side aim to find anomalies using binary trees [58].

• Support Vector Machine (SVM): Algorithm that tries to find a separator
with the maximum distance to training samples. In the simplest case,
the goal is to find a simple linear separator between two classes in a
two-dimensional space [55].

• Bayesian Network: Probabilistic model allowing for computation of
posterior probability distributions. Nodes represent random variables,
while edges describe conditional dependencies between variables. Each
node is associated with some probabilities that quantify the effect on
other nodes. These probabilities can be learned from a given dataset. The
simplest example of these classifiers are Naive Bayes classifiers [55].

• Instance-based: Algorithms that directly estimate from a given dataset.
Processing of the input is deferred until queried. After answering the
request, all intermediate results are discarded [55]. The most well-
known example of these algorithms is the k-nearest neighbour (KNN)
algorithm [59].

• Linear Regression: Algorithms that try to find the best-fitting function
for some given data. In the simplest case, the goal is to find a linear
function for a single input variable. Depending on the application, more
complex functions might be used [55].



8.3 Discussion and Conclusion 189

• Discriminant Analysis: Methods aiming to estimate the decision bound-
ary between classes. Approaches like linear discriminant analysis might
make simplifying assumptions, such as an underlying Gaussian distribu-
tion for all classes and the same covariance matrices for all classes [60].

• Ensemble: Combining multiple algorithms to achieve a better outcome.
A random forest (RF) is an ensemble of decision trees. Ensembles can
be created by many different techniques. One such technique is called
boosting. It aims at improving performance by assigning higher weights
to examples that have been misclassified and thus making an incentive
to classify them correctly for the next model in the ensemble [55].

The most limiting factor in the selection of a suitable algorithm comes in
the form of resource limitations. Some models have significant requirements
for the systems they are executed on. Examples of such models are Neural
Networks that can easily have millions of parameters. Not only does this
require sufficient storage, but might also cause a significant delay in loading
and applying these parameters. Consequently, a separate accelerator might be
required, that increases the area consumed. Even non-parametric algorithms
like KNN might not be a good solution, as the whole dataset has to be stored.
Depending on the size of the dataset, this might also put a significant strain
on the amount of memory available.

In [44], the results for twelve different machine learning models were
presented, covering all of the classes described above. Considering all
models achieving 80% accuracy leaves SVMs, DTs, RFs, KNN, NNs and
Ensemble learning. As discussed beforehand, both KNN and NNs have high
computational requirements, making them not suitable for the application.

Due to the experimental setup in [44], the detection latency using the
models is unknown on the Edge and is to be determined in the future. Thus,
the impact of deploying them cannot be determined, and there is still a need
for AI models that offer (1) high detection accuracy, (2) efficiency, and (3)
meet the requirements of Edge devices. Such an AI model can serve as a
highly accurate, efficient and lightweight attack detector at the edge level.

8.3 Discussion and Conclusion

The continuously growing use and uptime of secure devices increase the
number of sensor events during the product lifetime. Especially, for stan-
dalone micro-edge devices this becomes more relevant. Consequently, this is
pushing the industry to step up from direct reaction to sensor events towards



190 Efficient AI-based Attack Detection Methods

more advanced solutions. It is, however, paramount that such solutions do not
negatively influence both device operation and user experience. Processing
and interpretation of available sensor information with the help of artificial
intelligence offers the possibility to develop future solutions.

AI-based approaches particularly overcome limitations of established
solutions based on signatures and anomaly detection: Signature-based
approaches are inherently limited to known attacks and their signatures. They
hence neither provide protection against future attacks nor altered attack
code. Approaches based on anomaly detection, in turn, are prone to false
positives as legitimate, non-malicious code may trigger such detection. So
far, AI methods have been successfully employed in a wide variety of security
systems, covering both edge nodes and cloud environments. They provide a
sufficiently high detection rate at minimal false-positive level and, by nature,
are immune to evasion strategies like altered attack code. However, so far
no single gold solution exists. For AI approaches the choice of a suitable
AI method is paramount. Similarly, sufficient labelling strategies and derived
training sets need to be developed. Finding an optimal AI strategy for a given
threat scenario is hence still open to research.

Acknowledgement

This research was conducted as part of the project “Edge AI Technolo-
gies for Optimised Performance Embedded Processing” (EdgeAI), which
has received funding from KDT JU under grant agreement No 101097300.
The KDT JU receives support from the European Union’s Horizon Europe
research and innovation program and Austria, Belgium, France, Greece, Italy,
Latvia, Luxembourg, Netherlands, and Norway.

