10

Deploying a Convolutional Neural Network
on Edge MCU and Neuromorphic Hardware
Platforms

Simon Narduzzi', Dorvan Favre' 2, Nuria Pazos Escudero?
and L. Andrea Dunbar!

LCSEM, Switzerland
2HE-Arc, Switzerland

Abstract

The rapid development of embedded technologies in recent decades has led
to the advent of dedicated inference platforms for deep learning. However,
unlike development libraries for the algorithms, hardware deployment is
highly fragmented in both technology, tools, and usability. Moreover, emerg-
ing paradigms such as spiking neural networks do not use the same prediction
process, making the comparison between platforms difficult. In this paper,
we deploy a convolutional neural network model on different platforms
comprising microcontrollers with and without deep learning accelerators and
an event-based accelerator and compare their performance. We also report the
perceived effort of deployment for each platform.

Keywords: neuromorphic computing, IoT, kendryte, DynapCNN, STM32,
performance, comparison, benchmark.

10.1 Introduction

Edge computing is a key tool in harnessing the possibilities of artificial
intelligence. Some advantages of edge over cloud processing are low latency,
allowing real-time application and connectivity independence, i.e., no need

129

130 Deploying a Convolutional Neural Network on Edge MCU

of infrastructure and no transmission of sensitive data, allowing improved
security and privacy-preserving applications. However, perhaps the most
important and as yet untapped potential of edge computing is in the low
power possibilities. Low power allows always-on IoT devices for seamlessly
integrated intelligent systems. Creating edge-based IoT devices often requires
limited hardware resources, both in terms of power and on-device memory.
Today’s intelligence is mainly based on Deep Learning (DL) networks which
are power and memory hungry. This conflict has resulted in several emerging
technologies and platforms to perform efficient inference at the edge.

Established companies have both targeted the IoT device by creating
ultra-low-power processors (Intel Loihi, STM32 Cortex-M4), but there are
also several other innovative platforms such as DynapCNN][1] and Kendryte
K210[2] specialized for deep neural network inference with a very little
power budget. The specialized nature and variety of products and platforms
require platform-specific software tools, making the deployment of one
model on several platforms cumbersome and creating a barrier to technology
adoption. Moreover, the lack of hardware standardization coupled with the
necessary customization of the software makes it difficult to compare, and
thus choose, the best technology.

To remove this barrier, it is essential to facilitate access to platforms
to non-hardware experts. Indeed, the success of DL is essentially linked to
the acceleration provided by graphical processing units (GPUs). Currently,
only a very small proportion of users have mastered the CUDA programming
language used by the majority of GPUs. In most DL libraries, mobilization
of the necessary resources can be called in a single command line, without
the user having to understand the technology behind it. This kind of single
instruction would empower the data scientists in the porting to edge devices.

In this short paper, we give a brief summary of works that address the
challenges of implementing DL on different hardware platforms. Initially, we
present our results on a basic neural network deployment on edge devices, and
then we compare the performance of 3 selected devices. Finally, we describe
the lessons learned and present solutions to facilitate the deployment of these
models in the future.

10.2 Related Work

Benchmarking low-resource platforms is a necessary process to select the
best platforms to embed algorithms. It is a tricky procedure, as the perfor-
mance of a platform depends on several aspects: the available memory and

10.3 Methods 131

processing units, the technology of the hardware, and the frameworks and
tools used during the deployment of the models to benchmark. To harmonize
the performance assessment, benchmarking suites such as TinyMLPerf [3]
have been created. Recently, a benchmarking suite has been developed for
event-based neuromorphic hardware [4]. However, both these solutions still
need manual adaptation of the code to run on new platforms. While the
benchmarking gives good insights about which and why to select a certain
platform. It still remains the question of how to use the benchmarking
tools itself. Each platform comes with its own SDK, conversion tools, and
constraint of utilization, which in turn limits the possibility of comparing the
platforms between them.

