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ABSTRACT 

This contribution presents a framework for improving the simulation-based development process 

relying on seamless data and parameter exchange between general types of components, physical 

components of a specific system and the respective simulation model. The proposed solution relies 

on the concept of the Asset Administration Shell (AAS) to leverage the availability and 

interoperability of the heterogenous assets and to access their proprietary properties. Therefore, three 

AAS-based solutions are introduced to integrate different asset kinds. They represent component type 

data and simulation models provided by the component supplier, simulation models of components 

instantiated in a local simulation environment, and real components in operation with different 

communication interfaces. The solutions are implemented in a framework and demonstrated 

successfully through different simulation-based engineering use-cases using a servo-hydraulic press 

as a reference system. 

Keywords: Industrie 4.0, Asset Administration Shell, Digital Twin, Simulation-based Development 

Process, OPC UA, NFC

1. INTRODUCTION  

Model-Based Systems Engineering (MBSE) is playing an increasing role in the development of 

complex machines and products, with ever more demanding requirements. System simulations can 

add significant value at all phases of a machine's product life-cycle, from concept validation and 

component dimensioning, function and logic control development, virtual commissioning, process 

optimization, condition monitoring, and remote maintenance. However, their effectiveness as a basis 

for decision-making relies on a sufficiently accurate representation of the system state in the 

simulation, which depends on the level of detail of the simulation models and the congruence between 

actual system and component characteristics and model parameters assumed for simulation. Since 

simulation models, which are usually created during the engineering phase in the beginning of a 

product life-cycle, typically lack a tight coupling to the actual system and its respective engineering 

artifacts, there is a growing discrepancy along the life-cycle. The current process of aligning relevant 

data and parameters of the simulation models with engineering artifacts, technical documents, and 

the real system in operation is conducted manually. This process requires coordination across multiple 
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stakeholders, is labor-intensive and prone to errors, and is therefore rarely performed. The poor 

linkage is caused by the high heterogeneity, non-interoperability, and lack of tool-independent 

Application Programming Interfaces (API) to access relevant data and information to both, 

components in the field and in the simulation. 

Therefore, the aim of this publication is to enable interoperable and cross-manufacturer automated 

bi-directional exchange of simulation-relevant parameters between machine components and their 

associated simulation models according to the principle of digital twins. This eliminates the need for 

manual parameterization steps, allowing individual development steps in the development process to 

be flexible, error-free, and time-efficient. 

After showing the specific challenges and requirements that emerge from the simulation in this 

context in section 3, a solution that strongly relies on the Asset Administration Shell (AAS) is 

presented in section 4. In this approach, the AAS integrates three different asset kinds for facilitating 

the standardized exchange of asset information in an open and interoperable data synchronization 

layer - components or models ï across a value creation network over multiple phases of the product 

life-cycle. 

After introducing relevant features of the AAS, the solution approaches for the integration of three 

different asset kinds are presented in section 5. They consider: 

¶ component type data and simulation models provided by the component supplier, 

¶ simulation models of components instantiated in a local simulation environment, 

¶ real components in operation with different communication interfaces. 

The feasibility of the implemented framework with respect to the three asset kinds is demonstrated 

and validated in section 6 through the realization of engineering use-cases of the drivetrain of a 

hydraulic servo-press provided by Parker Hannifin. 

2. DIGITAL TWIN S IN MODEL BASED SYSTEMS ENGINEERING  

Shorter product life-cycles and increasingly sophisticated product functionalities require the 

development of methodologies that effectively manage the complexity of multi-disciplinary 

engineering. At the same time, the flexibility and scalability of the established design methods shall 

be maintained. MBSE serves as an established approach in this context, for continuous description 

and analysis of the system to be developed, by utilizing simulation models, from the early phase of 

conception through the entire product life-cycle. [1] 

Within MBSE, simulation models play an important role in analyzing, testing, and optimizing 

systems in a controlled virtual environment, even before the creation of physical prototypes. This 

approach not only reduces the costs and time associated with the development of physical models but 

also enhances the precision of system behavior predictions under varying conditions and life-cycle 

stages [2]. To serve as a reliable foundation for decision-making in design and optimization processes, 

the simulation model must accurately reflect the system behavior in different operating points. 