References

[1] H. Xue, B. Huang, M. Qin, H. Zhou and H. Yang, “Edge Computing
for Internet of Things: A Survey”, 2020 International Conferences on
Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on
Cybermatics (Cybermatics), pp. 755–760, 2020. W442W7302

[2] P. G. Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A.
Iamnitchi, M. Barcellos, P. Felber and E. Riviere, “Edge-centric Com-
puting: Vision and Challenges”, SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 5, p. 37–42, 2015. W442W7302



References 191

[3] W. Shi and S. Dustdar, “The Promise of Edge Computing”, IEEE
Computer, vol. 49, no. 5, pp. 78–81, 2016. W442W7302

[4] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu and W. Lv, “Edge Computing
Security: State of the Art and Challenges”, Proceedings of the IEEE,
vol. 107, no. 8, pp. 1608–1631, 2019. W442W7302

[5] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack”, Proceedings of the 23rd
USENIX Conference on Security Symposium, p. 719–732, 2014.
W442W7302

[6] D. Gruss, C. Maurice, K. Wagner and S. Mangard, “Flush+Flush: A
Fast and Stealthy Cache Attack”, Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, vol. 9721, p. 279–299, 2016. W442W7302

[7] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth and B. Sunar,
“Cache Attacks Enable Bulk Key Recovery on the Cloud”, Crypto-
graphic Hardware and Embedded Systems – CHES 2016, pp. 368-388,
2016. W442W7302

[8] D. A. Osvik, A. Shamir and E. Tromer, “Cache Attacks and Counter-
measures: The Case of AES”, Topics in Cryptology – CT-RSA 2006,
pp. 1–20, 2006. W442W7302

[9] D. Gruss, R. Spreitzer and S. Mangard, “Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches”, 24th USENIX
Security Symposium (USENIX Security 15), pp. 897–912, 2015.
W442W7302

[10] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution”, 2019 IEEE Sym-
posium on Security and Privacy (SP), pp. 1–19, 2019. W442W7302

[11] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J.
Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom and M. Ham-
burg, “Meltdown: Reading Kernel Memory from User Space”, 27th
USENIX Security Symposium (USENIX Security 18), pp. 973–990,
2018. W442W7302

[12] Y. Lyu and P. Mishra, “A Survey of Side-Channel Attacks on Caches
and Countermeasures”, Journal of Hardware and Systems Security, vol.
2, no. 1, pp. 33–50, 2018. W442W7302

[13] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F.
Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom and R. Strackx,
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with



192 Efficient AI-based Attack Detection Methods

Transient Out-of-Order Execution”, 27th USENIX Security Symposium
(USENIX Security 18), 2018. W442W7302

[14] D. Genkin, L. Valenta and Y. Yarom, “May the Fourth Be With
You: A Microarchitectural Side Channel Attack on Several Real-World
Applications of Curve25519”, Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, p. 845–858,
2017. W442W7302

[15] R. Mayer-Sommer, “Smartly analyzing the simplicity and the power
of simple power analysis on smartcards”, International Workshop on
Cryptographic Hardware and Embedded Systems, pp. 78–92, 2000.
W442W7302

[16] P. Kocher, J. Jaffe and B. Jun, “Differential power analysis”, Advances
in Cryptology—CRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15–19, 1999 Pro-
ceedings 19, pp. 388–397, 1999. W442W7302

[17] S. Mangard, “A simple power-analysis (SPA) attack on implementations
of the AES key expansion”, Information Security and Cryptology—
ICISC 2002: 5th International Conference Seoul, Korea, November
28–29, 2002 Revised Papers 5, pp. 343–358, 2003. W442W7302

[18] E. Brier, C. Clavier and F. Olivier, “Correlation power analysis with
a leakage model”, Cryptographic Hardware and Embedded Systems-
CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings 6, pp. 16–29, 2004. W442W7302

[19] A. Barenghi, L. Breveglieri, I. Koren and D. Naccache, “Fault Injection
Attacks on Cryptographic Devices: Theory, Practice, and Countermea-
sures”, Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076, 2012.
W442W7302

[20] J. Breier and X. Hou, “How Practical Are Fault Injection Attacks,
Really?”, IEEE Access, vol. 10, pp. 113122–113130, 2022.
W442W7302

[21] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss and F.
Piessens, “Plundervolt: Software-based Fault Injection Attacks against
Intel SGX”, 2020 IEEE Symposium on Security and Privacy (SP), pp.
1466–1482, 2020. W442W7302

[22] G. Irazoqui, T. Eisenbarth and B. Sunar, “S $ A: A shared cache attack
that works across cores and defies VM sandboxing–and its application
to AES”, 2015 IEEE Symposium on Security and Privacy, pp. 591–604,
2015. W442W7302



