
 

Identification of the deployment defects in Microservice 

hosted in advanced VCS and deployed on containerized 

cloud environment 

 

Amarjeet Singh 

710 Duncan Ave Apt#1409 Pittsburgh, Pennsylvania, 15237, USA amarteotia@gmail.com 

Vinay Singh 

6032 Blue Ridge Dr, Apt#A, Highlands Ranch, Colorado, 80130, USA 

vsbuild7@gmail.com 

 

Alok Aggarwal 

School of Computer Science, University of Petroleum & Energy Studies Dehradun, India 

alok.aggarwal@ddn.upes.ac.in 

Shalini Aggarwal 

Uttaranchal Intt. of Mgt., Uttaranchal University, Dehradun, Shalinia289@yahoo.com 

 

Pratibha Pandey 

Uttaranchal Intt. of Mgt., Uttaranchal University, Dehradun, 

pratibhapandey8502@gmail.com 

 

Manisha Khanduja 

Uttaranchal Intt. Of Mgt., Uttaranchal University, Dehradun, 

manisha.khanduja@gmail.com 

Abstract.  

Micro-services architecture has evolved as the popular software development model for 

the enterprise applications. Since enterprise applications are complex by nature and they 

require out of the box scalability and low latency, these hence Micro-services provides a 

significant contribution in accomplishing these objectives. Enterprises can achieve a long-

term vision of an API-enabled, loosely coupled, highly scalable and flexible platform 

architecture with Micro-services in containerized cloud environment. It has been observed 

that there are very few works available on this topic. Software industry needs to emphasize 

in the area to find out the defects at initial level rather than seen errors in production 

environments. Few works focus on Micro-services while others on Kubernetes issues and 

challenges but there is no relation between the two has been found. That motivated us to 

go for the proposed work, which depicts to identify the defects in early stage for Micro-

services deployed on Kubernetes. Few standard basic guidelines for the micro-service 

architecture, in terms of naming convention, automation, monitoring & warning, fault 

design, and design philosophy, are proposed.  

Key words. Version Control System, Git, Subversion, micro-service, Kubernetes, 

container 

 

mailto:amarteotia@gmail.com
mailto:vsbuild7@gmail.com
mailto:alok.aggarwal@ddn.upes.ac.in
mailto:Shalinia289@yahoo.com
mailto:pratibhapandey8502@gmail.com
mailto:manisha.khanduja@gmail.com


 2 

 

I. INTRODUCTION 

As companies embark on digital transformation, the enterprise architecture team aims to 

design a flexible and scalable architecture. The most important drivers for micro-service 

architecture are, Duplicate the System of Engagement (SoE) and the System of Records 

(SOR) using clearly defined API agreements. It provides flexibility to change tools and 

technologies without affecting experience and business performance. Build large, complex, 

high-fault tolerance systems that offer scalability and availability to meet the needs, use the 

lean model to create presentation and integration layers to create responsive and high-

performance experiences. The platform should offer needs-based scalability and high 

availability. Adopt DOOPS principle for continuous integration, continuous delivery with 

faster release times. Each micro service has its own data model and manages its own data. 

Data is transferred between micro-services using "mute pipes" like light protocols such as 

Event Broker and / or REST. Smaller in scope that encompasses the same business 

functionality. The internal operation is a "black box" from which external programs can 

only access through the API [1][2]. The foremost common issues are the weakening of the 

picture quality of the container and attempting to use special pictures without indicating 

the registration data. Typically, particularly difficult if we are starting to work with 

Kubernetes or utilizing CI/CD for the primary time [3]. Kubernetes informational suggest 

that you simply transmit the arrangement using the setup outline or in mystery when the 

application begins. This information may incorporate database qualifications, API 

endpoints, or other setup banners [4]. A common botch of engineers is to make 

applications that don't have and don't have the reference properties of setup maps or 

arrangement maps/secrets. Whether we are propelling a new app on Cubernets or moving 

to an existing stage, apps frequently crash early. We have diverse situations and we have a 

partitioned cabinet set for each environment; one improvement set and two generation sets. 