Today, many benchmarks are therefore performed on just a few hardware
platforms and comparing only a single use-case, as alternatives are more
cumbersome. Furthermore, it is easier to benchmark and compare platforms
from the same constructor, as the deployment pipelines are usually similar
between devices. In this regard, standard architectures LeNet-5 and ResNet-
20 have been benchmarked on a few STM32 boards [5]. Machine learning
algorithms have also been compared on Cortex-M processors [6][7]. Some
efforts of cross-constructor benchmarking have also been made. For example,
a recent work deployed a gesture recognition and wake-up words application
on an Arduino Nano BLE and a STM32 NUCLEO-F401RE [8] using a
convolutional neural network.

While the above research focuses on the established STM32 Cortex-
M based MCUs, some emerging processors are also explored [9], but
the research in this domain remains scarce. Furthermore, the deployment
pipelines are not documented, which limits the reproducibility of the results.
In our research, we deploy a single neural network on three different
platforms and observe their performance. We also highlight the difference
between the deployment pipelines of each constructor, and we perform a
qualitative study of the easiness of deployment on each system.

10.3 Methods

In this section, we present the selected task and associated experimental setup,
and a method to evaluate the effort of the deployment.

10.3.1 Neural Network Deployment

In our experiment, we use 3 different boards. We select boards from different
constructors to show the (large) variety of tools and processing available in

132 Deploying a Convolutional Neural Network on Edge MCU

6@28x28

s@uax14 16@10x10 16@5x5 120@ix1 1x120

%h:lﬁ 1x10
] qlh:h Dense
Dense
Convolutios

Convolution Average Pooling Convolution Average Pooling y n Flatten

Figure 10.1 Illustration of LeNet-5 architecture.

edge devices today. These sample devices are a very small subset of the large
variety of devices today, but they show that with only three different board
manufacturers, an extensive adaptation of the deployment pipeline is neces-
sary. The selected 3 devices for our experiments are the following: a Kendryte
K210 from Canaan, a dual-core RISC-V processor with floating-point units;
an STM32L4R9 from STMicroelectronics (ST) with an ARM Cortex-M4
core also including floating-point unit, and SynSense DynapCNN, an event-
based processor. Table 10.1 summarizes the major differences between these
platforms.

10.3.1.1 Task and Model

We tested the selected platforms on a simple LeNet-5 [10] networks trained
on MNIST, which architecture is displayed in Figure 10.1. This architec-
ture, composed of convolutions layers, average pooling and dense layers, is
compatible with all selected platforms. The architecture was trained for 30
epochs with a learning rate 1e — 4. Tensorflow 2.9.1 was used to define the
HS5 model running on the Sipeed and ST boards, while PyTorch 1.11.0 was
used for DynapCNN. Unfortunately, our efforts to transfer the weights from
the Tensorflow model to the PyTorch failed, and we had to train the models
separately. The Keras and PyTorch models reached an accuracy of 99.44%
and 99.38% on the train set, respectively. We perform inference on the first
1000 images of the test dataset.

10.3.1.2 Experimental Setup
For each platform, we used the latest tools available at the time at which this
article was written.

Kendryte K210
The Kendryte K210 is used with the Sipeed MaixDock M1. The Neural
networks embedded in this device were converted from Keras H5 file format,

10.3 Methods 133

using Tensorflow 2.9.1 and associated TFLite. The firmware version of the
Kendryte is 0.6.2, and the version of the NNCase package used for conversion
is 0.2.

STM32L4R9

The STM32L4R9 board with an Arm Cortex-M4 core processor from ST
is programmed in C. Due to the complexity of hardware initialization, ST
provides a tool, STM32CubeMX 6.5.0, which automatically generates an
initial C project for a specific board. The tool X-CUBE-AI 7.1.0 converts
TFLite models into C files which are, alongside the X-CUBE-AI inference
library, added to the project. The Keras HS file network is converted to
TFLite format using Tensorflow 2.8.2 and Python 3.6. Gce-arm-none-eabi
15:10.3-2021.07-4 and Make 4.2.1 are used to compile the whole project,
and STM32CubeProgrammer 2.10.0 is used to upload the binaries on the
device.