Conversely, any optimization performed on the simulation model should be reflected in the regarded 

system. Therefore, a bidirectional data flow for the continuous updating and synchronization of both 

the model and the current system state is crucial. For machine design and system optimization, 

simulation models are often represented by lumped parameter 0D or 1D system simulations. These 

system simulations incorporate the individual behavior of all components which are part of the 

machine. For these kinds of simulations, the required data flow between the physical machine and 

the simulation model normally includes the exchange of model parameters as well as input and output 

signals.   



 

3 

 

Simulation models can be utilized for different purposes over the entire product life-cycle of a 

machine. To ensure alignment between the simulation model and real system, occasional 

synchronization of parameters is essential, especially when changes have been made to either the 

machine or the simulation model. Figure 1 illustrates the application scenarios for simulation models 

as well as the required points for parameter updating. 

 

Figure 1: Changes of Machine and Simulation Model Twin across the product life-cycle 

Initially, the system simulation model is set-up with a simulation environment, by linking simulation 

models of individual components. After general concept validation, during the dimensioning process, 

the simulation component parameters are adjusted to match the sizes and characteristics of the 

components available on the market. Afterwards, the simulation model is connected to a 

programmable logic controller, for control and controller design as well as virtual commissioning. 

The optimal parameters determined are subsequently transferred to the machine and further adjusted 

during the real commissioning process. During the operational phase, the simulation model is used 

continuously for monitoring and optimizations, e.g., to improve the energy efficiency. Concurrently, 

the physical system experiences continuous changes of its characteristics due to degradation, such as 

wear or contamination. Prior to reconfiguration of a manufacturing process, the intended changes are 

first prepared and tested using the simulation model, and only then implemented to the physical 

system, similar to the processes described during commissioning. 

The frequent modifications in both, the machine and its model, throughout the product life-cycle 

underline the need for continuous mutual synchronization. Manual synchronization, as suggested in 

figure 2 by the concept of Digital Model, represents the current state-of-the-art in the industry. 

Manual synchronization and adaption are labor-intensive and prone to errors, leading to outdated 

models that diminish in quality as a foundation for decision-making. Therefore, widespread adoption 

of simulation models in industry remains limited despite the many advantages they offer. 
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Figure 2: Digital Model, Shadow, Twin, after [3] 

Given these challenges, there is a compelling need for a tightly coupled relationship between the 

simulation model and the system at design and in operation phases, facilitated by automated 

bidirectional data flow. This becomes even more important when the simulation model is integrated 

into real-time control loops with the corresponding real system. A digital object, which possesses this 

level of automated coupling with the real object, is referred to as a Digital Twin [3], see figure 2. 

Therefore, the implementation of Digital Twins serves to overcome these limitations to fully realize 

the potential of MBSE and enable efficient, effective, and economical application of digital 

engineering. 

3. CHALLENGES AND REQUIREMENTS FOR USING SIMULATION -BASED 

DIGITAL TWINS IN ENGINEERING  

The evolution from traditional engineering approaches to MBSE has introduced both opportunities 

and challenges in the engineering landscape. This transition necessitates a reevaluation of the 

requirements and challenges associated with engineering using Digital Twins. 

MBSE offers a holistic approach to engineering, wherein all relevant requirements and aspects are 

described across various domains and are consistently interlinked. This allows for transparent 

visibility of the impact of design changes across all modeled systems and processes, enabling conflict 

identification and resolution. The approach also facilitates iterative design changes throughout the 

product life-cycle, incorporating feedback loops. Moreover, MBSE allows for the decomposition and 

composition of the overall system into subsystems, thereby enabling independent and parallel 

development as well as reusability. 

This leads to the following implications and consequences during product development: 

¶ The holistic view of MBSE requires the representation of systems from various perspectives 

and domains, leading to the involvement of multiple stakeholders and the utilization of 

different engineering tools. 