We have our possess computer program within the advancement cluster (isolated 

application) and we utilize our claim computer program (single application, smaller scale 

administrations, Crown, etc.) within the advancement cluster. We as of now have around 

ten organizations per diminutive and thousands of module arrangements. With the growing 

number of holders within the cluster, we are confronting the issue of moderate arranging 

[5]. For this issue to happen, 70 conditions on a single hub were adequate. It took a few 

minutes in a push. Moderate planning is no issue in a generation environment where we 

are dealing with heavy workloads and CPU utilization and thus we don't require more than 

70 modules per hub. Kubernetes offers two primary functions, to begin with first is called 

life sensors and second one is accessibility sensors. Fundamentally, the lifetime/uptime 

sensor will perform a few activity from time to time to confirm that our application is 

working accurately (such as sending an HTTP ask, opening a TCP association, or a 

command in your holder) To act). We confront a number of arrange issues such as tall 

delays and parcel dropping. In any case, the root of the issue is the Linux part, not the 

Cybernet itself. The execution of cybernetics largely depends on the execution of the 

Linux bit. You ought to unquestionably check the processor recurrence control mode. We 



 3 

ran LXC sometime recently Kubernetes and a few of its administrations moved to 

Kubernetes without changing the code base. A curiously thing was that their execution on 

the K8s was second rate to that of the LXC. Indeed the foremost IT divisions appeared 

moo execution in utilizing the same CPU. On the off chance that the life test comes up 

short, it will crush our holder and make a modern one. On the off chance that the status test 

comes up short, this module cannot be gotten to as a benefit endpoint, which implies that 

activity will not be sent to this module until it is prepared. Within the current conveyance, 

Progressed Nginx servers point to Kubernetes endpoints by default. The logon controller 

listens to occasions and resets the grouping without interference. However, let's take a 

closer see at the method of steady upgrading. Sends and reports any startup prepare to the 

holder related with the Kubernetes module. At that point report it to the Kubernetes API. 

Since these forms run in parallel, a few administrations may as of now be down, but will 

proceed to be sent to the activity module when entering from the current upstream [6]-[8]. 

Figure 1 shows the Kubernetes eco system for Micro-services.  

 

Figure 1. Kubernetes eco system for Micro-services 

 

Few works focus on Micro-services while others on Kubernetes issues and challenges but 

there is no relation between the two has been found. That motivated us to go for the 

proposed work, which depicts to identify the defects in early stage for Micro-services 

deployed on Kubernetes [9-14]. Few standard basic guidelines for the micro-service 

architecture, in terms of naming convention, automation, monitoring & warning, fault 

design, and design philosophy, are proposed. Rest of the paper is organized as follows. 

Section 2 gives the proposed methodology. Results and discussion are given in section 3.  

have found it difficult and has been interpreted as per the project requirement. Actual 

granularity for a micro-servicestrategic distance [15] from this, make unchanging holders. 

In case of any surrenders or vulnerabilities, designers can revamp and redeploy holders. 

 



 4 

Inaccessible administration is done through runtime APIs or by making farther shell 

sessions to the have on which the Micro-services are running [16]. 

II. METHODOLOGY 

The word “micro” used in Micro-services world architects adequate. It took a few minutes 

in a push. Moderate planning is no issue in a generation environment where we are dealing 

with heavy workloads and CPU utilization and thus we don't require more than 70 modules 

per hub. Kubernetes offers two primary functions, to begin with first is called life sensors 

and second one is accessibility sensors. Fundamentally, the lifetime/uptime sensor will 

perform a few activity from time to time to confirm that our application is working 

accurately (such as sending an HTTP ask, opening a TCP association, or a command in 

your holder) To act). We confront a number of arrange issues such as tall delays and parcel 

dropping. In any case, the root of the issue is the Linux part, not the Cybernet itself. The 

execution of cybernetics largely depends on the execution of the Linux bit. You ought to 

unquestionably check the processor recurrence control mode. We ran LXC sometime 

recently Kubernetes and a few of its administrations moved to Kubernetes without 

changing the code base. A curiously thing was that their execution on the K8s was second 

rate to that of the LXC. Indeed the foremost IT divisions appeared moo execution in 

utilizing the same CPU. On the off chance that the life test comes up short, it will crush our 

holder and make a modern one. On the off chance that the status test comes up short, this 

module cannot be gotten to as a benefit endpoint, which implies that activity will not be 

sent to this module until it is prepared. Within the current conveyance, Progressed Nginx 

servers point to Kubernetes endpoints by default. The logon controller listens to occasions 

and resets the grouping without interference. However, let's take a closer see at the Rest of 