DynapCNN

The SynSense DynapCNN processor was programmed using Python 3.7.13
with PyTorch 1.11.0, Sinabs 0.3.3 (and underlying Sinabs-DynapCNN
0.3.1.dev3), and Samna 0.14.33.0 libraries. The neural network is written
in PyTorch and converted to a spiking version using Sinabs, while Samna
is used to map the network to the hardware. The inputs are presented to the
network using a preprocessing function that generates spikes' from random
sampling of the image, using the following function, where tWindow is the
duration of the spiking frame and img has shape [channels, width, height]:

def to_spikes(img, tWindow=100):
rnd = (np.random.rand(self.tWindow, *img.shape)
img = rnd < img.numpy()/255.0) .astype(float)
return torch.from_numpy(img) .float ()

During our simulation, we found 100 timesteps to be sufficient to reach
equivalent accuracy between the spiking and non-spiking version of MNIST.

10.3.1.3 Deployment
For standalone platforms, the network was converted and uploaded to the
platform. For Kendryte, the inference script was written such that the model

!Spikes are binary events (on or off) distributed in input space and time.

134 Deploying a Convolutional Neural Network on Edge MCU

Table 10.1 Relevant technical specifications of the devices (from constructor websites).

Board Kendryte K210 STM32L4R9 DynapCNN
Processor ISA Dual-core RISC-V 64b ARM Cortex-M4 Event-based
Power Consumption 300mW 66mw ImW
Max Frequency (MHz) 900 120 -
TOPS/W 3.3 - -
Standalone Yes Yes No
Event-based No No Yes
Language MicroPython C Python

Workstation Workstation Workstation
[Cmodelpt] [(modelpy J [datanpy]

Generate source code for L4R9
STM32CubeMX
X-CUBE-AI

Convert to
TFLite
Tensorflow

TFLite

Convert to
Tensorflow

tiite file

it file

Convert to

Generate C
model Project KModel Convert to Convert to
X-CUBE-AI NNCase results.json DynapCnnNetwork Events
l enodel files Sinabs Python
results json Compute
Compile Generate scripts KPIs results.json
in MicroPython Python

Compute

Compute
KPIs

Python

KPIs .
Python inferpy (o BRI | Python

Validate ! ';‘:3‘12;‘:‘[‘:“" i| Upload Data ':":.“:?“?_ dynap.predict

X-CUBE-AI | report.xt Seons il Rshell precictions 0
Python, RShell RShell P
yihon
ST-Link UART UART ; UART UART
Sipeed H
STM32L4R9 MaixPy Dock M1 { DynapCNN
Y | S—— ynap

Figure 10.2 Deployment pipelines for all platforms. From left to right: STM32L4R9,
Kendryte K210 and DynapCNN. For DynapCNN, the pipeline is contained in a single Python
script, while the other relay on external languages and tools.

is loaded at the beginning of the script and processes images one by one.
The images are transmitted via serial communication and inferred by infer-
ence script. In X-CUBE-AI, this is automatically done, while Kendryte
requires a script that sends batches of images and obtains the predictions. For
DynapCNN, the images are predicted by sending the corresponding events to
the device and reading the output events from the buffer of the board.

The prediction time is provided automatically by the X-CUBE-AI plat-
form, while Kendryte requires to time the prediction manually. In the
MicroPython script used for inference on Kendryte, we put a counter around
the line performing the inference. For DynapCNN, the reported times corre-
sponds to the timestamp of the first output event and the final output event,
respectively. Both times are averaged over the test samples. The computation
of the key performance indicators (accuracy, mean time) is performed offline.
Figure 10.2 illustrates the pipelines for all platforms.

10.3 Methods 135

10.3.2 Measuring the Ease of Deployment

One of the major criteria for the adoption of a product is the ease of
use, meaning how much one user is autonomous in using the device. This
highly depends on the user skills, but also on the quality of the documenta-
tion. For embedded machine learning, the documentation should explicitly
describe the procedure to deploy a model once the user receives the new
platform. We have identified 5 different phases that are required when using
a microcontroller product for Al acceleration.

* Acquisition (A): this phase comprises the effort needed to place an order
for the device and the time necessary to ship the device. A small effort
would correspond to ordering the platform from a website and receiving
it within the next week. A large effort requires to contact the company
by phone or email and wait for two month to receive the device.

* Setup (S): this phase comprises the effort needed to install the required
environment. A small effort would require installing a python package
from pip or an executable available from the constructor website. A large
effort requires installing multiple packages which versions depend on
the firmware of the device or the version of Python packages used to
train the model, as well as dependencies on external tools.