¶ The approach considers system composition and decomposition requiring modular subsystems 

and components with defined system boundaries and interfaces that can separately be 

developed and then combined into an overall system. 

¶ The involvement of multiple stakeholders and engineering tools results in heterogeneous and 

distributed data sources with proprietary data formats. For seamless integration of all partial 

solutions across various engineering client applications, the shared data must increase in 

availability, consistency, and interoperability with unambiguously defined semantics.  
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Given these implications, the prerequisites for digital engineering include high availability, 

continuity, and consistency of all relevant and interconnected data across organizational boundaries, 

life-cycle phases, and tools. Only on this foundation, development processes can holistically be 

analyzed, optimized, and ultimately automated. 

From the described implications of MBSE, the requirements for simulation models following the 

Digital Twin approach can be derived as follows: 

¶ Simulation models of components should accurately represent the behavior of the real 

components, requiring suitable modeling of the physics and accurate parameterization. 

¶ To ensure reusability  and scalability of simulation models, a modular and encapsulated design 

with clearly defined interfaces is required for integration. To obtain flexibility and the ability 

to adapt system variations, relevant parameters of the simulation model should be accessible 

from external. 

¶ To facilitate integration into various applications and tools, simulation models should be 

interoperable with unambiguously defined properties. 

¶ To ensure that multiple stakeholders and engineering applications obtain an equal and most 

recent system state, the simulation instance should be globally accessible and reflect a unique 

data source, adhering to the principle of single-source-of-truth. 

To fully leverage the capabilities of Digital Twins, tools and applications are needed that enable 

seamless linking of Digital Twins with their real-world counterparts and integration into various 

engineering scenarios. This, in turn, imposes similar requirements concerning data availability, 

interoperability, unambiguity, and consistency for the component's parameters at design stage or of 

the physical component in operation. 

4. SOLUTION APPROACH FOR SEAMLESS SIMULATION -BASED ENGINEERING 

The proposed solution aims to support efficient and effective collaboration in engineering across 

multiple stakeholders within a value creation network. The approach addresses key aspects such as: 

¶ openness and decentralization on both sides, data providers and consumers 

¶ modularity and reusability through encapsulation and interoperability 

¶ high data availability, continuity, and consistency. 

The presented approach for seamless simulation-based engineering comprises two parts. 

The first part of the solution focuses on creating tool-independent and modular simulation models 

that represent realistic machine behavior. This is achieved through encapsulated Functional Mock-up 

Unit (FMU) Co-Simulations. A FMU encapsulates a proprietary simulation model and provides a 

standardized interface that allows for the integration of simulations into various simulation 

environments [4]. Thereby the concept supports modularity and interoperability for heterogeneous 

components, which are provided by different suppliers and might also be created by different 

simulation tools [5].  

The second part of the solution focuses on establishing a globally available data layer and providing 

interoperable access to relevant aspects of assets under consideration. For this, the standardized model 

of the Asset Administration Shell (AAS) is used. Improvements in asset data access are the foundation 

for seamless data exchange between components, their respective documentation and simulation 

models according to the principle of Digital Twin [6]. 

4.1  Functional Mock-up Unit Co-Simulation 

The Functional Mock-up Interface (FMI) open standard maintained by the Modelica Association aims 

to simplify the usage and exchange of simulation models and is supported by more than 180 
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simulations tools [7]. The Functional Mock-up Unit (FMU) for Co-Simulation is an implementation 

of the FMI and enables the encapsulation of simulation models, including a suitable solver. FMU Co-

Simulation provides widely applied technology suitable to enhance the versatile integration of 

simulation models in the MBSE context, also recommended by the prostep ivip SmartSE project [8]. 

It provides the following advantages in the presented solution approach: 

¶ The FMI standard allows stakeholders to create simulation models using their preferred tools, 

while enabling the exchange and integration of these models into systems simulation. Provided 

the required licenses are available, FMUs remain tool-independent regarding their deployment. 

This enhances the portability and reusability of models and effectively reduces vendor 

dependency. 