the paper is organized as follows. Section 2 gives the proposed methodology. Results and 

discussion are given in section 3.  have found it difficult and has been interpreted as per the 

project requirement. Actual granularity for a micro-service component is required to be de-

scoped. Therefore, the actual focus area is to improve the reusability for a micro-service 

component in a functional domain. Software project teams devoting their efforts to create 

the Micro-services are presented with many challenges. Close to 70 percent of the project 

teams require the refactoring and analyzing of the source code as a major factor in the 

development [9]-[16]. Designers tend to take off shell get to images so they can settle them 

in generation. Be that as it may, assailants regularly misuse this get to infuse malevolent 

code. To maintain a strategic distance from this, make unchanging holders. In case of any 

surrenders or vulnerabilities, designers can revamp and redeploy holders. Inaccessible 

administration is done through runtime APIs or by making farther shell sessions to the 

have on which the Micro-services are running[17-20]. 



 5 

 

Therefore, there are numerous open-source bundles for designers with promptly accessible 

holders, counting Node.js, Apache Web Server and the Linux working framework. In any 

case, for security purposes, we would like to know where holders start, when they were 

upgraded, and in the event that they’re free of any known vulnerabilities and malicious 

code. It also included the term of aggregates in interface [21].  

 

Figure 3.  The challenges and Features of Micro-services 

Figure 2.  Kubernetes deployment Architecture over Amazon cloud 



 6 

It’s best to set up a trusted picture store and run pictures as it were from that trusted source. 

Kubernetes deployment Architecture over Amazon cloud is shown in figure 2 and figure 3 

shows the challenges and Features of Microservices. 

 

III. RESULTS AND DISCUSSION  

One of the most popular and important plan methodologies for designing cloud-native 

frameworks is micro-service engineering. We are confident that the software industry 

clients will embrace this trend in the integration of distributed frameworks. Regardless, the 

problems and obstacles tend to lead to sub-optimal implementations of this architectural 

style, leading to an atmosphere in which organisations continue to believe that Micro-

services is just another adopted fad. The additional complexity of operating and 

troubleshooting these frameworks creates new problems. Wherever any of these hazards or 

challenges lead to strategic decisions, we must ensure that such unique situations are 

handled by a specialist debt-management mechanism.  Finally, the maturity of the 

framework determines how well ventures can solve these difficulties. The following are 

basic micro-service architecture naming conventions, automation, monitoring and warning, 

fault design, and design philosophy standards. Naming conventions: The URL of Micro-

services is usually a name that represents the source. We will use it for the program 

perform the right actions; example   Get api/v1/accounts that will list all accounts. 

Automation: In order to reduce the operational complexity of the microservice 

architecture, we need to automate the operational complexity tasks such as compiling, 

deploying, error reporting, alerts, monitoring, automatic scaling, and others. Monitoring 

and Warning: Tools should be used to monitor the performance and availability of Micro-

services watch.  

October monitoring services can be configured to monitor disk space, CPU usage, and 

other settings. To alert operational teams in case of violation of the service level 

agreement, we need to configure the appropriate thresholds. Fault design: In order to 

handle faults, we need to implement functions such as Version Control - Micro-service 

versions are managed using versions that are part of the micro-service endpoint. Design 

philosophy: Detailing of Micro-services should be based on the following principles; 

Business functionality (Each micro-service must be designed to show a single business 

functionality), DevOps Installation (We need to configure the DevOps ecosystem 

according to the structure and distribution pipeline,   Management (We need to define the 

standards of functionality/performance improvement, implementation and verification). 

Distributed design: Since the system consists of several Micro-services, we must have the 

most suitable one parsing of services, clean interfaces for services and convenient database 

for each service. Finally, the strive of software companies to solve these problems depends 

on the maturity of the infrastructure and the competence and consistency of design in it 

business and IT in general. Try to develop before that instead of trying to overcome all this 

underwater, the states gems and challenges ahead of us, learn and customize our own 

forward. 



 7 

REFERENCES 

[1] Hou Q., Ma Y., Chen J., and Xu Y., ‘An Empirical Study on Inter-Commit Times in SVN,’ 

Int. Conf. on Software Eng. and Knowledge Eng.,” pp. 132–137, 2014. 