* Getting started (G): this phase is the effort needed to replicate the
examples given in the documentation. A small effort would correspond
to a full deployment example done within one hour. A large effort would
require support from the constructor.

* Model preparation (M): this phase comprises the effort needed to
convert a PyTorch/Tensorflow model to the proprietary format of the
device. A small effort would correspond to a single command line with
arguments. A large effort corresponds to manually writing the neural
network in the proprietary format and transferring the weights, with
limited help from the conversion tool, or requiring intervention from the
constructor.

* Inference (I): this phase comprises the effort needed to perform infer-
ence once the model is embedded to the device. A small effort would
correspond to a single command line or instruction to perform inference,
a medium effort requires writing an inference script and deploying
it manually on the hardware platform. A large effort would require
intervention from the constructor.

Each phase is assigned with a number between 1 and 5. The total score
represents the complexity of deployment. A low value (5) corresponds to a

136 Deploying a Convolutional Neural Network on Edge MCU

small effort necessary to deploy a model on a never-used platform, while 25
corresponds to a large effort.

10.4 Results

In this section, we present the results and metrics recorded for each platform,
and the effort perceived by the team to perform the experiments.

10.4.1 Inference Results

The models were successfully deployed on all platforms. Table 10.2 sum-
marizes the results on the 1000 first samples of MNIST test dataset. It can
be observed that the balanced accuracy is not homogeneous between the
platforms. This difference is certainly caused by the different transformations
affecting the models during the deployment (conversion). While we initially
tried to deploy full-precision models and a quantized version of them, we
only had time to deploy it on the ST platform. The evaluation of quantized-
aware trained models and evaluation DynapCNN and Kendryte K210 using
integer weights is a future work. The models run faster when using 8-bit
integer precision on STM32 (even if the platform is made to compute 32-
bit floats). The Kendryte K210 is the fastest to compute synchronous frames
while DynapCNN is the fastest to provide a result in a 32-bit precision,
with 98.79% precision using only the first spike?. Unfortunately, only the
DynapCNN provides an estimation of the energy consumption, obtained with
Sinabs by computing the average number of synpatic operations over the
course of the simulations. All the metrics are averaged over the test partition.

Table 10.2 Results on MNIST dataset for all platforms. For the DynapCNN, we report the
accuracy and latency for the first spike prediction and over the entire simulation.

Platform Kendryte K210 STM321.4R9 DynapCNN
Bit Precision float-32 float-32 int-8 float-32
Size (KB) 94.2 359.2 90.5 -
Accuracy 97.23% 98.26% 94.07% 98.79% 1 99.09%
Latency (ms) 54.17 80.82 36.23 41.3/294.9
Energy (1)) - - - 144.5

2Some samples (with indices [18, 247, 493, 495, 717, 894, 904, 947] in test set) did not
produce any spikes for an unknown reason. In that case, we removed the associated labels and
compute the balanced accuracy on the 992 remaining samples.

10.5 Conclusion 137

Table 10.3 Perceived effort for each stage of the inference. 1: small, 5: large.

Board A S G M I Total
Kendryte 1 3 2 3 3 12
STM32L4R9 1 2 4 3 2 12
DynapCNN 3 1 3 1 1 9

10.4.2 Perceived Effort

Table 10.3 summarizes the team perceived effort for each of these phases
in a qualitative manner. We observe a high variation in the effort perceived
for each platform. The model preparation phase seems to be critical. In all
the platforms, this phase is perceived as requiring a great effort. Kendryte
K210 and STM32L4R9 require the most human intervention to build a
complete deployment pipeline, while the deployment pipeline of DynapCNN
is automated.

10.5 Conclusion

Although the development of embedded machine learning holds great
promise, the lack of consistency and standardization across devices makes
development extremely platform-dependent. Deploying a model on these
devices requires to use of low-level tools, such as C language. However, most
models are developed using (high-level) Python-based tools. The deployment
process of a model therefore requires adaptation of the model from Python
to C, which is time-consuming and is prone to errors and artifacts in the
final implementation. Platform providers are aware of this problem and have
started putting effort into facilitating the deployment by providing automated
tools and interfaces with DL frameworks. Specifically, for the platforms used
in these experiments, Sipeed has ported MicroPython to the Maix Dock,
allowing to write code close to the one used to train the model; SynSense
provides a library that allows interaction with the DynapCNN directly from a
Python script, and allow simulation of the model before deployment, to get a
quick idea of performance. Finally, the well-established ST-Microelectronic
provides the X-CUBE-AI tool, which, in addition to analyzing the model
before deployment, offers the possibility of validating the model on the target
and retrieves relevant metrics without writing a single line of code.