¶ FMUs enable the encapsulation of components, ranging from standard simulation models, such 

as hydraulic valves from standard component libraries, to individually developed models 

incorporating intelligent functions or logic control behavior, such as a motion controller. This 

enables precisely reflecting the component behavior designed by the component supplier and 

enables, as black-box entities, to share their specialized knowledge securely.  

¶ FMU Co-Simulations can be integrated into various simulation environments and 

heterogenous system simulations with minimal configuration effort with respect to model and 

solver parameterization. This characteristic facilitates a plug-and-play methodology, 

simplifying the simulation process and boosting its effectiveness and user-friendliness. 

Figure 3 shows relevant aspects for the presented approach of FMU simulation model integration 

and interaction. An FMU for Co-Simulation consists of one zip-file with the extension ñ.fmuò 

containing an XML-file with the definition of all variables and parameters that are exposed to the 

simulation environment as well as a set of C-functions and dynamic libraries provided in either source 

or binary form, used to initialize with defined parameters and run the simulation [9]. The integration, 

initialization, and orchestration during system simulation are carried out by the simulation tool. 

During the integration of each FMU, a Simulation Component is created as a tool-specific wrapper 

class to bind the FMU to the simulation tool. Upon instantiation, each Simulation Component can 

uniquely be addressed by a tool-specific identifier (ID). Furthermore, parameters described in the 

modelDescription.xml can be accessed by the simulation tool and, if provided, via a tool-specific 

API. 

Notably, to introduce a clear distinction, a simulation model file is further defined as 

Simulation Model, whereas in contrast a Simulation Component defines the Simulation Model 

instantiated in a runtime environment. For more details on the coupled Co-Simulation in this context, 

see [5]. 

 

Figure 3: Instantiated Simulation Model and access to its parameters  
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4.2 Asset Administration Shell 

To support MBSE across heterogeneous assets and engineering tools involving multiple stakeholders 

throughout the entire life-cycle, an open, decentralized and therefore integrative approach for 

exchanging of information is required. An Asset is any element that represents a perceived or actual 

value for an organization [6]. In the context of this publication, physical components are considered 

assets, e.g. a hydraulic cylinder, and its related engineering documents, data, and artifacts, such as 

simulation models. The presented architecture is based on the concept of the Asset Administration 

Shell (AAS). The AAS has a technology-neutral meta-model for implementing Digital Twins, as 

specified by the Industrial Digital Twin Association [6]. One relevant objective of the AAS focuses 

on enhancing interoperability and availability of properties and services of any asset within value 

creation networks. Aspects of the AAS relevant to the solution described in this publication are 

depicted in figure 4 and briefly described below. The full  specification can be obtained from [6, 10, 

11]. 

 

Figure 4: AAS and AAS Repositories for leveraging availability and interoperability 

of proprietary asset characteristics 

An AAS is a virtual representation of an asset, while both are globally uniquely identifiable and 

referenced to each other. Assets can be of two kinds, Type and Instance. The Asset Type is a 

generalized classification that encapsulates common attributes and data structures of many Asset 

Instances, such as general component documentation or simulation model files. The Asset Instance, 

on the other hand, refers to a unique or individually existing element, such as a manufactured 

component or an instantiated simulation model. Typically, the AAS of an Asset Instance 

(AAS Instance) is derived from the AAS of an Asset Type (AAS Type) at a particular point in the 

product life-cycle to reflect the information relevant to the individual Asset under consideration. To 

illustrate this difference, an Asset Type could describe a component as found in a catalogue, whereas 

an Asset Instance would be a concrete component of that type to be shipped to a customer. [6, 12] 
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In an AAS, the characteristics of an Asset are modeled as SubmodelElements, encapsulating, for 

example, parameters or files. SubmodelElements are thematically grouped into 

SubmodelElementCollections and Submodels. Submodels can subsequently be standardized as 

templates to accommodate a set of relevant properties required for specific use-cases, such as the 

"Provision of Simulation Models" [13]. Both Submodels and SubmodelElements can be annotated 

with SemanticIDs. These unique identifiers that refer to semantic descriptions in semantic 

dictionaries, like eClass [14] or IEC CDD [15], describing the semantics of the content of the 

annotated element. This allows, in theory, the provision of the Assetôs proprietary characteristics not 

only syntactically but also semantically interoperable. 