[2] O. Arafat, and D. Riehle, ‘The Commit Size Distribution of Open Source Software,’ Proc. 

the 42nd Hawaii Int’l Conf. Syst. Sci. (HICSS’09), USA, pp. 1-8, 2009.  

[3] C. Kolassa, D. Riehle, and M. Salim, ‘A Model of the Commit Size Distribution of Open 

Source,’ Proc. the 39th Int’l Conf. Current Trends in Theory and Practice of Comput. Sci. 

(SOFSEM’13), Czech Republic, pp. 52–66, 2013.  

[4] L. Hattori and M. Lanza, ‘On the nature of commits,’ Proc. the 4th Int’l ERCIM Wksp. 

Softw. Evol. and Evolvability (EVOL’08), Italy, pp. 63–71, 2008.  

[5] P. Hofmann, and D. Riehle, ‘Estimating Commit Sizes Efficiently,’ Proc. the 5th IFIP WG 

2.13 Int’l Conf. Open Source Systems (OSS’09), Sweden, pp. 105–115, 2009.  

[6] Kolassa C., Riehle, D., and Salim M., ‘A Model of the Commit Size Distribution of Open 

Source,’ Proceedings of the 39th International Conference on Current Trends in Theory and 

Practice of Computer Science (SOFSEM’13),  Springer-Verlag, Heidelberg, Baden-

Württemberg, p. 5266, Jan. 26-31, 2013.  

[7] Arafat O., and Riehle D., ‘The Commit Size Distribution of Open Source Software,’ 

Proceedings of the 42nd Hawaii International Conference on Systems Science (HICSS’09), 

IEEE Computer Society Press, New York, NY, pp. 1-8, Jan. 5-8, 2009. 

[8] R. Purushothaman, and D.E. Perry, Toward Understanding the Rhetoric of Small Source 

Code Changes, IEEE Transactions on Software Engineering, vol. 31, no. 6, pp. 511–526, 

2005.  

[9] A. Alali, H. Kagdi, and J. Maletic, ‘What’s a Typical Commit? A Characterization of Open 

Source Software Repositories,’ Proc. the 16th IEEE Int’l Conf. Program Comprehension 

(ICPC’08), Netherlands, pp. 182-191, 2008.  

[10] A. Hindle, D. Germán, and R. Holt, ‘What do large commits tell us?: a taxonomical study of 

large commits,’ Proc. the 5th  Int’l Working Conf. Mining Softw. Repos. (MSR’08), 

Germany, pp. 99-108, 2008. 

[11] Alok Aggarwal, Vinay Singh, Narendra Kumar, ‘A Rapid Transition from Subversion to Git: 

Time, Space, Branching, Merging, Offline Commits & Offline builds and Repository 

Aspects,’ Recent Advances in Computer Science and Communications, vol. 14: 

e210621194190, 2021. 

[12] V. Singh, M. Alshehri, A. Aggarwal, O. Alfarraj, P. Sharma et al., ‘A holistic, proactive and 

novel approach for pre, during and post migration validation from subversion to git,’ 

Computers, Materials & Continua, vol. 66, no.3, pp. 2359–2371, 2021.  



 8 

[13] Vinay Singh, Alok Aggarwal, Narendra Kumar, A. K. Saini, ‘A Novel Approach for Pre-

Validation, Auto Resiliency & Alert Notification for SVN To Git Migration Using Iot 

Devices,’PalArch’s Journal of Arch. of Egypt/Egyptology, vol. 17 no. 9, pp. 7131 – 7145, 

2021.  

[14] Singh Vinay, and Aggarwal Alok, ‘Performance Analysis of Middleware Distributed and 

Clustered Systems (PAMS) Concept in Mobile Communication Devices Using Android 

Operating System,’ Proc. Third IEEE International Conference on Parallel, Distributed and 

Grid Computing (PDGC-2014), December 11-13, 2014, Waknaghat, Solan, India.  

[15] V. Singh, A. Singh, A. Aggarwal and S. Aggarwal, ‘A digital Transformation Approach for 

Event Driven Micro-services Architecture residing within Advanced VCS,’ 2021 

International Conference on Disruptive Technologies for Multi-Disciplinary Research and 

Applications (CENTCON), 2021, pp. 100-105, doi: 

10.1109/CENTCON52345.2021.9687973. 