However, these tools are recent and standards are not yet established. To
promote and accelerate the development of machine learning on embedded
interfaces, it is necessary to provide standardized tools accessible to model

138 Deploying a Convolutional Neural Network on Edge MCU

developers, where a minimum of knowledge about the platform is required.
This will increase the adoption of the technologies. Some points seem
essential to facilitate the adoption of low-power technologies, in particular:

* Up-to-date documentation: documents specifying platform schematics,
APIs and dependencies on external tools must be carefully maintained.

* The documentation should contain examples for each API call.

* Model conversion tools should be compatible with most deep learning
libraries (Tensorflow and PyTorch) and should detail which version and
which operations (layers) are supported by each version of the tool.
Ideally, conversion tools should be based on community standards, such
as the ONNX format.

* Model conversion tools should be automated and provide understand-
able warnings and error messages.

To reduce the entry barrier for these low-power platforms for developers
of Deep Learning models the following interfaces would be beneficial:

* A hardware simulation interface, in order to obtain a quick feedback on
the feasibility of deploying the model on the platform, and to provide an
interpretable error in case of memory exhaustion or unsupported layer.

* An evaluation of the key performance indicators relevant for edge com-
puting, such as memory consumption, model speed (number of cycles
per inference) and energy used during inference.

These interfaces will enable rapid prototyping and comparison of models
for the Edge, while providing a solid foundation for iterating and developing
new inference techniques.

Acknowledgements

This work is supported through the project ANDANTE. ANDANTE has
received funding from the ECSEL Joint Undertaking (JU) under grant agree-
ment No 876925. The JU receives support from the European Union’s
Horizon 2020 research and innovation programme and France, Belgium, Ger-
many, Netherlands, Portugal, Spain, Switzerland. The authors are responsible
for the content of this publication.

References

[1] Q. Liu, O. Richter, C. Nielsen, S. Sheik, G. Indiveri, and N. Qiao.
Live demonstration: face recognition on an ultra-low power event-driven

References 139

convolutional neural network asic. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops,
pages 0-0, 2019.

[2] Canaan website. Kendryte K210 description page, 2022.

[3] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holle-
man, X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov, et al. Bench-
marking tinyml systems: Challenges and direction. arXiv preprint
arXiv:2003.04821, 2020.

[4] C. Ostrau, C. Klarhorst, M. Thies, and U. Riickert. Benchmarking of
neuromorphic hardware systems. In Proceedings of the Neuro-inspired
Computational Elements Workshop, pages 1-4, 2020.

[5] L. Heim, A. Biri, Z. Qu, and L. Thiele. Measuring what really
matters: Optimizing neural networks for tinyml. arXiv preprint
arXiv:2104.10645, 2021.

[6] V. Falbo, T. Apicella, D. Aurioso, L. Danese, F. Bellotti, R. Berta,
and A. D. Gloria. Analyzing machine learning on mainstream micro-
controllers. In International Conference on Applications in Electronics
Pervading Industry, Environment and Society, pages 103—108. Springer,
2019.

[7]1 R. Sanchez-Iborra and A. F. Skarmeta. Tinyml-enabled frugal smart
objects: Challenges and opportunities. IEEE Circuits and Systems
Magazine, 20(3):4-18, 2020.

[8] A. Osman, U. Abid, L. Gemma, M. Perotto, and D. Brunelli. Tinyml
platforms benchmarking. In International Conference on Applications
in Electronics Pervading Industry, Environment and Society, pages 139—
148. Springer, 2022.

[9] M. de Prado, M. Rusci, A. Capotondi, R. Donze, L. Benini, and N.
Pazos. Robustifying the deployment of tinyml models for autonomous
mini-vehicles. Sensors, 21(4):1339, 2021.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278-2324, 1998.