To further enhance the availability across the entire value chain, including the product life-cycle and 

value networks, AASs are made available in AAS Repositories hosted on web servers. Using the 

specified HTTP REST API [10], and assuming the necessary access rights are granted, AASs can be 

accessed globally via the Internet by multiple AAS clients as part of engineering applications. This 

concept realizes an open and integrative approach that allows decentralized creation, provisioning, 

querying, and modification of AASs, to have further access to the respective assetôs properties. For 

more details on implementing the AAS Data Layer through the AAS Server-Client Architecture, 

readers are referred to [12]. 

5. AAS-BASED ARCHITECTURE  FOR SEAMLESS INTEGRATION OF SIMULATION 

MODELS IN MBSE 

The seamless integration of simulation models into the engineering process and their close coupling 

with real-world assets according to the Digital Twin approach requires the implementation of three 

critical interfaces. These interfaces, shown in figure 5, are realized through the concept of the AAS 

and described in the following: 

1. Interface for the selecting component types and retrieving of component data and engineering 

files, such as simulation models provided by the component suppliers. 

2. Interface for bi-directional interaction with instantiated simulation models for a specific 

system. 

3. Interface for bi-directional interaction with engineering artifacts and data created for a specific 

system and with actual components during operation. 

 

Figure 5: AAS-based Digital Twin synchronization interfaces for MBSE 
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1) AAS Type for providing component data and simulation model files 

Component manufacturers hold valuable data and engineering files for their components, which can 

significantly support Original Equipment Manufacturers (OEM) in their overall system engineering 

processes. To facilitate interoperable data sharing for the targeted engineering discipline, the 

component manufacturer provides its proprietary component data, originating from its database, via 

AAS Types encapsulated in semantically annotated properties. The manufacturer is responsible for 

the initial linking of its proprietary data and the properties within the AASs. It is reasonable that due 

to a significant quantity and diverse range of component configurations, not all AAS Types are pre-

generated and stored. Instead, they are generated on-access when required and subsequently made 

available via the defined AAS REST API from the server. 

In the context of this paper, two submodels are particularly relevant and described briefly: 

a) The Submodel Generic Frame for Technical Data for Industrial Equipment in Manufacturing [16] 

(SM Technical Data) specifies both the class of the component and its relevant technical parameters. 

This information can be used for searching components based on defined specifications, automated 

sizing processes, or for parameterizing simulation models. 

b) The Submodel Provision of Simulation Models [17] (SM Simulation) provides essential 

information for selecting the provided Simulation Models appropriate to the engineering use-cases 

considered. Therefore, attributes for defining the considered engineering domain and the simulation 

purpose, such as sizing, virtual commissioning, or condition monitoring, are clearly defined. 

Moreover, the Submodel specifies properties for integrating the simulation model file into a 

simulation environment, such as the file format, the operating system requirements, and 

recommended solver settings. Within the scope of this publication, encapsulated simulation models 

are provided as tool-independent FMU Co-Simulation for lumped parameter system simulation (refer 

to chapter 4). More details on the implementation can be found in [12]. 

2) AAS Instance for providing access to the Simulation Component 

To realize interoperable accessibility and high availability to simulation model files instantiated in 

local simulation tool environments ï the Simulation Components ï an AAS Instance is created for 

each of them to encapsulate relevant parameters. The AAS Instances are then made accessible in an 

AAS Repository via AAS HTTP REST API. 

Figure 6 depicts the proposed modeling concept to provide relevant information for allowing 

simulation tools to link the Simulation Component and encapsulate its parameters in the AAS. It 

currently represents a non-standardized extension of the existing SM Simulation specification. 