[16] V. Singh, A. Singh, A. Aggarwal and S. Aggarwal, ‘DevOps based migration aspects from 

Legacy Version Control System to Advanced Distributed VCS for deploying Micro-

services,’ 2021 IEEE International Conference on Computation System and Information 

Technology for Sustainable Solutions (CSITSS), 2021, pp. 1-5, doi: 

10.1109/CSITSS54238.2021.968371  

[17] Kumar, A., Memoria, M., & Kumar, V. (2021). Memory optimized deep learning based face 

recognization. Indian Journal of Computer Science and Engineering, 12(1), 57–64. 

https://doi.org/10.21817/indjcse/2021/v12i1/211201066 

[18] Kumar, A., Singh, D., & Punia, P. (2016). Implementation of image dehazing technique 

using image fusion. International Journal of Control Theory and Applications, 9(20), 307–

315. https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85006371817&partnerID=40&md5=17ff92c722005ff83c9c27c371a0f2ed 

[19] Kumar, A., & Verma, A. (2016). Missing numbers in graceful graphs. International Journal 

of Control Theory and Applications, 9(21), 133–136. 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85008259815&partnerID=40&md5=b85175173bb98fecc1b0ec98e2185b98 

[20] Kumar, D., Chibber, V. K., & Singh, A. (2018). Physical and chemical properties of Mahua 

and Sal seed oils. In Advances in Intelligent Systems and Computing (Vol. 624, pp. 1391–

1400). https://doi.org/10.1007/978-981-10-5903-2_146 

[21] Kumar, M., Chandramauli, A., & Ashutosh. (2018). Partial replacement of fine aggregates of 

fire bricks with fine aggregates in concrete. International Journal of Civil Engineering and 

Technology, 9(3), 961–968. https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85045069805&partnerID=40&md5=65b0161451cfa3352689f31d23a5b191 

 



 9 

Biographies 

 

 

Amarjeet Singh earned a Master's degree in Computer Science from Southern Arkansas 

University in Arkansas USA in 2021 and Bachelor's degree in Information Technology in 

2005. Mr. Amarjeet Singh possesses over 15 years of experience in the Software and IT 

industry in multiple roles in design development and architecture of modern cloud and 

Microservices based systems. Provided help to many clients for the digital transformation 

journey. 

 

 

Vinay Singh has got 17 years of experience in different domains and technologies in the 

Software Industry and Teaching.  He has worked with AT&T, CapitalOne Bank, Agilent, 

Walgreens kind of industry leading organization. He is currently working as Manager 

Software Engineer with Charles Schwab, USA. With this Progressive Experience as leader 

to DevOps and Software engineering, he is leading a big team of engineer to Build & 

Release with Continuous Integration/Continuous Deployment using Jenkins, Bamboo and 

Maven under Agile framework from Dev to Production. 

 

 

 

 

 

Alok Aggarwal earned PhD degree in Mobile Computing area from IIT Roorkee, INDIA 

in 2010, Master's degree in Computer Science & Engineering in 2001 and Bachelor's 

degree in Computer Science in 1995. Contributing over 23+ years in Teaching (CSE & 

IT), as well as S/W Development. Currently spearheading efforts as Professor (CSE), with 



 10 

University of Petroleum & Energy Studies, Dehradun (UK) INDIA. He has contributed 

250 research papers, 5 Patents, 5 Books and 4 Book Chapters. Current research interests 

include Machine learning, AI, power control management, MANET & wireless sensor 

networks. 

 

 

 

 

 

 

Shalini Aggarwal earned PhD degree in networking in 2018 from Mewar University 

Rajasthan, Master's degree in Computer Applications in 2007 and Bachelor's degree in 

Science in 2001. Contributing over 12+ years in Teaching and currently working as 

Assistant Professor in Uttaranchal University. She has contributed 12 research papers.  

 

 

Pratibha Pandeyis working as Assistant Professor at Uttaranchal University, Dehradun, 

India. She is MCA from Punjab Technical University, Jalandhar. M.Tech (Computer 

Science& Engineering), from Uttarakhand Technical University, Dehradun, 

Uttarakhand.Her area of interest includes Machine Learning, Big Data, Cyber Security, 

and Cloud Computing. 

 

 

Manisha Khandujais working asAssistant Professor at Uttaranchal University, Dehradun, 

India. She is MCA fromUttarakhand Technical University, Dehradun, Uttarakhand.Her 

area of interest includes Data Mining, Internet of Things etc. 

 

 