References 193

[23] G. Irazoqui, M. S. Inci, T. Eisenbarth and B. Sunar, “Wait a minute!
A fast, Cross-VM attack on AES”, Research in Attacks, Intrusions
and Defenses: 17th International Symposium, RAID 2014, Gothenburg,
Sweden, September 17-19, 2014. Proceedings 17, pp. 299–319, 2014.
W442W7302

[24] F. Liu, Y. Yarom, Q. Ge, G. Heiser and R. B. Lee, “Last-level cache
side-channel attacks are practical”, 2015 IEEE symposium on security
and privacy, pp. 605–622, 2015. W442W7302

[25] Y. Zhang, A. Juels, M. K. Reiter and T. Ristenpart, “Cross-VM side
channels and their use to extract private keys”, Proceedings of the 2012
ACM conference on Computer and communications security, pp. 305–
316, 2012. W442W7302

[26] Y. Zhang, A. Juels, M. K. Reiter and T. Ristenpart, “Cross-tenant side-
channel attacks in PaaS clouds”, Proceedings of the 2014 ACMSIGSAC
Conference on Computer and Communications Security, pp. 990–1003,
2014. W442W7302

[27] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh and D. Ponomarev,
“Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks”, ACM Transactions on Architecture and Code Opti-
mization (TACO), vol. 8, no. 4, pp. 1–21, 2012. W442W7302

[28] F. Liu and R. B. Lee, “Random fill cache architecture”, 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, pp.
203–215, 2014. W442W7302

[29] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced
performance and security”, 2008 41st IEEE/ACM International Sym-
posium on Microarchitecture, pp. 83-93, 2008. W442W7302

[30] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks”, Proceedings of the 34th annual
international symposium on Computer architecture, pp. 494–505, 2007.
W442W7302

[31] T. Kim, M. Peinado and G. Mainar-Ruiz, “STEALTHMEM System-
Level Protection Against Cache-Based Side Channel Attacks in the
Cloud”, 21st USENIX Security Symposium (USENIX Security 12), pp.
189–204, 2012. W442W7302

[32] P. Li, D. Gao and M. K. Reiter, “Stopwatch: a cloud architecture for tim-
ing channel mitigation”, ACM Transactions on Information and System
Security (TISSEC), vol. 17, no. 2, pp. 1–28, 2014. W442W7302

[33] J. Shi, X. Song, H. Chen and B. Zang, “Limiting cache-based side-
channel in multi-tenant cloud using dynamic page coloring”, 2011



194 Efficient AI-based Attack Detection Methods

IEEE/IFIP 41st International Conference on Dependable Systems and
Networks Workshops (DSN-W), pp. 194–199, 2011. W442W7302

[34] V. Varadarajan, T. Ristenpart und M. Swift, “Scheduler-based defenses
against Cross-VM side-channels”, 23rd USENIX security symposium
(USENIX security 14), pp. 687–702, 2014. W442W7302

[35] B. C. Vattikonda, S. Das and H. Shacham, “Eliminating fine grained
timers in Xen”, Proceedings of the 3rd ACM workshop on Cloud
computing security workshop, pp. 41–46, 2011. W442W7302

[36] Y. Zhang und M. K. Reiter, “Düppel: Retrofitting commodity operating
systems to mitigate cache side channels in the cloud”, Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security, pp. 827–838, 2013. W442W7302

[37] S.-J. Moon, V. Sekar and M. K. Reiter, “Nomad: Mitigating arbitrary
cloud side channels via provider-assisted migration”, Proceedings of the
22nd acm sigsac conference on computer and communications security,
pp. 1595–1606, 2015. W442W7302

[38] Y. Zhang, M. Li, K. Bai, M. Yu and W. Zang, “Incentive compatible
moving target defense against vm-colocation attacks in clouds”, Infor-
mation Security and Privacy Research: 27th IFIP TC 11 Information
Security and Privacy Conference, SEC 2012, Heraklion, Crete, Greece,
June 4-6, 2012. Proceedings 27, pp. 388–399, 2012. W442W7302

[39] V. Varadarajan, Y. Zhang, T. Ristenpart andM. Swift, “A Placement Vul-
nerability Study inMulti-Tenant Public Clouds”, 24th USENIX Security
Symposium (USENIX Security 15), pp. 913–928, 2015. W442W7302

[40] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac and P. Faruki,
“Network intrusion detection for IoT security based on learning tech-
niques”, IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp.
2671–2701, 2019. W442W7302