A link between the AAS Instance and the Simulation Component is established by referring to its 

unique ID in the Reference LinkedSimulationComponent. The ID is generated and linked during the 

instantiation of the Simulation Model. The Parameter SECs provide information to the Simulation 

Component parameters, intended to access from external clients. The Property ID defines the specific 

parameter identifier. In case of FMUs, the parameter identifiers are defined in the 

modelDescription.xml. The Reference SemanticReference, refers to a semantic definition via 

SemanticID to ensure an unambiguous definition of the parameter, aiding in identifying and matching 

corresponding properties in other submodels. Finally, the Property Value reflects the current 

parameter value of the Simulation Component.  



 

10 

 

 

Figure 6: Modelling the coupling between AAS Instance and Simulation Component 

Both the ID and the corresponding SemanticReference of the Simulation Model parameters are 

initially modeled in the SM Simulation of the AAS Type by the provider of the Simulation Model. 

The simulation tool realizes the instantiation of the Simulation Model and provides the corresponding 

AAS Instance with read and write access to the Simulation Component parameters via the AAS. In 

this way, proprietary Simulation Component parameters become globally and interoperable 

accessible with defined semantics for numerous external engineering client applications. 

Although the realization described in this publication is implemented for a specific simulation tool 

using FMU simulation models, the concept is not limited to those and can similarly be applied to 

others. 

3) AAS Instance for providing access to the component data 

This interface provides interoperable access to data and parameters of real machine components and 

systems starting from the initial commissioning, during operation, including reconfigurations. 

Analogous to the AAS Interface of the Simulation Component, a dedicated AAS Instance is linked 

to its respective component in order to encapsulate component data and configuration parameters. If 

no AAS Instance already exists from the previous engineering phase that can be linked to the 

component instance, a new AAS Instance is created from the AAS Type and made available in an 

AAS Repository. 

As machines consist of many heterogeneous components, different interfaces are used to 

communicate with the components themselves. Figure 7 illustrates the coupling between the AAS 

and components in operation based on different communication interfaces. The controller of the drive 

system considered in this publication uses Ethernet-based OPC UA communication, which is widely 

used in the manufacturing industry. All relevant parameters of the controller can be accessed through 

the OPC UA interface of the device. To link the OPC UA device variables to the AAS, an OPC UA-

AAS-gateway is employed. The mapping between proprietary device parameters of the OPC UA 

namespace and the properties in the AAS Submodels is provided by the component manufacturer. 

Provided that OPC UA access rights are available for operation, the controller's OPC UA and 

AAS Instance endpoints are the only specifications required for the linkage configuration. Should 

parameters require cyclic transfer, the desired timing must be specified. 
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Other bus systems, e.g., EtherCAT, EtherNet/IP, ProfiNet,and IO-Link can be connected similarly 

via specific gateways. 

 

Figure 7: AAS parameter interfaces of the components in operation, 

left: continuous transfer via OPA UA and gateway, 

right: intermitted transfer via NFC and mobile app 

However, not every parameterizable component is permanently accessible via a digital 

communication interface. Often, only a temporary wired connection to a PC is used for 

parameterization, for example, during commissioning. Therefore, wireless alternatives such as 

Bluetooth and NFC are also being used more frequently to enable and facilitate data transfer at certain 

points. 

The valve considered in the use-cases of this publication provides an NFC interface. It can be used 

via a mobile device to extract all user parameters and additional operating and diagnostic data. The 

data obtained is accessible via an app on the mobile device and then synchronized to the AAS Instance 

in the AAS Repository. This temporary connection via mobile phone and NFC bypasses access to 

machine-critical real-time communication. 

In the presented application, only data for device identification (asset ID and article number), the 

device parameters and condition monitoring information for future analysis of the system are 

exchanged. Generally, this approach enables not only the adjustment of control parameters, but also 

the full configuration of the controller, encompassing the connected valves and sensors. Direct 

manual entry on the machine is henceforth unnecessary. 

Like the AAS Instance of the Simulation Component, proprietary and only locally available 

parameters of the physical component and its configuration become globally and interoperable 

accessible with defined semantics for numerous external engineering applications. 

6. PROOF-OF-CONCEPT AND USE-CASES VALIDATION  

The presented concepts are implemented as partial solutions and combined in a framework using the 

Eclipse BaSyx Python SDK [18]. In the following, common scenarios from different phases of the 

engineering process are demonstrated using a servo-hydraulic press. The framework's functionality 

is briefly explained, and benefits are illustrated in different scenarios. 

The servo-hydraulic press consists of a drive-controlled pump, four parallel positioning axes, a 

drawing cushion axis, and a press cylinder. In addition, the press is controlled by a PAC 120/PACHC 

motion controller [19, 20]. For the proof-of-concept, only one positioning axis of the servo-hydraulic 

press is considered and set up in the simulation environment DSHplus [21]. The system simulation 

model is built as FMU Co-Simulation, in which relevant system components are modeled as 

individual FMUs and then connected at their hydraulic volume node signal interfaces. 
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6.1  Sizing and function validation 

During sizing and function validation, the selection of the components and the initial parameterization 

in the system simulation is usually done manually by the engineer searching suitable components and 

their respective parameters from different data sources, e.g., websites and data sheets. This process is 

error-prone and requires a significant amount of time. To support the selection of suitable 

components, the framework allows searching among AAS Types in AAS Repositories offered by 

component manufacturers that match the desired requirements. From the selected AASs, the 

framework supports the initial creation of a Simulation Component by instantiating a provided 

Simulation Model as well as transferring parameters to an existing Simulation Component. This leads 

to a faster and error-free set up of a system simulation model, that closely matches the real properties 

of the system components. If necessary, the user can carry out simulative investigations and repeat 

the process with other component parameters. More details on the implementation are provided in [5, 

12]. In this scenario, the interfaces 1. and 2. described in chapter 5 are used. 

Figure 8 shows the general features of the framework for the component selection and model 

parameterization. In the regarded use-case, the engineer is looking for a valve that enables the 

hydraulic press to meet the requirements and full functionality. The system simulation structure 

(figure 8-1) is derived from the hydraulic scheme. However, in the beginning, the components in the 

simulation do not include a Simulation Model (figure 8-2a). From basic calculations, the valve 

dimensions are estimated by the engineer to be in a range between 10 to 40 bar nominal pressure 

difference and with a nominal flow rate between 50 and 100 l/min. In order to obtain a selection of 

suitable components, the framework offers the possibility to query an AAS Repository of the 

component manufacturer using search criteria defined by the user. Search criteria can be added in the 

query definition section (figure 8-3) via the specification of the semanticID of the regarded property 

with respective value constraints (min, max, equal). For better usability, separated drop-down lists 

and checkboxes are provided, such as for defining a specific component type or for targeting AASs 

that also provide a Simulation Model. However, in both cases, the query criteria are derived similarly 

and added to the others. Notably, as described in chapter 5, the component type is specified in the 

SM Technical Data of the AASs and defined via eClass IRDI. The availability of an FMU simulation 

model can similarly be determined from the SM Simulation. 

The AAS Repository section (figure 8-4) lists AASs that comply with the combined query criteria 

(figure8-4a), and the engineer can select from these for further model initialization via ñInitialize 

Simulation Componentò. As described in chapter 5-2, if the selected AAS provides a specific FMU 

valve Simulation Model, it is integrated and instantiated by the tool to become a Simulation 

Component. Otherwise, an AAS with a default valve Simulation Model from the simulation tool 

provider AAS Repository is considered in the same way to obtain a Simulation Component 

(figure 8-2b). During the integration process, the respective AAS Instance is generated and coupled 

with the Simulation Component via their unique IDs (figure 8-4b). This AAS Instance serves as the 

representation of the Simulation Component in the synchronization layer for providing interoperable 

access to external applications. Based on the semantic annotation of the simulation parameters in the 

AAS Instance, the Simulation Component can further be re-parameterized via ñSync Parameters from 