[41] T. Zhang, Y. Zhang and R. B. Lee, “CloudRadar: A Real-Time
Side-Channel Attack Detection System in Clouds”, Research in
Attacks, Intrusions, and Defenses. RAID 2016., pp. 118–140, 2016.
W442W7302

[42] M. Alam, S. Bhattacharya, D. Mukhopadhyay and S. Bhattacharya,
“Performance Counters to Rescue: A Machine Learning based safe-
guard against Micro-architectural Side-Channel-Attacks”, IACR Cryp-
tol. ePrint Arch., 2017. W442W7302

[43] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, M. Yousaf, U.
Farooq, V. Lapotre and G. Gogniat, “Machine learning for security:
The case of side-channel attack detection at run-time”, 2018 25th IEEE



References 195

International Conference on Electronics, Circuits and Systems (ICECS),
pp. 485–488, 2018. W442W7302

[44] M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre, G. Gogniat
and P. Benoit, “WHISPER: A tool for run-time detection of side-channel
attacks”, IEEE Access, vol. 8, pp. 83871–83900, 2020. W442W7302

[45] O. Aciiçmez, “Yet another microarchitectural attack: exploiting I-
cache”, Proceedings of the 2007 ACM workshop on Computer security
architecture, pp. 11–18, 2007. W442W7302

[46] S. Chen, X. Zhang, M. K. Reiter and Y. Zhang, “Detecting privileged
side-channel attacks in shielded execution with Déjá Vu”, Proceedings
of the 2017 ACM on Asia Conference on Computer and Communica-
tions Security, pp. 7–18, 2017. W442W7302

[47] H. Wang, H. Sayadi, A. Sasan, S. Rafatirad, T. Mohsenin und H.
Homayoun, “Comprehensive Evaluation of Machine Learning Coun-
termeasures for Detecting Microarchitectural Side-Channel Attacks”,
Proceedings of the 2020 on Great Lakes Symposium on VLSI, pp.
181–186, 2020. W442W7302

[48] M. Alam, S. Bhattacharya and D. Mukhopadhyay, “Victims Can Be
Saviors: A Machine Learning–Based Detection for Micro-Architectural
Side-Channel Attacks”, J. Emerg. Technol. Comput. Syst., vol. 17, no.
2, 2021. W442W7302

[49] S. Briongos, G. Irazoqui, P. Malagón and T. Eisenbarth, “Cacheshield:
Detecting cache attacks through self-observation”, Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy,
pp. 224–235, 2018. W442W7302

[50] M. Chiappetta, E. Savas and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using hardware performance counters”,
Applied Soft Computing, vol. 49, pp. 1162–1174, 2016. W442W7302

[51] Z. Liu, B. Xu, B. Cheng, X. Hu and M. Darbandi, “Intrusion detection
systems in the cloud computing: A comprehensive and deep literature
review”, Concurrency and Computation: Practice and Experience, vol.
34, 2021. W442W7302

[52] B. Gulmezoglu, A.Moghimi, T. Eisenbarth and B. Sunar, “Fortuneteller:
Predicting microarchitectural attacks via unsupervised deep learning”,
arXiv preprint arXiv:1907.03651, 2019. W442W7302

[53] J. Ren, J. Guo, W. Qian, H. Yuan, X. Hao and H. Jingjing, “Building an
effective intrusion detection system by using hybrid data optimization
based on machine learning algorithms”, Security and communication
networks, 2019. W442W7302



196 Efficient AI-based Attack Detection Methods

[54] R. A. Disha und S. Waheed, “Performance analysis of machine learn-
ing models for intrusion detection system using Gini Impurity-based
Weighted Random Forest (GIWRF) feature selection technique”, Cyber-
security, Bd. 5, Nr. 1, p. 1, 2022. W442W7302

[55] S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach,
Prentice Hall, 2010. W442W7302

[56] D. Rosenblatt, “The perceptron: A perceiving and recognizing automa-
ton”, Cornell Aeronautical Laboratory, 1957. W442W7302

[57] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997. W442W7302

[58] F. T. Liu, K. M. Ting and Z.-H. Zhou, “Isolation forest”, 2008 eighth
ieee international conference on data mining, pp. 413–422, 2008.
W442W7302

[59] E. Fix and J. L. Hodges, “Discriminatory Analysis. Nonparametric Dis-
crimination: Consistency Properties”, International Statistical Review /
Revue Internationale de Statistique, vol. 57, no. 3, pp. 238–247, 1989.
W442W7302

[60] B. Ghojogh and M. Crowley, “Linear and quadratic discriminant analy-
sis: Tutorial”, arXiv preprint arXiv:1906.02590, 2019. W442W7302