AASò by selecting other AASs with or without SM Simulation. This process can arbitrarily be 

repeated until the desired system behavior is archived. In the presented example, the AAS with a 

default valve Simulation Model was initialized with default parameters of 45 l/min @ 35 bars, then 

re-parameterized with the AAS of a valve with 50 l/min @ 35 bars. Since the semanticID of the 

parameter property includes value unit definition, automated unit conversion can also be included 

during the parameter transfer in both directions. Here, l/min and bar were converted to m³/s and Pa, 

as required by the Simulation Component in the simulation tool. 
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This approach allows both to integrate specific and encapsulated component specific Simulation 

Models, as well as for considering AASs in the simulation that only contain technical parameters 

without any Simulation Model. This leaves great flexibility and lowers the entrance barrier of 

component manufacturers that can only provide very basic AASs of their components. In any case, 

during the creation of the Simulation Component, the corresponding AAS Instance is generated and 

linked, providing an interoperable interface for bi-directional parameter transfer. 

 

Figure 8: Implemented framework during selection and parameterization 

6.2 Commissioning and operation phases 

In the virtual commissioning scenario, the commissioning steps are carried out virtually in the 

simulation environment before the actual assembly of the physical machine. This enables potential 

errors to be detected and eliminated at an early stage, as well as improves and speeds up the 

commissioning process of the real machine. Typical steps include, for example, determining control 

parameters, estimating capacitive lines between components, and analyzing the interaction of 

subsystems with and without the control hardware. These tests and optimizations can be performed 

using simulation, for example, via Software-in-the-Loop and Hardware-in-the-Loop. Therefore, it is 

crucial that the system simulation behaves closely to the real system, for which a solution was 

presented in the previous chapter. When the machine is set up and put into operation during 

commissioning, all the parameters that were optimized in the simulation should be transferred to the 

components of the physical machine.  The interfaces 2. and 3. described in chapter 5 are used in the 

following scenarios. 

In the example shown in figure 9, the user optimized the parameters in the Simulation Components 

of the controller and the valve during virtual commissioning (figure 9-1). After the user has selected 

the Simulation Component and the targeted AAS Instance of the real PAC120 controller by pressing 

ñSync Parameters to AASò, the parameters are transferred automatically in three combined steps. 

First, simulation parameters are updated in the SM Simulation of the AAS Instance of the respective 

Simulation Component (AAS Instance is not shown in the figure). The parameter values are then 

transferred, using the SemanticReferences of the Parameters, to the semantically equivalent properties 

found in various Submodels of the AAS Instance of the PAC120 controller (figure 9-2), which the 

Parker AAS Repository provides. From there, the parameters are updated in the PAC120 controller 

via the OPC UA-AAS-gateway (figure 9-3). If required, the operator can now access and further 
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optimize the parameters via HMI. Similarly, the valve specific settings and parameters are transferred 

from the simulation to the real component, with the exception that instead of OPC UA, the mobile 

phone application with NFC interface is used by the operator. 

As commissioning is often iterative, parameters that were changed during commissioning should 

similarly be transferred back from the real component into the simulation environment. According to 

the principle of Digital Twin, the mechanism presented for transferring component parameters via 

AAS interfaces is bi-directional, allowing both the component and the simulation model values to be 

updated automatically when changes are made to either. However, when new parameter values are 

updated to the physical components, it must be ensured that the machine is in a safe state. Therefore, 

exchange is initiated manually by the operator in the HMI.  

 

Figure 9: Bi-directional parameter transfer to the field devices for operational phases 

In order to always have a profound simulative decision-making basis, and efficiently propagate found 

optimizations back to the machine, the presented mechanism for bi-directional parameter 

synchronization between simulation and field is not only important during commissioning, but also 

crucial to other use-cases among the entire operational phase. 

In the case of unexpected irregularities or machine degradation during operation, solutions can be 

found more effectively and efficiently enabled by the transparency of simulative investigations. For 

example, when friction in the cylinder of the servo-press changes, the controller parameters need to 

be re-parameterized to compensate for the changes. Similarly, this applies to scheduled changes and 

feasibility tests, for example, to answer whether the servo-press used in operation can perform a 

modified pressing task. In all cases, the solution also improves the possibility of simulation-based 

remote support by another engineer or even the OEM, provided access rights are granted.  


